Data supplement to Pillinger et al. Cholesterol and triglyceride levels in first-episode psychosis: systematic review and meta-analysis. Br J Psychiatry doi: 10.1192/bjp.bp.117.200907

CONTENTS

Page 2	Fig. DS1 Forest plot for HDL cholesterol
	Fig. DS2 Forest plot for leptin
Pages 3– 5	Tables DS1–5 Raw data for analyses
Pages 5, 6	Figs DS3–7 Funnel plots for TC, LDL, TG, HDL and leptin analyses
Pages 7, 8	Figs DS8–11 Scatter plots of regression of effect size for TC, LDL, TG and HDL on absolute difference in BMI between patient and control groups
Pages 9, 10	Tables DS6-8 Raw data for SI unit absolute value analyses (TC, LDL and TG analyses)
Pages 11–14	Table DS9 Further information regarding cohort characteristics
Pages 15-17	Table DS10 Quality assessment
Pages 19–26	Supplement DS1
	A priori protocol and documentation of studies and data not used in analyses
	Quality assessment subgroup analyses
	Further information regarding inclusion/exclusion criteria rationale
	MOOSE checklist
Pages 27, 28	References

Fig. DS1 Forest plot showing HDL cholesterol concentration in patients with first episode schizophrenia and controls. HDL cholesterol concentration was not altered in patients compared with controls (Hedges g = -0.19; 95% CI -0.39 – 0.02; P = 0.072). Each square shows the effect size for a single study, with the horizontal line running through each square illustrating the width of the 95% CI. The size of the square reflects the weight attributed to each study. The diamond represents the summary effect size. The middle of the diamond represents the summary effect size, and the width of the diamond depicts the width of the overall 95% CI.

Fig. DS2 Forest plot showing leptin concentration in patients with first episode schizophrenia and controls. Leptin concentration was not altered in patients compared with controls (Hedges g = 0.05; 95% CI -0.31 – 0.42; p = 0.779). Each square shows the effect size for a single study, with the horizontal line running through each square illustrating the width of the 95% CI. The size of the square reflects the weight attributed to each study. The diamond represents the summary effect size. The middle of the diamond represents the summary effect size, and the width of the diamond depicts the width of the overall 95% CI.

Study name	Statistics	study	Sample size			
	ledges's g	ges's Upper g limit		Patient	Control	
Venkatasubramanian et al., 2010	-0.472	-0.021	-0.924	38	38	
Arranz et al., 2004	-0.120	0.269	-0.509	50	50	
Spelman et al., 2007	0.036	0.481	-0.410	38	38	
Basoglu et al., 2010	0.131	0.726	-0.464	20	22	
Wang et al., 2007 female	0.248	1.132	-0.635	9	9	
Wang et al., 2007 male	1.582	2.724	0.439	7	7	
	0.052	0.418	-0.313	162	164	

Hedges's g and 95% Cl

Elevated in Controls Elevated in Patients

Study Name	Patient	Patient	Patient	Control	Control	Control Sample
	Mean	SD	Sample Size	Mean	SD	size
Ryan et al., 2003(1)	4.02	0.78	26	4.57	0.81	26
Chen, Du et al., 2016(2)	4.4	0.9	172	4.2	1	31
Chen, Broqueres-You et al., 2016(3)	4.69	0.98	60	4.31	0.82	28
Petrikis et al., 2015(4)	188.21	46.92	40	196.96	43.57	40
Dasgupta et al., 2010(5)	157.6	42.88	30	169.2	17.08	25
Spelman et al., 2007(6)	4.3	0.9	38	4.4	0.6	38
Sengupta et al., 2008(7)	4.04	0.77	38	4.17	0.9	36
Verma et al., 2009(8)	4.7	1	160	5.1	0.9	200
Kirkpatrick et al., 2010(9)	168.1	34.8	76	175.4	32.2	76
Wu et al., 2013(10)	4.16	0.77	70	4.54	0.76	44
Srihari et al., 2013(11)	169.8	25.4	76	171.7	32	156
Venkatasubramanian et al., 2010(12)	170.7	32.5	38	172.2	34.1	38
Misiak et al., 2016(13)	4.22	0.85	24	4.49	0.89	146
Sarandol et al., 2015(14)	155	29	29	167	25	25
Kavzoglu et al., 2013(15)	171.92	31.17	50	174.92	35.33	50

 Table DS1
 Raw data used in total cholesterol analysis

Table DS2 Raw data used in LDL Cholesterol analysis

Study Name	Patient Mean	Patient SD	Patient Sample Size	Control Mean	Control SD	Control Sample size
Ryan et al., 2003(1)	2.39	0.84	26	2.91	0.69	26
Chen, Du et al., 2016(2)	2.6	0.7	172	2.7	0.8	31
Dasgupta et al., 2010(5)	89.14	37.01	30	101.55	18.43	25
Spelman et al., 2007(6)	2.9	0.9	38	2.8	0.6	38
Sengupta et al., 2008(7)	2.48	0.63	38	2.52	0.72	36
Verma et al., 2009(8)	2.7	0.9	160	3.1	0.8	200
Kirkpatrick et al., 2010(9)	99.6	31.4	76	105.8	28.8	76
Wu et al., 2013(10)	2.5	0.67	70	2.62	0.63	44
Basoglu et al., 2010(16)	96.9	34.2	20	90.1	18.3	22
Misiak et al., 2016(13)	2.17	0.60	24	2.34	0.76	146
Srihari et al., 2013(11)	91.8	10.2	76	96.2	16.3	156
Sarandol et al., 2015(14)	92	26	26	102	25	25
Kavzoglu et al., 2013(15)	109.85	29.27	50	107.08	30.05	50

Study Name	Patient	Patient	Patient Sample	Control	Control	Control Sample
	Mean	SD	Size	Mean	SD	size
Ryan et al., 2003(1)	1.2	0.44	26	1.25	0.25	26
Chen, Du et al., 2016(2)	1.4	0.3	172	1.4	0.2	31
Petrikis et al., 2015(4)	51.3	10.75	40	61.68	16.53	40
Enez Darcin 2015(17)	36	12.5	40	45	16.25	70
Dasgupta et al., 2010(5)	39.26	7.51	30	40.72	4.1	25
Spelman et al., 2007(6)	1.15	0.3	38	1.21	0.2	38
Sengupta et al., 2008(7)	1.06	0.26	38	1.19	0.36	36
Verma et al., 2009(8)	1.5	0.4	160	1.5	0.3	200
Saddichha et al., 2008(18)	36.4	8.9	99	35.6	10	51
Kirkpatrick et al., 2010(9)	51.5	17.3	76	52	12.6	76
Wu et al., 2013(10)	1.29	0.26	70	1.58	0.31	44
Basoglu et al., 2010(16)	43.3	9.1	20	31.9	5.8	22
Misiak et al., 2016(13)	1.41	0.41	24	1.69	0.49	146
Srihari et al., 2013(11)	50.9	10.7	76	51.9	13.2	156
Sarandol et al., 2015(14)	45	7	26	48	10	25
Kavzoglu et al., 2013(15)	46.69	13.14	50	44.58	12.39	50

