Regenbogen C, Kellermann T, Seubert, J, Schneider, DA, Gur, RE, Derntl B, Schneider, F, Habel, U. Neural responses to dynamic multimodal stimuli and pathology-specific impairments of social cognition in schizophrenia and depression. SUPPLEMENT

## Supplemental Methods and Materials

## Study participants

The experiment conformed to the Code of Ethics of the World Medical Association. The study was approved by the local institutional review board. Participants gave written consent to the study protocol and received $35 €$ after completion.
A neuropsychological battery was carried out assessing crystallized intelligence ( $\mathrm{WST}^{1}$ ), processing speed and cognitive flexibility (Trail Making Test TMT²), word fluency (Regensburger Word Fluency Test RWT ${ }^{3}$, and short-term/working memory (Wechsler Adult Intelligence Scale, Revised, WAIS-R ${ }^{4}$ ). To test static face recognition accuracy, participants were tested with the Vienna Emotion Recognition Task-short version (VERT-K ${ }^{5}$ ). All PSZ received antipsychotics (butyrophenones: $\mathrm{n}=2$, atypical antipsychotics: $\mathrm{n}=17$, partial agonists/antagonists: $\mathrm{n}=6$ ). All PMD received antidepressants (selective serotonin reuptake inhibitors: $n=6$, serotonin-norepinephrine reuptake inhibitors: 12, noradrenaline reuptake inhibitors: $n=1$, tricyclic antidepressants: $n=2$, tetracyclic antidepressants: $n=5$ ), two patients were additionally medicated with a benzisoxazole derivative). Patients with a life-time psychiatric comorbidity other than substance abuse were excluded.
Table DS1. Mean values (SD) of neuropsychological data and questionnaires and oneway ANOVA results testing for differences between the groups.

|  | HC | n | PMD | n | PSZ | n | F | p |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Demographics |  |  |  |  |  |  |  |  |
| Age | 35.25 (9.80) | 24 | 36.42 (12.01) | 24 | 37.30 (8.44) | 20 | 0.22 | . 80 |
| Edu | 12.38 (1.24) | 24 | 11.58 (1.61) | 24 | 12.35 (1.27) | 20 | 2.44 | . 10 |
| Parental edu | 10.44 (1.78) | 24 | 10.04 (1.58) | 23 | 10.68 (2.50) | 20 | 0.57 | . 60 |
| Neuropsychology |  |  |  |  |  |  |  |  |
| IQ | 110.17 (7.60) | 24 | 102.38 (8.26) | 24 | 107.60 (12.43) | 20 | 4.19 | .02* |
| Word fluency (percentile) | 54.18 (14.75) | 24 | 47.59 (21.29) | 23 | 35.33 (22.79) | 18 | 4.80 | .01* |
| TMT-A (sec) | 20.30 (5.43) | 23 | 23.62 (7.94) | 24 | 27.47 (12.83) | 20 | 3.37 | .04* |
| TMT-B (sec) | 33.74 (9.54) | 23 | 47.03 (21.54) | 24 | 47.10 (25.71) | 20 | 3.40 | .04* |
| Short-term memory | 9.21 (1.44) | 24 | 8.38 (2.04) | 24 | 8.53 (2.12) | 19 | 1.33 | . 27 |
| Working memory | 7.58 (1.44) | 24 | 7.38 (1.88) | 24 | 6.32 (1.49) | 19 | 3.58 | .03* |
| Psychopathology |  |  |  |  |  |  |  |  |
| Illness duration |  |  | 7.31 (8.38) | 24 | 9.58 (9.58) | 19 | 0.68 | . 41 |
| GAF |  |  | 51.00 (12.14) | 20 | 49.89 (11.35) | 19 | 0.09 | . 77 |
| PANSS total |  |  |  |  | 75.58 (23.11) | 19 |  |  |
| - psychopathology |  |  |  |  | 38.26 (13.32) | 19 |  |  |
| - positive symptoms |  |  |  |  | 14.21 (4.53) | 19 |  |  |
| - negative symptoms |  |  |  |  | 23.11 (8.52) | 19 |  |  |
| HAMA total |  |  |  |  | 13.23 (3.32) | 13 |  |  |
| - soma |  |  |  |  | 3.46 (2.26) | 13 |  |  |
| - psych |  |  |  |  | 9.77 (2.65) | 13 |  |  |
| HAMD |  |  | 14.45 (6.67) | 20 |  |  |  |  |
| BDI |  |  | 27.55 (11.77) | 22 |  |  |  |  |
| Static face recognition |  |  |  |  |  |  |  |  |
| VERT (\% corr) | 83.46 (8.06) | 22 | 82.99 (6.41) | 24 | 79.86 (8.64) | 16 | 1.17 | . 32 |
| VERT RT (ms) | 5193 (4100) | 22 | 5095 (4422) | 24 | 4177 (1327) | 16 | 0.40 | . 68 |
| Alexithymia screening |  |  |  |  |  |  |  |  |
| TAS-20 | 43.42 (8.21) | 24 | 52.79 (11.92) | 24 | 45.26 (11.99) | 19 | 5.03 | .01* |
| Empathy questionnaires |  |  |  |  |  |  |  |  |
| E-scale | 3.25 (0.41) | 24 | 3.15 (0.61) | 24 | 3.19 (0.70) | 20 | 0.18 | . 83 |
| SPF (IRI) | 33.75 (5.88) | 24 | 34.46 (5.76) | 24 | 30.00 (4.93) | 20 | 3.92 | .03* |

