
This online supplement contains further details of statistical
methods and procedures for assessing goodness of fit.

Assessing the fit of confirmatory factor analysis
(CFA) models

For the CFA models, the chi-squared test, the comparative fit
index (CFI),43 the Tucker–Lewis index (TLI)44 and the root mean
square error of approximation (RMSEA)45 were used. Hoyle &
Panter46 recommend that a non-significant chi-squared test, along
with TLI and CFI values of 40.95, and a RMSEA value of 40.05,
indicates acceptable model fit. Bollen,47 however, notes that the
chi-squared statistic is highly sensitive to large sample sizes and
may overestimate the lack of fit of a structural model. Thus, the
chi-squared test should be viewed in conjunction with the other
fit indices. A chi-squared difference test can be computed between
nested factor models to examine whether a less stringent set of
model constraints improves the model fit. It is important to note
that in Mplus version 6, the chi-squared value obtained for
WLSMV estimation (as conducted in this study) cannot be used
for chi-squared difference testing in the usual manner and has
to be adjusted using the DIFFTEST command.

Estimating and assessing the fit of latent class
analysis (LCA) and factor mixture model analysis

(FMMA)

One problem that may arise when using algorithms to produce
maximum-likelihood estimation is the presence of local maxima.
This means that during the estimation process, there are several
solutions around which a model may converge (i.e. local maxima,
in which a model fits the data in an apparently satisfactory way),
but there is only one best solution (i.e. the global maximum). The
algorithm stops when a maximum is reached, but it cannot
distinguish the global maximum from a local maximum.48 If a
model converges around a particular local maximum, instead of
the global maximum, the best-fitting solution can be missed.49

To ensure successful convergence on the global maximum
solution, LCA and FMMA models were estimated with different
sets of random starting values (i.e. 500 random sets of starting
values were used in the initial stage, and 20 optimisations were
used in the final stage of convergence). All models were inspected
to identify whether the log-likelihood value for each model was
replicated several times, as this increases confidence that the
solution obtained is not a local maximum.50 We report
circumstances where the log-likelihood was not replicated (in
Table 5).

There is no single definitive method for deciding on the
optimal number of latent classes,51 and several statistical indices
are conventionally used to assess the fit of the models. For the
LCA and FMMA models, the log-likelihood, the Akaike
information criterion (AIC),52 the Bayesian information criterion
(BIC)53 and the sample-size adjusted BIC (SSABIC)54 were used as
goodness-of-fit indicators. A high log-likelihood value in
conjunction with lower values on the AIC, BIC and the SSABIC
reflect a good-fitting model. The BIC has been shown to be more
reliable than the other information criteria.50 For LCA models, the
Lo, Mendell and Rubin likelihood ratio test (LMR-LRT)55 and the
entropy56 can also be useful in determining the best-fitting model.
The LMR-LRT compares models with different number of classes:
a non-significant value suggests that the model with one fewer
class is a better explanation of the data. The entropy statistic,
which ranges from 0 to 1, is a standardised summary measure
of the classification accuracy of placing participants into classes
based on their model-based posterior probabilities. Higher
entropy values reflect better classification of individuals.56
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