Table DS3 Raw data used in HDL Cholesterol analysis

eTable 4: Raw data used in triglyceride analysis

Study Name	Patient	Patient	Patient Sample	Control	Control	Control Sample
	Mean	SD	Size	Mean	SD	size
Ryan et al., 2003(1)	0.99	0.43	26	0.92	0.3	26
Chen, Du et al., 2016(2)	1.2	0.7	172	1.1	0.7	31
Chen, Broqueres-You et al., 2016(3)	1.32	1.03	60	0.7	0.34	28
Petrikis et al., 2015(4)	93.29	51.87	40	85.54	40.88	40
Enez Darcin 2015	101	55	40	101	57	70
Dasgupta et al., 2010(5)	145.96	71.83	30	138.64	20.99	25
Spelman et al., 2007(6)	1.3	0.7	38	1.1	0.45	38
Sengupta et al., 2008(7)	1.1	0.65	38	1	0.72	36
Saddichha et al., 2008(18)	116.3	16.9	99	101.3	46.4	51
Kirkpatrick et al., 2010(9)	84.9	38.6	76	87.5	52.2	76
Wu et al., 2013(10)	1.12	0.75	70	0.99	0.41	44
Basoglu et al., 2010(16)	89.5	46.9	20	97.1	48.7	22
Venkatasubramanian et al., 2010(12)	119.2	58.7	38	105.3	59.2	38
Misiak et al., 2016(13)	1.44	0.95	24	1.09	0.55	146
Srihari et al., 2013(11)	89.5	16.7	76	92.9	20.2	156
Sarandol et al., 2015(14)	83	40	26	82	44	25
Kavzoglu et al., 2013(15)	93.62	44.04	50	118.44	70.04	50

Study Name	Patient Mean	Patient SD	Patient Sample Size	Control Mean	Control SD	Control Sample size
Arranz et al., 2004(19)	1.13	6.43	50	1.8	4.46	50
Spelman et al., 2007(6)	3.7	2.3	38	3.6	3.2	38
Basoglu et al., 2010(16)	3.1	2.3	20	2.8	2.2	22
Venkatasubramanian et al., 2010(12)	7.6	10.7	38	12.9	11.5	38
Wang et al., 2007 male(20)	28.37	16.25	7	8.01	5.13	7
Wang et al., 2007 female(20)	19.26	22.38	9	14.56	12.19	9

Table DS5 Raw data used in leptin analysis

Fig. DS3 Funnel Plot for total cholesterol analysis. The horizontal line indicates the average effect size, the diagonal lines represent the 95% confidence interval around the overall effect estimate.

Fig. DS4 Funnel Plot for LDL cholesterol analysis. The horizontal line indicates the average effect size, the diagonal lines represent the 95% confidence interval around the overall effect estimate.

Fig. DS5 Funnel Plot for triglyceride analysis. The horizontal line indicates the average effect size, the diagonal lines represent the 95% confidence interval around the overall effect estimate.

Fig. DS6 Funnel Plot for HDL cholesterol analysis. The horizontal line indicates the average effect size, the diagonal lines represent the 95% confidence interval around the overall effect estimate.

Fig. DS7 Funnel Plot for leptin analysis. The horizontal line indicates the average effect size, the diagonal lines represent the 95% confidence interval around the overall effect estimate.

Fig. DS8 Scatterplot for regression of ES for total cholesterol on absolute difference in BMI between patient and control groups. BMI difference between the two cohorts was not a significant moderator of the total cholesterol effect size ($\beta = 0.05$; 95% CI = -0.30 – 0.40; P = 0.764). Each circle represents a study, its size corresponding to the study weight. Single straight line represents the regression coefficient, the curved lines the 95% confidence interval.

Regression of Hedges's g on BMI difference

Fig. DS9 Scatterplot for regression of ES for LDL cholesterol on absolute difference in BMI between patient and control groups. BMI difference between the two cohorts was not a significant moderator of the LDL cholesterol effect size (β = -0.15; 95% Cl -0.49 – 0.18; P = 0.377). Each circle represents a study, its size corresponding to the study weight. Single straight line represents the regression coefficient, the curved lines the 95% confidence interval.

Regression of Hedges's g on BMI difference

Fig. DS10 Scatterplot for regression of ES for triglycerides on absolute difference in BMI between patient and control groups. BMI difference between the two cohorts was a significant moderator of the triglyceride effect size (β = 0.29; 95% CI = 0.04 – 0.53; P = 0.024). Each circle represents a study, its size corresponding to the study weight. Single straight line represents the regression coefficient, the curved lines the 95% confidence interval.

Fig. DS11 Scatterplot for regression of ES for HDL cholesterol on absolute difference in BMI between patient and control groups. BMI difference between the two cohorts was not a significant moderator of the HDL cholesterol effect size (β = -0.10; 95% CI -0.85 – 0.65; P = 0.790). Each circle represents a study, its size corresponding to the study weight. Single straight line represents the regression coefficient, the curved lines the 95% confidence interval.

Regression of Hedges's g on BMI difference

8

Study Name	Patient	Patient	Patient	Control	Control	Control Sample
	Mean	SD	Sample Size	Mean	SD	size
Ryan et al., 2003(1)	4.02	0.78	26	4.57	0.81	26
Chen, Du et al., 2016(2)	4.4	0.9	172	4.2	1	31
Chen, Broqueres-You et al., 2016(3)	4.69	0.98	60	4.31	0.82	28
Petrikis et al., 2015(4)	3.06	1.22	40	5.10	1.13	40
Dasgupta et al., 2010(5)	4.08	1.11	30	4.38	0.44	25
Spelman et al., 2007(6)	4.3	0.9	38	4.4	0.6	38
Sengupta et al., 2008(7)	4.04	0.77	38	4.17	0.9	36
Verma et al., 2009(8)	4.7	1	160	5.1	0.9	200
Kirkpatrick et al., 2010(9)	4.4	0.9	76	4.5	0.8	76
Wu et al., 2013(10)	4.16	0.77	70	4.54	0.76	44
Srihari et al., 2013(11)	4.39	0.66	76	4.44	0.83	156
Venkatasubramanian et al., 2010(12)	4.4	0.8	38	4.5	0.9	38
Misiak et al., 2016(13)	4.22	0.85	24	4.49	0.89	146
Sarandol et al., 2015(14)	4.01	0.75	26	4.32	0.65	25
Kavzoglu et al., 2013(15)	4.45	0.81	50	4.52	0.91	50

Table DS6Raw data in SI units (mmol/L) for total cholesterol analysis (to allow for calculation of
absolute differences in mean total cholesterol)

Table DS7Raw data in SI units (mmol/L) for LDL cholesterol analysis (to allow for calculation of
absolute differences in mean LDL cholesterol)