[^0]
## Correlation analyses

In controls, 'Empathy' was significantly associated with working memory ( $r=0.605, p=.002$ ). In MD and SZ, no correlation survived Bonferroni-correction. For exploratory purposes, we chose to report correlations that emerged between 'Empathy', 'Other', and 'Self', respectively, and psychopathology ratings: In MD, negative correlations were found between 'Empathy' and 'Self' and alexithymia (TAS) (SOMT: $r=-0.487, p=.016$; SMT: $r=-.498, p=.013$ ) as well as between 'Other' and depression severity (BDI, $r=-0.427, p=.048$ ). In SZ, 'Other' correlated negatively with the negative symptom scale ( $r=-0.564, p=.01$ ) and the global scale ( $r=-0.565$, $\mathrm{p}=.01$ ).

## Task

Participants were comfortably placed in the MR scanner. The hand's index- and middle fingers were positioned on fMRI compatible response buttons (LUMItouch ${ }^{\text {M }}$, Lightwave Technologies, Richmond, Canada) through which the empathy ratings were carried out after each video clip. Clips were presented in pseudo-random order via the presentation program Presentation ${ }^{\circledR}$ (Neurobehavioral Systems Inc., San Francisco, CA) and presented via MRcompatible goggles and headphones (VisuaStimDigital, Resonance Technology, RT, Northridge, CA, USA). During the interstimulus interval a white fixation cross on black background was displayed ( $\mathrm{M}=4.53 \mathrm{~s}, \mathrm{SD}=2.26$, jittered in steps of 500 ms with respect to the MR trigger) (Figure S1).


Figure DS1. One of 96 study trials.
Participants were presented with short video clips displaying actors which they were instructed to regard as personally familiar. In this example, the participant chose the extreme positive valence with three button presses with the right middle finger.

## Functional magnetic resonance imaging

Functional imaging data were obtained on a 3 Tesla Tim Trio® MR scanner (Siemens Medical Systems, Erlangen, Germany) with a standard 12-channel head matrix coil using a T2* weighted echo-planar imaging (EPI) sequence sensitive to blood oxygenation level dependent (BOLD) changes (voxel size: $3.125 \times 3.125 \times 3.1 \mathrm{~mm}^{3}$, matrix size: $64 \times 64$, field of view (FoV): $200 \times 200 \mathrm{~mm}^{2}, 36$ axial (AC-PC) slices, 0.465 mm -gap, TR/TE $=2000 / 30 \mathrm{~ms}$, flip angle: $76^{\circ}, 1180$ volumes, duration: 39.33 min ).

Several participants were excluded from further analysis due to excessive head motion (>3 $\mathrm{mm}, \mathrm{n}=2$ ), scanner artifacts ( $\mathrm{n}=4$ ) and non-compliance ( $\mathrm{n}=1$ ). The final sample consisted of 20 PSZ (7 females), 24 PMD (11 females), and 24 HC ( 11 females, Table S1).

Data analysis was carried out with SPM8 (Wellcome Department of Cognitive Neurology, London). The functional images were realigned to the first image of the time-series and the functional mean image was coregistered into the Montreal Neurologic Institute (MNI) image space, which delivered the priors for a unified segmentation process ${ }^{6}$. The mean image was non-linearly segmented into grey matter, white matter, and cerebrospinal fluid (CSF). The fitting of the mean image's grey matter with the corresponding tissue probability map yielded the normalization parameters which were applied to the whole time series and included resampling to a voxel size of $1.5 \times 1.5 \times 1.5 \mathrm{~mm} 3$. Spatial smoothing on normalized images was carried out with an isotropic 8 mm FWHM (full width at half maximum) Gaussian kernel.

## Supplemental results

## The components of empathy

The analysis of emotion recognition ('Other', Table S2) resulted in a significant main effect of COND (Wald $\mathrm{X} 2(4)=235.02, \mathrm{p}$ <.001). Neither GRP nor the interaction term was significant (GRP: Wald $x^{2}(2)=1.82, p=.40$; GRP by COND, Wald $\mathrm{x} 2(8)=6.33, \mathrm{p}=.61$ ).
Post-hoc tests for the main effect of COND showed highest emotion recognition in 'trimdoal emotional' when comparing with all other conditions ('neutral prosody': $\mathrm{t}(67)=3.48, \mathrm{p}=.003$, 'neutral facial expression': $\mathrm{t}(67)=6.74$, 'neutral speech': $\mathrm{t}(67)=8.07$, 'foreign language': $\mathrm{t}(67)=11.00, \mathrm{ps}<.001$ ). 'Neutral speech' showed the lowest emotion recognition rates, significantly lower compared to 'neutral prosody' (t(67)=-7.33, p<.001) and 'neutral facial expression' ( $\mathrm{t}(67$ )=-3.64, $\mathrm{p}=.003$ ), followed by 'foreign language' (significantly lower compared to 'neutral prosody': $\mathrm{t}(67)=10.08, \mathrm{p}<.001$ and 'neutral facial expression': $\mathrm{t}(67)=3.09, \mathrm{p}=.02$ ) and 'neutral facial expression'. 'Neutral facial expression' was significantly lower compared to 'neutral prosody' (t(67)=5.04, p<.001).
The analysis of affective responses ('Self') resulted in a significant main effect of COND (Wald $X^{2}(4)=208.49, p<.001$ ). The main effect of GRP (Wald $X^{2}(2)=0.05, p=.97$ ) was not significant, the interaction effect showed a trend (GRP by COND: Wald $\mathrm{X}^{2}(8)=13.64, \mathrm{p}=.09$ ).
Table DS2. Results (\% M $\pm$ SD) for emotion recognition ('Other') and affective response ('Self') ratings.

|  | HC |  | PMD |  | PSZ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | M | SD | M | SD | M | SD |
| Other |  |  |  |  |  |  |
| Trimodal emotional | 98.44 | 2.76 | 95.31 | 8.29 | 97.19 | 5.54 |
| Neutral prosody | 95.31 | 8.50 | 93.23 | 10.08 | 94.38 | 6.69 |
| Neutral face | 88.80 | 12.22 | 85.16 | 18.04 | 85.00 | 14.25 |
| Neutral speech | 68.49 | 25.83 | 69.53 | 28.69 | 74.38 | 28.74 |
| Foreign language | 79.43 | 15.69 | 76.82 | 13.60 | 80.31 | 11.87 |
| Self |  |  |  |  |  |  |
| Trimodal emotional | 74.74 | 27.67 | 75.00 | 25.14 | 73.75 | 27.10 |
| Neutral prosody | 70.57 | 28.70 | 64.32 | 27.18 | 65.94 | 28.42 |
| Neutral face | 57.29 | 28.47 | 59.90 | 28.43 | 61.25 | 30.73 |
| Neutral speech | 30.99 | 28.04 | 33.85 | 28.01 | 33.75 | 29.41 |
| Foreign language | 51.82 | 29.34 | 45.57 | 26.29 | 43.13 | 22.39 |