Study Name	Patient	Patient	Patient Sample	Control	Control	Control Sample
	Mean	SD	Size	Mean	SD	size
Ryan et al., 2003(1)	2.39	0.84	26	2.91	0.69	26
Chen, Du et al., 2016(2)	2.6	0.7	172	2.7	0.8	31
Dasgupta et al., 2010(5)	2.31	0.96	30	2.63	0.48	25
Spelman et al., 2007(6)	2.9	0.9	38	2.8	0.6	38
Sengupta et al., 2008(7)	2.48	0.63	38	2.52	0.72	36
Verma et al., 2009(8)	2.7	0.9	160	3.1	0.8	200
Kirkpatrick et al., 2010(9)	2.58	0.81	76	2.74	0.75	76
Wu et al., 2013(10)	2.5	0.67	70	2.62	0.63	44
Basoglu et al., 2010(16)	2.51	0.89	20	2.33	0.47	22
Misiak et al., 2016(13)	2.17	0.60	24	2.34	0.76	146
Srihari et al., 2013(11)	2.37	0.26	76	2.49	0.42	156
Sarandol et al., 2015(14)	2.38	0.67	26	2.64	0.65	25
Kavzoglu et al., 2013(15)	2.84	0.76	50	2.77	0.78	50

Study Name	Patient	Patient	Patient Sample	Control	Control	Control Sample
	Mean	SD	Size	Mean	SD	size
Ryan et al., 2003(1)	0.99	0.43	26	0.92	0.3	26
Chen, Du et al., 2016(2)	1.2	0.7	172	1.1	0.7	31
Chen, Broqueres-You et al., 2016(3)	1.32	1.03	60	0.7	0.34	28
Petrikis et al., 2015(4)	1.05	0.59	40	0.97	0.46	40
Enez Darcin 2015	1.14	0.62	40	1.14	0.64	70
Dasgupta et al., 2010(5)	1.65	0.81	30	1.57	0.24	25
Spelman et al., 2007(6)	1.3	0.7	38	1.1	0.45	38
Sengupta et al., 2008(7)	1.1	0.65	38	1	0.72	36
Saddichha et al., 2008(18)	1.3	0.2	99	1.1	0.5	51
Kirkpatrick et al., 2010(9)	1.0	0.4	76	1.0	0.6	76
Wu et al., 2013(10)	1.12	0.75	70	0.99	0.41	44
Basoglu et al., 2010(16)	1.0	0.5	20	1.1	0.6	22
Venkatasubramanian et al., 2010(12)	1.4	0.7	38	1.2	0.7	38
Misiak et al., 2016(13)	1.44	0.95	24	1.09	0.55	146
Srihari et al., 2013	1.01	0.19	76	1.05	0.23	156
Sarandol et al., 2015(14)	0.94	0.45	26	0.93	0.50	25
Kavzoglu et al., 2013(15)	1.06	0.50	50	1.34	0.79	50

Table DS8Raw data in SI units (mmol/L) for triglyceride analysis (to allow for calculation of
absolute differences in mean triglyceride)

Table DS9Summary of study characteristics with regards study definitions of first episode schizophrenia, anti-psychotic status, other neuroleptic drugstatus, physical health medication status, physical health status, lifestyle status, ethnicity, and other matching criteria. DUP: Duration of UntreatedPsychosis; BMI: Body Mass Index.

	Setting	Definition of First Episode	Anti- psychotic	Other neuroleptic use	Physical health	Physical health diagnoses	Documentation of Lifestyle	Matching for ethnicity	Other Matching	Plasma/ser um	Fasting/no n-fasting
		a	Status		medication				Criteria		
Chen et al., 2016(2)	China	<60 months' duration of symptoms Mean (SD) DUP: 23.4 (19.1) months	Naïve	Not specified	Not specified but participants 'in good physical health'	Participants 'in good physical healthany subjects with medical illnesses were excluded'	Matched for education	Yes, all Han Chinese	BMI, age, ethnicity, sex, smoking	Plasma	Fasting
Petrikis et al., 2015(4)	Greece	Mean (SD) DUP: 10.72 (8.24) weeks	Naïve	Not specified	Not specified, but any disorder associated with insulin resistance an exclusion criterion	Participants with diabetes or any disorder associated with insulin resistance excluded	Not documented	Not specified	BMI, age, sex, smoking	Both Plasma and serum referred to in paper.	Fasting
Enez Darcin et al., 2015(17)	Turkey	Mean (SD) DUP: 1.7 (1.2) years Mean (SD) DUP: 1.7(1.2) years	Naïve	Not specified	Prescriptions for medical illnesses an exclusion criterion	Participants with severe medical illnesses excluded (defined as medical illness longer than 3- month duration)	Exercise status quantified in both groups	Not specified	BMI, age, smoking	Not specified for lipids	Fasting
Dasgupta et al., 2010(5)	India	First outpatient contact DUP not specified	Naïve	No mood stabilisers or antidepressants	Use of any medicine associated with insulin resistance an exclusion criterion	Participants with any somatic illness excluded	Groups of similar socio-economic status and dietary habits	'approximatel y similar ethnicity', but not quantified	BMI, age, sex	Serum	Fasting
Arranz et al. <i>,</i> 2004(19)	Spain	First inpatient admission DUP not specified	Naive	No mood stabilisers or antidepressants	Any active treatment that could influence glucose	Participants with any physical illness excluded	Not documented	Not specified	BMI, sex	Plasma	Fasting

					homeostasis an exclusion criterion						
Ryan et al., 2003(1)	UK	First inpatient admission DUP not specified	Naïve	Not specified	Use of over- the- counter or prescribed medications an exclusion criterion	All participants documented as 'physically healthy'	Diet and exercise status quantified in both groups	Yes, all Caucasian	BMI, age, sex, smoking	Plasma	Fasting
Basoglu et al., 2010(16)	Turkey	<6 months' duration of symptoms DUP not specified	Naïve	Use of antiepileptic drugs	See next column	'having an important medical problem such as Wilson's disease, Down's syndrome, malnutrition, diabetes mellitus, chronic renal failure, cancer, liver cirrhosis and thyroid diseases, known endocrine illnesses, BMI greater than 30, severe neurological disorders such as epilepsy	Not documented	Not documented	Age, sex, smoking, BMI	Plasma	Fasting
Spelman et al., 2007(6)	Ireland	First inpatient admission. DUP not specified	Naïve	Not specified, but participants specified as receiving 'no form of prescribed or over the counter medication'	Use of over- the- counter or prescribed medications an exclusion criterion	All participants 'screened to exclude comorbid physical illness'	Diet and exercise status quantified	Yes, all Caucasian	Age, sex, smoking,	Not specified but leptin is plasma	Fasting
Kirkpatrick et al., 2010(9)	Spain	<12 months following first clinical contact DUP not specified	<7 days' total antipsych otic use	ʻnot taking phenytoin'	'not taking medication associated with glucose intolerance or insulin resistance including hydrochlorth alidone, beta blockers, glucocorticoi ds, phenytoin, nicotinic acid,	No history of diabetes or any other serious medical condition associated with insulin resistance or/and glucose intolerance	Socioeconomic status	Not specified	Age, Sex, smoking, BMI	Not specified	Fasting

Wang et al.,	Taiwan	Mean (SD) DUP 2.0 (2.3)	Naïve	Not documented	cyclosporine, pentamidine, and narcotics'. Not documented	Patients with any major physical illness	Not documented	Not documented	Age, sex, BMI	Plasma	Fasting
2007(20)		years				or a history of alcohol or substance dependence were excluded					
Venkatasub ramanian et al., 2010(12)	India	Mean (SD) DUP 37.1(38.6) mo	Naïve	No psychotropic meds	Not documented	Physically healthy	Not documented	Not documented	BMI, age, sex, socio- economic status	Plasma	Fasting
Sengupta et al., 2008(7)	Canada	Median DUP: 25 weeks	<10 days of total antipsych otic use	Not documented	Not documented, but major physical illness an exclusion criterion	Participants with major physical illness excluded	Not documented	Yes, Caucasian	BMI, age, sex	Plasma	Fasting
Chen et al., 2016(3)	China	Duration of symptoms <3 years DUP not specified	<14 days' total antipsych otic use	No history of previous treatment with psychotropic drugs or, if previously treated, a total life time usage of less than 14 days	Not documented, but 'physically healthy with no other metabolic disorders'.	physically healthy and no other metabolic disorders	Not documented	Not documented	BMI, age, sex, smoking	Serum	Fasting
Wu et al., 2013(10)	China	Mean (SD) DUP 0.50 (0.02) ye ars	Naïve	Not documented	Not documented although 'All patients received a thorough medical check-up to be physically healthy'	'All patients received a thorough medical check-up to be physically healthy'	Not specified	Not documented	BMI, age, gender, ethnicity	Plasma	Fasting
Verma et al., 2009(8)	Singapore	Mean (SD) DUP 18.3 (36.7) months	<3 days' total antipsych otic use	Not documented	Not documented	Not documented	Not documented	Yes	Age, gender, ethnicity	Plasma	Fasting

Misiak et al., 2016(13)	Poland	Mean (SD) DUP 60.2 (104.7) weeks	Naive	Not documented	Not documented	severe somatic health impairment an exclusion criterion	Not documented	Not documented	Age gender BMI	Serum	Fasting
Saddichha et al., 2008(18)	India	Mean (SD) DUP 20.5 ± 18.5 m onths	Naïve	Not documented	Not documented	History of severe physical illness an exclusion criterion	Diet and exercise	Not documented	Age, gender	Not documente d	Fasting
Srihari et al., 2013(11)	USA	<5 years following onset of psychosis DUP not specified	Naïve	Not specified	Not specified	Not specified	Not specified	Yes	BMI, age, ethnicity, sex, smoking	Not specified	Fasting
Sarandol et al., 2015(14)	Turkey	First presentation with positive symptoms of hallucinations or delusions, DUP not specified	Naïve	Not specified	'taking anti- inflammatory medication' an exclusion criterion	'other concomitant illnesses (including active inflammatory illness)' an exclusion criterion.	Not specified	Not documented	Age, sex, smoking status,	Serum and Plasma	Fasting
Kavzoglu et al., 2013(15)	Turkey	First hospital admission, DUP not specified	Up to 72 hours' total antipsych otic use	Not specified	Not specified	Stipulation of study: Participants only included if 'no significant disease was detected in the general internal medicine examination and who did not report any former diagnosis or treatment for a chronic cardiovascular, endocrinologic, hematologic, neurological or renal condition,'	Not specified	Not specified	Age, sex, BMI, smoking	Serum	Fasting

Data was not forthcoming from any of the studies that included individuals with minimal antipsychotic exposure regarding which antipsychotics had been prescribed, and therefore an association between our lipid findings with use of specific antipsychotics was not possible.

Table DS10 Quality assessment of studies included in meta-analysis. Newcastle Ottowa Quality Assessment scale, and assessments of study rigour with regards confirmation of patient participant status, biochemical analysis validity, quality of healthy control selection, and confirmation regarding duration of fasting pre-venepuncture, and in what environment this fast was performed (inpatient or outpatient).

Author/Year	Study	Sele	ction			Comparability	Exposure		Score/9	Confirmation of	Lab quality?	Quality of	Fasting	
	Туре	1	2	3	4	(max 2)	1	2	3		Psychosis?		healthy control	status?
														In or
														outpatient?
Chen et al., 2016(2)	Case	1	1	1	1	2	1	1	1	9	Yes – 2	Automatic	Advert – people	Inpatient: 12n
	Control										nsychiatrists	Analyzer	Matched	IdSL
											followed up to	(Beckman	gender age and	
											3 months using	Coulter	education	
											DSM-IV criteria	AU5811;		
											for SCZ	Beckman		
												Coulter, Inc.,		
												USA).		
Petrikis et al.,	Case	1	1	1	1	2	1	1	1	9	Psychiatric	Olympus	Advert -	Outpatient
2015(4)	Control										ortablished	AU5400	advertising	TONTAST
											independently	(Beckman-Brea-	loannina	
											by two	California-USA)	University	
											experienced	and reagents	students and	
											psychiatrists	supplied by	employees as	
											using	Beckman	well as from	
											the Structured		local enterprise	
											Clinical		employees	
											Interview for			
Srihari et al	Case	1	1	1	0	2	1	0	1	7	SCID at baseline	Not	NHANES -	Outpatient 8h
2013(11)	Control	-	-	-	Ŭ	-	-	Ũ	-	,	and follow-up 1	documented	physical	fast
											year		comorbidity not	
											-		documented	
Enez Darcin et al.,	Case	1	1	1	1	2	0	0	0	6	DSM-IV Criteria	Not	relatives of the	Outpatient
2015(17)	Control										for	documented	clinical staff	12h fast
-	-										schizophrenia			
Dasgupta et al.,	Case	1	1	1	1	2	U	1	1	8	USIVI-IV	autoanalyser	persons	Outpatient
2010(2)	Control										ulagnosis	Bio-Rad Jah USA	the natients in	IZII IdSL
													OPD who were	
													free from any	
													metabolic or	

													psychiatric disorders. Relatives of the patients were excluded during this selection	
Arranz et al., 2004(19)	Case Control	1	1	0	1	1	0	0	1	5	DSM IV diagnosis after 6 months	Plasma leptin: Linco research Inc	Hospital staff	Inpatient, fasting
Ryan et al., 2003(1)	Case Control	1	1	1	1	2	1	1	1	9	DSM IV diagnosis	Roche Diagnostics GmbH, Mannheim, Germany	Hospital and university staff, and local community	Inpatient 12h fast
Basoglu et al., 2010(16)	Case Control	1	1	0	1	2	0	1	1	7	DSM-IV criteria of Schizophrenia	Beckman- Coulter Synchron LX-20 Automated Analyser (Beckman Coulter Inc., Palo Alto, California, USA)	Army recruits	Inpatient 12h fast
Kirkpatrick et al., 2010(9)	Case Control	1	0	1	1	2	0	0	1	6	DSM-IV criteria	Not specified	Advertisements (unclear if community or hospital)	Overnight fast
Spelman et al., 2007(6)	Case Control	1	0	1	1	2	0	1	1	7	DSM-IV criteria	Measured according to accurate SOP	Community	12h overnight fast
Wang et al., 2007(20)	Case Control	1	0	1	1	2	0	0	1	6	DSM-IV criteria	direct sandwich ELISA (Linco Research, St. Charles, Mo., USA).	Community	Outpatient 9am ?fasting One patient - afternoon
Saddichha et al., 2008(18)	Case Control	1	1	1	1	1	0	1	1	7	DSM-IV criteria	Not specified	Community attenders of patients attending our OPD consecutively, who were not related to the subject under investigation	Inpatient Overnight fast