Note. For abbreviations concerning the different conditions, please refer to the main document. M=Mean, SD=Standard deviation, $\mathrm{HC}=$ Healthy controls, $\mathrm{PMD}=$ Patients with major depression, $\mathrm{PSZ}=$ Patients with schizophrenia.

Post-hoc tests for the main effect COND showed that condition 'trimodal emotional' showed higher affective response rates compared to any other condition ('neutral prosody': $\mathrm{t}(67)=4.84$; 'neutral facial expression': $\mathrm{t}(67)=6.94$; 'neutral speech': $\mathrm{t}(67)=13.10$; 'foreign language': $\mathrm{t}(67)=11.86$, all ps<.001), and all other conditions showed significant differences between each other (all ps $\leq .001$ ).

## Channel-sensitive contrasts

Within each participant group, T-contrasts comparing the trimodal emotional condition with each bimodal emotional condition revealed activation in areas responsible for processing the respective sensory modality (Figure DS2, Tables DS3-DS5).


Figure DS2. Areas responsible for processing emotional prosody, facial expressions, and speech.

Planned 'channel-contrasts' within each participant group (random-effects general linear model, Ts>4.78, Monte-Carlo-clusterlevel corrected, $\mathrm{p}<.05, \mathrm{k}>125$ ) as well as the F-contrast ( $\mathrm{F}>7.03$, Monte-Carlo-cluster-corrected, masked inclusively with contrast 1).

Table DS3. Activation patterns in the contrast 'emotional prosody'.

|  | Anatomical label | Anatomy toolbox | H | Size | T | p | $\mathbf{x}$ | $\mathbf{y}$ |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| HC | Heschls gyrus | ZE1.0, TE1.2, OP4, TE3 | L | 593 | 6.96 | $<.001$ | -51 | -15 |

Table DS4. Activation patterns in the contrast 'emotional facial expression'.