Sengupta et al., 2008(7)	Case Control	1	0	0	1	1	0	1	1	5	DSMI IV diagnosis	EDTA tubes	Local universities, hospital employees, and general population	12h fast
Venkatasubramanian et al., 2010(12)	Case Control	1	0	0	1	2	0	1	1	6	DSMI IV diagnosis	Olympus AU400 analyzer, Enzyme-linked immunosorbent assay was used to quantify leptin level (Biosource Europe S.A., Nivelles, Belgium)	'word of mouth'	12h fast
Chen et al., 2016(3)	Case Control	1	0	0	0	1	0	1	1	4	DSMI IV diagnosis	Olympus AU2700 automatic biochemical analyser (Beckman Coulter Inc., USA).	Not specified	Inpatient 'overnight fast'
Wu et al., 2013(10)	Case Control	1	1	0	1	2	0	1	1	7	DSMI IV diagnosis	Sichuan Maker Biotechnology Co., Ltd. Chengdu, China	University students, hospital employees, local enterprise employees	Inpatient 12h overnight fast
Verma et al., 2009(8)	Case Control	1	0	0	0	1	0	1	1	4	DSM IV diagnosis	SYNCHRON LX System(s), UniCel DxC 600/800 System(s), and SYNCHRON Systems Lipid Calibrator	Hospital workers	12h overnight fast
Misiak et al., 2016(13)	Case Control	1	1	0	0	1	0	1	1	5	DSM IV diagnosis	Cobas 6000 analyzer (Roche, Switzerland).	Not specified	10h overnight fast
Sarandol et al., 2015(14)	Case Control	1	0	0	1	2	1	1	0	6	DSM IV diagnosis	Architect c 16 000 and Architect	University Staff	Overnight fast

												i2000 (Abbott Lab., Dallas, TX, USA).		
Kavzoglu et al., 2013(15)	Case Control	1	0	0	1	2	0	1	1	5	DSM IV diagnosis	ERTHN biochemistry laboratory with standard enzymatic procedures,	Not specified	Inpatient 8h fast

Newcastle Ottawa Scale: A study can be awarded a maximum of four stars for selection (four questions relate to whether the case definition is adequate, the representativeness of the cases, the selection of controls and definition of controls), a maximum of two stars for comparability (cases and controls must be matched in the design and/or confounders must be adjusted for in the analysis) and a maximum of three stars for exposure (ascertainment of exposure, same method of ascertainment for cases and controls, non-response rate).

DATA SUPPLEMENT DS1

Protocol (a priori)

Working title:

Lipid status in first episode psychosis: a systematic review and meta-analysis

Type of review:

Systematic review and meta-analysis

Language:

English

Key words:

Schizophrenia, psychosis, metabolic, lipid, cholesterol, triglycerides

Details of any existing review of the same topic by the same authors:

None

Start date:

1st November 2016

Named Contact:

Dr Toby Pillinger Department of Psychosis Studies Institute of Psychiatry, Psychology and Neuroscience 16 de Crespigny Park Camberwell SE5 8AF United Kingdom Toby.pillinger@kcl.ac.uk

Collaborators:

Dr Toby Pillinger (<u>toby.pillinger@kcl.ac.uk</u>) Dr Katherine Beck (<u>katherine.beck@kcl.ac.uk</u>) Dr Brendon Stubbs (brendon.stubbs@kcl.ac.uk)

Professor Oliver Howes (oliver.howes@kcl.ac.uk)

Institution:

Institute of Psychiatry, Psychology and Neuroscience, King's College London

Funding Sources:

MRC-UK, Maudsley Charity, Brain&Behavior Research Foundation, Wellcome Trust.

Conflicts of Interest:

Dr Howes has received investigator-initiated research funding from and/or participated in advisory/ speaker meetings organised by Astra-Zeneca, Autifony, BMS, Eli Lilly, Heptares, Janssen, Lundbeck, Lyden-Delta, Otsuka, Servier, Sunovion, Rand and Roche. Neither Professor Howes nor his family have been employed by or have holdings/a financial stake in any biomedical company. Drs Pillinger, Beck and Stubbs report no financial relationships with commercial interests.

Review Question:

The extent of metabolic and lipid changes in first episode psychosis (FEP) is unclear. We plan to **c**onduct a meta-analysis examining if individuals with FEP and no or minimal antipsychotic exposure show lipid and adipocytokine abnormalities compared with healthy controls.

Searches:

MEDLINE, EMBASE and PsycINFO will be searched using the following keywords: ('schizophrenia' OR 'schizoaffective' OR 'psychosis') AND ('early' OR 'first episode' OR 'risk' OR 'prodrome') AND ('metabolic' OR 'lipid' OR 'cholesterol' OR 'HDL' OR 'LDL' OR 'lipoprotein' OR 'triglyceride' OR 'adiponectin' OR 'ghrelin' OR 'leptin' OR 'resistin' OR 'chemerin' OR 'omentin' OR 'apelin' or 'adipocytokine' OR 'adipokine')

Searches will be complemented by hand-searching of meta-analyses and review articles published in the field of cardiometabolic risk in psychotic illness and agreed by the authors. These papers are:

1. Mitchell AJ, Vancampfort D, De Herdt A, Yu W, De Hert M. Is the prevalence of metabolic syndrome and metabolic abnormalities increased in early schizophrenia? A comparative meta-analysis of first episode, untreated and treated patients. *Schizophr Bull* 2013; **39**(2): 295-305.

2. Mitchell AJ, Vancampfort D, Sweers K, van Winkel R, Yu W, De Hert M. Prevalence of metabolic syndrome and metabolic abnormalities in schizophrenia and related disorders--a systematic review and meta-analysis. *Schizophr Bull* 2013; **39**(2): 306-18.

3. Vancampfort D, Correll CU, Galling B, et al. Diabetes mellitus in people with schizophrenia, bipolar disorder and major depressive disorder: a systematic review and large scale meta-analysis. *World Psychiatry* 2016; **15**(2): 166-74.

4. Stubbs B, Vancampfort D, De Hert M, Mitchell AJ. The prevalence and predictors of type two diabetes mellitus in people with schizophrenia: a systematic review and comparative meta-analysis. *Acta Psychiatr Scand* 2015; **132**(2): 144-57.

5. Vancampfort D, Stubbs B, Mitchell AJ, et al. Risk of metabolic syndrome and its components in people with schizophrenia and related psychotic disorders, bipolar disorder and major depressive disorder: a systematic review and meta-analysis. *World Psychiatry* 2015; **14**(3): 339-47.

6. Pillinger T, Beck K, Gobjila C, Donocik JG, Jauhar S, Howes OD. Impaired Glucose Homeostasis in First-Episode Schizophrenia: A Systematic Review and Meta-analysis. *In submission*.

7. De Hert M, Schreurs V, Vancampfort D, R VANW. Metabolic syndrome in people with schizophrenia: a review. *World Psychiatry* 2009; **8**(1): 15-22.

Condition being studied:

Lipid parameters in First Episode Psychosis (FEP) and individuals at-risk mental state for psychosis (ARMS) compared with healthy controls will be examined. We plan to study the following lipid parameters: concentration of total cholesterol, high-density lipoprotein (HDL) cholesterol, low-density lipoprotein (LDL) cholesterol, triglycerides, adiponectin, ghrelin, leptin, resistin, chemerin, omentin, or apelin. Both fasting and non-fasting values will be accepted.

Participants/Population, and Comparator/Control:

Inclusion criteria for patients with FEP/ARMS will be defined as follows:

- a Diagnostic and Statistical Manual of Mental Disorders (DSM) or International Statistical Classification of Diseases and Related Health Problems (ICD) diagnosis of schizophrenia, schizoaffective disorder schizophreniform disorder, schizophrenia spectrum or psychotic disorder not otherwise specified OR an at-risk mental state for psychosis
- 2) first episode of illness (defined either as first treatment contact (inpatient or outpatient) or duration of illness up to 5 years following illness onset)
- 3) antipsychotic naïve or minimal exposure (≤2 weeks total antipsychotic treatment)

Exclusion criteria for patients with FEP/ARMS will be defined as follows:

- 1) patients with multiple episodes of schizophrenia
- 2) chronic antipsychotic treatment (>2-weeks lifetime exposure)
- 3) substance or medication induced psychotic disorder
- 4) physical co-morbidity that may impact on lipid homeostasis (e.g. familial hypercholesterolemia, thyroid dysfunction, nephrotic syndrome)

Healthy controls must also satisfy criteria of having no physical co-morbidity that may impact on lipid homeostasis.

Primary Outcomes:

The following lipid parameters will be examined: concentration of total cholesterol, high-density lipoprotein (HDL) cholesterol, low-density lipoprotein (LDL) cholesterol, triglycerides, adiponectin, ghrelin, leptin, resistin, chemerin, omentin, or apelin. Both fasting and non-fasting values will be accepted. Studies not reporting absolute values (i.e. studies that only provided data regarding the dichotomous presence/absence of raised lipid parameters as defined by diagnostic criteria) will be excluded.

Data Extraction:

Screening based on title and abstract will be performed independently by two authors (T.P. and K.B.). Where full texts, abstracts or group estimate data are not available, authors will be contacted and articles/data requested. We will allow 4 weeks for authors to respond, with repeat contact attempts made after 2 weeks.

Data extraction will be performed independently (by T.P. and K.B.), and any disagreements will be resolved by rechecking original articles. For every study, data will be extracted according to the following model: author,

year of publication, country, type of publication (i.e. prospective, cross-sectional, case-control, retrospective), matching criteria for patients and controls (confirmed by review of study methodology, or by confirmation of non-significance between mean parameter levels of patient and control groups (a two tailed P value ≤ 0.05 was deemed significant)), whether or not patient groups are totally antipsychotic naïve (and if not, duration of treatment), and mean (with standard deviation) measure of lipid/adipocytokine parameter in patient and control groups. Where there are multiple publications for the same data set, data will be extracted from the study with the largest data set.

Risk of Bias Assessment:

Publication bias and selective reporting will be assessed using Egger's test of the intercept (although this will not be calculated when fewer than 10 studies are analysed as recommended by the Cochrane Collaboration), and represented diagrammatically with funnel plots.

Strategy for Data Synthesis:

Comprehensive Meta-Analysis Software version 3.0 (CMA, Bornstein, USA) will be employed in all analyses. A two-tailed p value less than 0.05 ill be deemed significant. A random-effects model will be used in all analyses owing to an expectation of heterogeneity of data across studies. Standardised mean differences in lipid parameters and adipocytokine levels between patient and control cohorts ill be used as the effect size (ES), using Hedges' adjusted g and 95% confidence interval (95% CI).

Analysis of subgroups of subsets:

To address whether or not differences in body mass index (BMI) or dietary intake between patient and control groups influence results, separate sensitivity analyses examining groups matched for BMI and dietary intake will be performed. Matching will either be confirmed by review of study methodology, or by confirmation of no significant difference between mean parameters in patient and control groups (a two tailed p value less than 0.05 deemed significant). To further investigate the influence of difference in BMI between patient and control groups on lipid parameter effect size, random effects meta-regression analyses will be performed, regressing lipid parameter effect size on difference in BMI between patient and control groups. Meta-regression will not be performed when fewer than 10 studies are analysed as recommended by the Cochrane Collaboration.

Studies and data not included in meta-analysis

Two studies that met inclusion criteria were identified as using data already included in the metaanalysis and were therefore excluded.(21, 22)

One study that examined glucose homeostasis in first episode psychosis was excluded as the definition of psychosis did not use ICD/DSM criteria.(23)

Six studies were unable to provide data/did not respond to request for data by time of submission.(15, 24-28)

One study, although had data included in the meta-analysis for total cholesterol and triglyceride levels, were unable to provide data for HDL and LDL cholesterol levels after approach.(3)

Sensitivity Analyses

Sensitivity analyses with removal of 4 studies where recruitment strategy for controls not specified (3, 12, 13, 15)

Reduced total cholesterol in patients compared with controls (g = -0.25; 95% CI -0.39 - -0.11; P = 0.001) Reduced LDL cholesterol in patients compared with controls (g = -0.25; 95% CI -0.39 - -0.12; P < 0.001) No difference in HDL cholesterol between patients and controls (g = -0.19; 95% CI -0.41 - -0.04; P = 0.101) Increased triglycerides in patients compared with controls (g = 0.14; 95% CI 0.01 - 0.28; P = 0.036) Sensitivity analyses with removal of 6 studies where fasting duration was not specified (3, 9, 14, 18-20) Reduced cholesterol in patients compared with controls (g = -0.22; 95% CI -0.36 - -0.08; P = 0.002) Reduced LDL cholesterol in patients compared with controls (g = -0.26; 95% CI -0.40 - -0.12; P < 0.001) No difference in HDL cholesterol between patients and controls (g = -0.21; 95% CI -0.46 - -0.04; P = 0.096) No difference in triglycerides in patients compared with controls (g = -0.21; 95% CI -0.46 - -0.04; P = 0.096) No difference in triglycerides in patients compared with controls (g = -0.21; 95% CI -0.46 - -0.04; P = 0.096) No difference in triglycerides in patients compared with controls (g = -0.21; 95% CI -0.06 - 0.23; P = 0.227) No difference in triglycerides in patients compared with controls (g = -0.13; 95% CI -0.06 - 0.25; P = 0.512).

Further information regarding inclusion/exclusion criteria rationale

Our inclusion of participants with up to 5 years' duration of illness, is in keeping with first episode services in the UK and the expert review of the operational definition of First Episode Psychosis by Breitborde and colleagues(29), who state: '...the term is typically used to refer to individuals who have experienced a short duration of illness (e.g. 2–5 years)'.