|  | Anatomical label | Anatomy toolbox | H | Size | T | p | X | y | $z$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| HC | Fusiform gyrus | hOC4v(V4), hOC3v(V3v), Area17, Area18 | R | 9336 | 8.75 | <. 001 | 51 | -72 | -9 |
|  | Fusiform gyrus | hOC4v(V4), Lobule VIIa Crus I, hOC3v(V3v), Area18 | L | 1887 | 6.32 | <. 001 | -26 | -87 | -15 |
|  | Middle occipital gyrus | hOC5 | L | 968 | 7.70 | <. 001 | -51 | -74 | 0 |
|  | Middle occipital gyrus | Area18, hOC3v | L | 291 | 6.28 | < 001 | -26 | -96 | 9 |
|  | Hippocampus, amygdala | Hipp(CA), Amyg(CM), Hipp(SUB), Th-Temporal | R | 246 | 6.41 | <. 001 | 27 | -15 | -11 |
|  | Precentral gyrus | Area4a, Area4p, Area6, Area3b | L | 157 | 5.62 | . 001 | -38 | -24 | 59 |
|  | Superior medial gyrus | - | L | 78 | 5.31 | . 005 | -9 | 54 | 6 |
|  | Brainstem | - - | L | 67 | 6.58 | < 001 | -9 | -23 | -15 |
| PMD | Fusiform gyrus | Area17, hOC4v (V4), hOC4v (V4), Area18 | R | 19519 | 9.82 | <. 001 | 47 | -75 | -6 |
|  | SMA | Area6 | L | 1639 | 6.31 | <. 001 | -3 | -5 | 53 |
|  | Cerebellar vermis | Lobule VIIII, IX, VI | R | 711 | 6.13 | <. 001 | 3 | -57 | -39 |
|  | Precentral gyrus | Area6, Area4a, Area4p, Area3b | L | 528 | 5.60 | . 001 | -32 | -18 | 63 |
|  | Thalamus | Th-Parietal, Hipp (SUB), Th-Visual, Th-Temporal | R | 424 | 6.25 | <. 001 | 8 | -27 | -8 |
|  | Precentral gyrus | Area6, Area4a | R | 255 | 6.13 | <. 001 | 54 | -2 | 39 |
|  | Hippocampus | Hipp(SUB, CA, FD), Th-Parietal | L | 110 | 5.60 | . 001 | -24 | -21 | -18 |
|  | Angular gyrus | SPL, hlP3, SPL | R | 104 | 5.62 | <. 001 | 29 | -59 | 53 |
|  | Anterior cingulate cortex |  | L | 61 | 5.28 | . 006 | -3 | 6 | 30 |
|  | Anterior cingulate cortex | - | L | 60 | 5.39 | . 004 | -2 | 17 | 23 |
| PSZ | Fusiform gyrus | hOC4v (V4), hOC3v (V3v), hOC5 (V5), Area18 | R | 1846 | 7.61 | <. 001 | 50 | -72 | 0 |
|  | Inferior occipital gyrus | hOC4v (V4), hOC5v (V5) | L | 800 | 6.12 | < 001 | -41 | -78 | -12 |
|  | Middle occipital gyrus | Area18, hOC3v, IPC | L | 709 | 5.96 | <. 001 | -29 | -92 | 17 |
|  | Calcarine gyrus | Areaa17, Area18, hOC3v (V3v) | R | 686 | 6.16 | <. 001 | 15 | -101 | 5 |
|  | Fusiform gyrus | hOC4v (V4) | R | 365 | 5.75 | . 001 | 38 | -60 | -17 |
|  | Middle cingulate cortex | Area4a, SPL (5M), Area6 | L | 153 | 5.48 | . 002 | -2 | -30 | 39 |
|  | Lingual gyrus | hOC4v (V4), Area18, hOC3v (V3v) | L | 148 | 5.43 | . 003 | -23 | -89 | -14 |
|  | Fusiform gyrus | hOC4v (V4), hOC3v (V3v) | L | 104 | 5.38 | . 004 | -24 | -71 | -6 |
|  | Brainstem | - | R | 102 | 6.16 | <. 001 | 8 | -27 | -11 |
|  | Precuneus | SPL (7M) | R | 69 | 5.18 | . 009 | 0 | -65 | 33 |
|  | Precentral gyrus | Area3a, Area4p | R | 57 | 5.40 | . 003 | 38 | -9 | 36 |
|  | Precentral gyrus | Area6, Area4a, Area1, Area3b | L | 54 | 5.20 | . 008 | -30 | -29 | 66 |

Table DS5. Activation patterns in the contrast 'emotional speech'.

|  | Anatomical label | Anatomy toolbox | H | Size | T | p | x | y |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| HC | Middle temporal gyrus | TE3 | L | 2781 | 8.13 | $<.001$ | -56 | -27 |
|  | Superior medial gyrus | - | L | 2499 | 6.99 | $<.001$ | -11 | 53 |
|  | Middle temporal gyrus | IPC(PGa), IPC(PGp), IPC(PFm), IPC(PF) | L | 2062 | 7.36 | $<.001$ | -56 | -59 |
|  | Cerebellum | Lobule VII Crus I, Lobule VI | R | 647 | 7.45 | $<.001$ | 29 | -75 |
|  | Postcentral gyrus | Area4a, Area6, Area4p, Area3b | L | 498 | 6.48 | $<.001$ | -36 | -21 |
|  |  | 54 |  |  |  |  |  |  |