Our inclusion of patients who had received minimal antipsychotic medication (up to 2 weeks' total antipsychotic use) was a pragmatic decision based on a real-world expectation that a proportion of individuals included within analyses would have received some treatment by time of lipid assay. Longitudinal studies examining previously antipsychotic naïve FEP report evidence of lipid dysregulation 8-12 weeks after initiation of treatment(30-32), although pre-clinical studies have reported weight gain and increase in triglyceride levels in rats 2 weeks after introduction of olanzapine or aripiprazole(33, 34).'

MOOSE CHECKLIST

Criteria	Brief description of how the criteria were handled
	in the meta-analysis
Reporting of background should include	
Problem definition	The presence and extent of metabolic and lipid
	changes in first episode antipsychotic naïve
	schizophrenia is unclear. We set out to c onduct a
	meta-analysis to determine if individuals with first
	episode schizophrenia with no or minimal
	antipsychotic exposure show lipid abnormalities and
	derangements in adipocytokine activity compared
	with healthy controls.
Hypothesis statement	Abnormalities in lipid and adipocytokine parameters
	may occur in the absence of the effects of chronic
	illness and long-term treatment.
Description of study outcomes	Standardised mean differences in total cholesterol,
	LDL cholesterol, HDL cholesterol, trigiycerides and
	reptin levels in individuals with first episode
	schizophrenia (with no or minimal antipsychotic
Tupe of expecture or intervention used	
Type of exposure of intervention used	All study designs were included, but only case
Type of study designs used	control studies were identified
Study Population	Drug païve (up to 2 weeks' total antipsychotic
	lifetime exposure) first episode schizophrenia and
	healthy controls
Reporting of search strategy should include	
Qualifications of searchers	Indicated in the authors list.
Search strategy, including time period included in	Major electronic databases were searched from
the synthesis and key words	inception to December 2016 for case control studies
	examining lipid and adipocytokine parameters in
	individuals with first episode schizophrenia versus
	healthy controls. Key words and inclusion/exclusion
	criteria are described in methods section.
Databases and registries searched	MEDLINE, EMBASE and PsycINFO were searched.
Search Software used, name and version	https://ovidsp.uk.ovid.com/
Use of hand searching	The search was complemented by hand-searching of
	meta-analyses and review articles
List of citations located and those excluded,	Detailed in flow chart (figure 1), with further
including justifications	supplemental information provided in
	Supplementary Information (eAppendix).
Method of addressing articles published in	No language restrictions were in place, although all
languages other than English	the included papers were in English
Methods of handling abstracts and unpublished	We contacted a number of authors for full report of
studies	relevant unpublished studies.
Reporting of methods should include	
Description of relevance or appropriateness of	Detailed inclusion and exclusion criteria are
studies assembled for assessing the hypothesis to be	described in the methods section.
Lesteu Dationala for the calentian and cading of data	A data autraction shoot use developed (suclets -
Rationale for the selection and coding of data	A uata extraction sneet was developed (available on request). Data on study characteristics
	methodological quality and results were
	independently extracted from each selected article
Assessment of confounding	We conducted sub-group analysis examining
	studies where participants were RMI matched as

	well as meta-regression analyses examining the role
	of difference in DNI between patients and controls
	or unreferice in Bivir between patients and controls
	in moderating changes in lipid parameters.
Assessment of study quality	Bias was assessed using Egger's test of the intercept
	and represented diagrammatically with Funnel Plots.
Assessment of heterogeneity	The I ² value was used to assess heterogeneity.
Description of statistical methods in sufficient detail	We mentioned the type of analysis we used, and the
to be replicated	type of software utilised. Raw data is presented in
	the appendix.
Provision of appropriate tables and graphics	Figures 2, 3, and 4 in the manuscript describe the
	main outcomes of the study (total cholesterol, LDL
	and TG). Table 1 describes the demographics of the
	studies used in the meta-analysis. eFigures 1 and 2
	(supplementary information) provide additional
	meta-analyses (HDL and leptin). eFigures 3-7
	(supplementary information) show funnel plots for
	each meta-analysis, eFigures 8-11 (supplementary
	information) show scatter plots for each meta-
	regression analysis
Reporting of results should include	
Granh summarising individual study estimates and	Figures 2, 3 and 4 of the main manuscript and
overall estimate	eFigures 1 and 2 of Supplementary Information
Table giving descriptive information for each study	
included	
Results of consitivity testing	Described in results (consitivity analyses for PMI
Results of sensitivity testing	matched studies)
Indication of statistical uncortainty of findings	OF (confidence intervals were presented for all
indication of statistical uncertainty of findings	95% confidence intervals were presented for all
	analyses with P values together with P values for the
	meta-analyses.
Reporting of discussion should include	
Quantitative assessment of bias	Risk of publication bias was assessed using Egger's
	test of the intercept and represented
	diagrammatically with Funnel Plots (eFigures 3-7 of
	Supplementary Information).
Justification for Exclusion	Reasons for exclusion were reported in Figure 1, and
	in Supplementary Information (eAppendix).
Assessment of quality of included studies	In addition to assessment of bias, discussed in
	context of limitations in discussion section.
Reporting of conclusions should involve	
Considerations of alternative explanations for	In depth discussion of the potential
observed results	pathoaetiological mechanisms driving the
	observations provided.
Generalisation of the conclusions	Provided in discussion.
Guidelines for future research	Provided in discussion.
Disclosure of funding source	Funding statement was provided.

REFERENCES

1. Ryan MC, Collins P, Thakore JH. Impaired fasting glucose tolerance in first-episode, drugnaive patients with schizophrenia. Am J Psychiatry. 2003; 160(2): 284-9.

2. Chen DC, Du XD, Yin GZ, Yang KB, Nie Y, Wang N, et al. Impaired glucose tolerance in firstepisode drug-naive patients with schizophrenia: relationships with clinical phenotypes and cognitive deficits. Psychol Med. 2016: 1-12.

3. Chen S, Broqueres-You D, Yang G, Wang Z, Li Y, Yang F, et al. Male sex may be associated with higher metabolic risk in first-episode schizophrenia patients: A preliminary study. Asian J Psychiatr. 2016; 21: 25-30.

4. Petrikis P, Tigas S, Tzallas AT, Papadopoulos I, Skapinakis P, Mavreas V. Parameters of glucose and lipid metabolism at the fasted state in drug-naive first-episode patients with psychosis: Evidence for insulin resistance. Psychiatry Res. 2015; 229(3): 901-4.

5. Dasgupta A, Singh OP, Rout JK, Saha T, Mandal S. Insulin resistance and metabolic profile in antipsychotic naive schizophrenia patients. Prog Neuropsychopharmacol Biol Psychiatry. 2010; 34(7): 1202-7.

6. Spelman LM, Walsh PI, Sharifi N, Collins P, Thakore JH. Impaired glucose tolerance in firstepisode drug-naive patients with schizophrenia. Diabet Med. 2007; 24(5): 481-5.

7. Sengupta S, Parrilla-Escobar MA, Klink R, Fathalli F, Ying Kin N, Stip E, et al. Are metabolic indices different between drug-naive first-episode psychosis patients and healthy controls? Schizophr Res. 2008; 102(1-3): 329-36.

8. Verma SK, Subramaniam M, Liew A, Poon LY. Metabolic risk factors in drug-naive patients with first-episode psychosis. J Clin Psychiatry. 2009; 70(7): 997-1000.

9. Kirkpatrick B, Garcia-Rizo C, Tang K, Fernandez-Egea E, Bernardo M. Cholesterol and triglycerides in antipsychotic-naive patients with nonaffective psychosis. Psychiatry Res. 2010; 178(3): 559-61.

10. Wu X, Huang Z, Wu R, Zhong Z, Wei Q, Wang H, et al. The comparison of glycometabolism parameters and lipid profiles between drug-naive, first-episode schizophrenia patients and healthy controls. Schizophr Res. 2013; 150(1): 157-62.

11. Srihari VH, Phutane VH, Ozkan B, Chwastiak L, Ratliff JC, Woods SW, et al. Cardiovascular mortality in schizophrenia: defining a critical period for prevention. Schizophr Res. 2013; 146(1-3): 64-8.

12. Venkatasubramanian G, Chittiprol S, Neelakantachar N, Shetty TK, Gangadhar BN. A longitudinal study on the impact of antipsychotic treatment on serum leptin in schizophrenia. Clin Neuropharmacol. 2010; 33(6): 288-92.

13. Misiak B, Laczmanski L, Sloka NK, Szmida E, Piotrowski P, Loska O, et al. Metabolic dysregulation in first-episode schizophrenia patients with respect to genetic variation in one-carbon metabolism. Psychiatry Res. 2016; 238: 60-7.

14. Sarandol A, Sarandol E, Acikgoz HE, Eker SS, Akkaya C, Dirican M. First-episode psychosis is associated with oxidative stress: Effects of short-term antipsychotic treatment. Psychiatry Clin Neurosci. 2015; 69(11): 699-707.

15. Kavzoglu SO, Hariri AG. Intracellular Adhesion Molecule (ICAM-1), Vascular Cell Adhesion Molecule (VCAM-1) and E-Selectin Levels in First Episode Schizophrenic Patients. Klin Psikofarmakol B. 2013; 23(3): 205-14.

16. Basoglu C, Oner O, Gunes C, Semiz UB, Ates AM, Algul A, et al. Plasma orexin A, ghrelin, cholecystokinin, visfatin, leptin and agouti-related protein levels during 6-week olanzapine treatment in first-episode male patients with psychosis. Int Clin Psychopharmacol. 2010; 25(3): 165-71.

17. Enez Darcin A, Yalcin Cavus S, Dilbaz N, Kaya H, Dogan E. Metabolic syndrome in drug-naive and drug-free patients with schizophrenia and in their siblings. Schizophr Res. 2015; 166(1-3): 201-6.

18. Saddichha S, Manjunatha N, Ameen S, Akhtar S. Metabolic syndrome in first episode schizophrenia - a randomized double-blind controlled, short-term prospective study. Schizophr Res. 2008; 101(1-3): 266-72.

19. Arranz B, Rosel P, Ramirez N, Duenas R, Fernandez P, Sanchez JM, et al. Insulin resistance and increased leptin concentrations in noncompliant schizophrenia patients but not in antipsychotic-naive first-episode schizophrenia patients. J Clin Psychiatry. 2004; 65(10): 1335-42.

20. Wang HC, Yang YK, Chen PS, Lee IH, Yeh TL, Lu RB. Increased plasma leptin in antipsychoticnaive females with schizophrenia, but not in males. Neuropsychobiology. 2007; 56(4): 213-5.

21. Chen S, Broqueres-You D, Yang G, Wang Z, Li Y, Wang N, et al. Relationship between insulin resistance, dyslipidaemia and positive symptom in Chinese antipsychotic-naive first-episode patients with schizophrenia. Psychiatry Res. 2013; 210(3): 825-9.

22. Zhang XY, Chen DC, Tan YL, An HM, Zunta-Soares GB, Huang XF, et al. Glucose disturbances in first-episode drug-naive schizophrenia: Relationship to psychopathology.

Psychoneuroendocrinology. 2015; 62: 376-80.

23. Keinanen J, Mantere O, Kieseppa T, Mantyla T, Torniainen M, Lindgren M, et al. Early insulin resistance predicts weight gain and waist circumference increase in first-episode psychosis - A one year follow-up study. Schizophrenia Research. 2015; 169(1-3): 458-63.

24. Graham KA, Cho H, Brownley KA, Harp JB. Early treatment-related changes in diabetes and cardiovascular disease risk markers in first episode psychosis subjects. Schizophr Res. 2008; 101(1-3): 287-94.

25. Huang TL, Chen JF. Serum lipid profiles and schizophrenia: effects of conventional or atypical antipsychotic drugs in Taiwan. Schizophr Res. 2005; 80(1): 55-9.

26. Nyboe L, Vestergaard CH, Moeller MK, Lund H, Videbech P. Metabolic syndrome and aerobic fitness in patients with first-episode schizophrenia, including a 1-year follow-up. Schizophr Res. 2015; 168(1-2): 381-7.

27. Song X, Fan X, Song X, Zhang J, Zhang W, Li X, et al. Elevated levels of adiponectin and other cytokines in drug naive, first episode schizophrenia patients with normal weight. Schizophr Res. 2013; 150(1): 269-73.

28. McEvoy J, Baillie RA, Zhu H, Buckley P, Keshavan MS, Nasrallah HA, et al. Lipidomics reveals early metabolic changes in subjects with schizophrenia: effects of atypical antipsychotics. PLoS One. 2013; 8(7): e68717.

29. Breitborde NJ, Srihari VH, Woods SW. Review of the operational definition for first-episode psychosis. Early Interv Psychiatry. 2009; 3(4): 259-65.

30. Perez-Iglesias R, Ortiz-Garcia de la Foz V, Martinez Garcia O, Amado JA, Garcia-Unzueta MT, Ayesa-Arriola R, et al. Comparison of metabolic effects of aripiprazole, quetiapine and ziprasidone after 12 weeks of treatment in first treated episode of psychosis. Schizophr Res. 2014; 159(1): 90-4.

31. Misiak B, Frydecka D, Laczmanski L, Slezak R, Kiejna A. Effects of second-generation antipsychotics on selected markers of one-carbon metabolism and metabolic syndrome components in first-episode schizophrenia patients. Eur J Clin Pharmacol. 2014; 70(12): 1433-41.

32. Zhang S, Lan G. Prospective 8-week trial on the effect of olanzapine, quetiapine, and aripiprazole on blood glucose and lipids among individuals with first-onset schizophrenia. Shanghai Arch Psychiatry. 2014; 26(6): 339-46.

33. Liu X, Wu Z, Lian J, Hu CH, Huang XF, Deng C. Time-dependent changes and potential mechanisms of glucose-lipid metabolic disorders associated with chronic clozapine or olanzapine treatment in rats. Sci Rep. 2017; 7(1): 2762.

34. Skrede S, Ferno J, Vazquez MJ, Fjaer S, Pavlin T, Lunder N, et al. Olanzapine, but not aripiprazole, weight-independently elevates serum triglycerides and activates lipogenic gene expression in female rats. Int J Neuropsychopharmacol. 2012; 15(2): 163-79.