|  | IFG (p. triangularis) | Area45, Area44 | L | 305 | 5.64 | <. 001 | -44 | 21 | 15 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Precuneus | - | L | 254 | 5.67 | . 001 | -6 | -54 | 30 |
|  | Precentral gyrus | Area6 | L | 182 | 5.64 | . 001 | -41 | 5 | 47 |
|  | SMA | Area6 | L | 121 | 5.56 | . 002 | -5 | -8 | 57 |
|  | Superior frontal gyrus | - | L | 55 | 5.48 | . 002 | -21 | -3 | 50 |
| PMD | SMA | Area6, Area4p, Area3b | L | 8449 | 8.64 | <. 001 | -18 | -2 | 60 |
|  | Middle temporal gyrus | IPC(PGa), IPC(PGp), IPC(PFm), IPC(PFcm) | L | 6539 | 8.13 | <. 001 | -65 | -8 | -23 |
|  | Superior medial gyrus | - | L | 2761 | 8.57 | <. 001 | -11 | 56 | 27 |
|  | Posterior cingulate cortex | - | L | 1130 | 7.14 | <. 001 | -6 | -51 | 32 |
|  | Cerebellum | Lobule VIIa Crus I, Lobule VI | R | 735 | 7.00 | <. 001 | 26 | -77 | -33 |
|  | Superior frontal gyrus | Area6 | R | 520 | 6.65 | <. 001 | 26 | 2 | 57 |
|  | Hippocampus | Hipp(SUB), Hipp(CA), Th-Parietal, Hipp(FD) | L | 490 | 6.48 | <. 001 | -26 | -21 | -17 |
|  | Middle frontal gyrus | - | L | 343 | 6.93 | <. 001 | -29 | 17 | 38 |
|  | Medial temporal pole | - | R | 262 | 6.12 | <. 001 | 54 | 9 | -20 |
|  | Inferior temporal gyrus | - | R | 250 | 6.25 | <. 001 | 53 | -17 | -18 |
|  | Thalamus | Th-Prefrontal, Th-Temporal | L | 169 | 5.39 | <. 001 | -12 | 0 | 8 |
|  | Cerebellar vermis | Lobule VI | L | 133 | 5.74 | . 001 | -2 | -75 | -12 |
|  | Insula | - | L | 99 | 5.32 | . 002 | -30 | 6 | 11 |
|  | White matter | - | R | 79 | 5.48 | . 002 | 23 | 8 | 15 |
|  | Cerebellum | Lobule VIIa Crus I, Lobule VI | R | 77 | 5.32 | . 004 | 42 | -57 | -33 |
|  | ParaHippocampal gyrus | Hipp(CA), Hipp(SUB), hlP1 | R | 67 | 6.07 | . 005 | 35 | -12 | -29 |
|  | Putamen | - | L | 60 | 5.56 | . 005 | -26 | -2 | 0 |
| PSZ | Precuneus | SPL(7A), SPL(5M9, SPL(5L), Area4a | L | 1723 | 7.15 | <. 001 | -6 | -54 | 30 |
|  | Middle temporal gyrus | IPC(PGa), IPC(PGp), IPC(PFm), IPC(PFcm) | L | 1530 | 6.45 | <. 001 | -48 | -48 | 23 |
|  | Postcentral gyrus | Area6, Area4a, Area3b, Area4p | L | 1284 | 6.34 | <. 001 | -32 | -30 | 65 |
|  | Middle cingulate cortex | Area6 |  | 506 | 5.67 | <. 001 | 0 | -5 | 51 |
|  | Middle temporal gyrus | - | L | 441 | 6.06 | <. 001 | -65 | -8 | -20 |
|  | Hippocampus/amygdala | Hipp(CA), Hipp(FD), Hipp(SUB), Amyg(LB) | L | 397 | 6.50 | <. 001 | -36 | -20 | -20 |
|  | Superior frontal gyrus |  | L | 378 | 6.39 | <. 001 | -14 | 42 | 42 |
|  | Caudate nucleus | Th-Prefrontal/Premotor/Parietal/and Temporal | R | 250 | 6.89 | <. 001 | 21 | -14 | 20 |
|  | Thalamus | Th-Prefrontal/Premotor/Parietal, OP3 | L | 142 | 5.65 | . 001 | -18 | -9 | 15 |
|  | Caudate nucleus | - | R | 124 | 5.66 | . 001 | 15 | 15 | 6 |
|  | Middle frontal gyrus | Area 45 | L | 108 | 5.30 | . 005 | -33 | 35 | 15 |
|  | Middle frontal gyrus | - | L | 95 | 5.51 | . 002 | -33 | 41 | 27 |
|  | SMA | Area6 | R | 89 | 5.48 | . 002 | 3 | -15 | 71 |
|  | Thalamus | Th-Prefrontal/Temporal | L | 88 | 5.31 | . 002 | -8 | -3 | -2 |
|  | Thalamus | Th-Prefrontal/Temporal | L | 79 | 5.67 | . 001 | -54 | -29 | -8 |
|  | Middle temporal gyrus | - | L | 79 | 5.47 | . 002 | -5 | -14 | 5 |
|  | IFG | Area45 | L | 70 | 5.41 | . 003 | -53 | 29 | -9 |
|  | Superior parietal lobe | SPL(7PC), Area1, SPL(7A), Area2 | L | 68 | 5.31 | . 005 | -32 | -48 | 62 |

Note. Tables DS3-DS5 present 'Channel-sensitive' activation patterns resulting from a subtraction of a bimodal emotional from a trimodal emotional contrast. Contrasts resulted from a random-effects GLM, Ts>4.78, ps<.05, FWE-corrected for multiple comparisons, $k>50$ ).
Stereotaxic coordinates of local maxima of activation are expressed as $x ; y ; z$ values in proper MNI space. HC=healthy controls, $\mathrm{PMD}=$ patients with major depression, PSZ=patients with schizophrenia, $\mathrm{H}=$ hemisphere, $\mathrm{R}=$ right, $\mathrm{L}=$ left. The column Anatomy toolbox gives cytoarchitectonical labels ${ }^{7}$.

## Supplemental references

1 Schmidt, KH \& Metzler, P. Wortschatztest (WST). 1992;
2 Reitan, RM. Trail Making Test: Manual für administration and scoring. 1992;
3 Aschenbrenner, S, Tucha, O \& Lange, KW. Regensburger Word Fluency Test [Regensburger Wortflüssigkeits-Test, RWT]. 2000;
4 Tewes, U. HAWIE-R Hamburg-Wechsler Intelligenztest für Erwachsene. Revision 1991. 1991;
5 Derntl, B, Windischberger, C, Robinson, S, Lamplmayr, E, Kryspin-Exner, I, Gur, RC, Moser, E \& Habel, U. Facial emotion recognition and amygdala activation are associated with menstrual cycle phase. Psychoneuroendocrinology 2008; 33: 1031-1040.
6 Ashburner, J \& Friston, KJ. Unified segmentation. Neuroimage 2005; 26: 839-851.
7 Eickhoff, SB, Stephan, KE, Mohlberg, H, Grefkes, C, Fink, GR, Amunts, K \& Zilles, K. A new SPM toolbox for combining probabilistic cytoarchitectonic maps and functional imaging data. Neuroimage 2005; 25: 1325-1335.


[^0]:    Note. HC=Healthy controls, PMD=Patients with major depression, PSZ=Patients with schizophrenia, Edu=education, $\mathrm{IQ}=$ Intelligence quotient of crystallized intelligence, GAF=Global assessment of functioning, PANSS=positive and negative symptom scale for schizophrenia, HAMA=Hamilton anxiety rating scale, HAMD=Hamilton depression rating scale, BDI=Beck depression inventory, SPF(IRI) = German version of the Interpersonal Reactivity Index, *significant on a p<. 05 threshold, but not corrected for the total number of tests carried out. $\mathrm{N}=$ number of participants.

