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This appendix adds a number of extensions to the simple game in the main text. In particular,
I discuss in turn the effect of adding repeated interactions (finite and infinite), and of allowing
players to communicate.

Repeated game (finite)

Here I describe a game in which there are two periods and an infinite number of types of B. I
first describe the game formally, then show that there is no peaceful perfect equilibrium in this
game. I then discuss in section the intuition for the proof, and finally show that the logic of this
two-staged game applies to a game with an infinite number of stages.

The game

Setup Two states, A and B, negotiate over the partition of a territory X of size normalized to
1. At the beginning of the game, Nature chooses A’s type φ ∈ {w, s}, where w is selected with
probability q and s with probability 1 − q. It will sometimes be convenient to refer to a weak
(strong) A as Aw (As).

Nature also chooses the signal θ that B receives about q—and hence about A’s type.33 θ is a
random variable with probability mass function f , where f has support [0, 1] and cumulative
distribution F (·).34 f is common knowledge, but the draw θ is only observed by B. In short,
B has different possible levels of uncertainty about A’s strength φ—in particular, the signal is
perfectly informative if θ ∈ {0, 1} and is not if θ ∈ (0, 1)—and A is uncertain about what B knows
about A’s strength.
Stage game After Nature’s move, the game consists of T = 2 stages denoted by t ∈ {1, 2}. Each
stage game follows a standard take-it-or-leave-it bargaining protocol with an outside option.
Specifically, A first makes an offer xt ∈ [0, 1], where xt denotes A’s share of the pie. B can then:
(a) accept, in which case the game ends with payoffs xt δt−1 for A and (1 − xt )δt−1 for B, where
δ ∈ (0, 1) denotes a common discount factor; (b) reject, in which case the game proceeds to stage
t + 1 (unless t = T , in which case ‘war’ ensues); or (c) fight (i.e., ‘war’). In the event of a war, A
wins the entire territory with probability pφ, where φ ∈ {w, s}, and B wins it with probability
1 − pφ . Both players incur a cost of war c, and I assume that ps > pw + 2c.35 I also assume for
simplicity of exposition that ui (x) = x for all x ∈ [0, 1] and i ∈ {A, B}.
Beliefs B has beliefs about A’s type, which are affected both by Nature’s signal θ and by
A’s sequence of offers {rt }. More specifically, let Ht = {ht } be the set of all possible stage
t histories. Then we define a belief function as a mapping µi : Ht → [0, 1]. Specifically,
µB
ht
≡ µB (φ = w |ht ) ∈ [0, 1] denotes B’s belief that she is facing a weak A at time t, following

history ht ; and µAht
≡ µA(µB

ht
|ht ) denotes A’s belief about B’s belief—i.e., a mapping from each

33θ can be interpreted as: “B’s prior is that A is weak with probability θ and strong with probability 1 − θ.”
34Support over the entire interval is not necessary but facilitates presentation.
35Allowing for different costs of war for each player does not change the logic of the argument.
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of B’s beliefs about her own probability of being weak, onto a probability. Beliefs are updated
according to Bayes’ rule. As an example, initial beliefs immediately after Nature’s choice of θ at
time 0 are µB (φ = w |θ) = θ and µA(µBt = x |θ) = f (x).

Finally, define a ‘peaceful’ Perfect Bayesian Equilibrium (PBE) as an equilibrium in which
war happens with probability zero. I now show that there is no peaceful PBE in this game.36

Analysis

Let rt be the probability with which Aw makes a ‘low’ offer in stage t, i.e., an offer in the set
xL
t = {xt : xt ∈ pw ± c}, and 1 − rt the probability with which she makes a ‘high’ offer instead,

i.e., an offer in the set xH
t = {xt : xt ∈ ps ± c}.37

Lemma 3. In equilibrium, B accepts any offer x∗t ∈ xL .

Proof (by contradiction). Suppose to the contrary that there is an offer x∗t ≤ max(xL ) that B
rejects. Clearly this cannot be in the last round, as this would lead to war, with expected utility for
B of 1− pφ − c ≤ 1− pw − c ≤ 1−max(xL ) ≤ 1− xt . Similarly, since A can guarantee a payoff
of x∗t in the next round, B cannot credibly threaten to reject any xt−1 ≤ max(xL ).

It will be convenient to define θrt as the implicit solution to

(1 − pw − c)µBθrt ,ht
+ (1 − ps − c)(1 − µBθrt ,ht

) = xH,

where µB
θrt ,ht

= µB (φ = w |θrt , ht ). In other words, θrt is the value of the signal θ received by B
for which, given history ht , B is indifferent between accepting the high offer and fighting today.38
This means that if B observes θ > θrt (i.e., B thinks A is likely to be weak), B rejects or fights
upon receiving a high offer; for lower values of θ, B accepts.

I now first show that for an equilibrium to be peaceful, it must be that A makes a low offer
with probability one in at least one of the two rounds.

Lemma 4. In a peaceful equilibrium, either r1 = 1 or r2 = 1 or both.

Proof (by contradiction). Suppose to the contrary that there is a peaceful equilibrium in which
r1 < 1 and r2 < 1. Then with probability (1 − r1)(1 − r2) > 0, B receives high offers xH

in both rounds. Let θ̃ = max(θr1, θr2 ) and note that B receives signal θ > θ̃ with probability
1 − F (θ̃) > 0, in which case B rejects any offer xH . Therefore war occurs with probability
(1−r1)(1−r2)(1−F (θ̃)) > 0, but this violates the assumption that the equilibrium is peaceful.

36A much simpler proof of the absence of a peaceful PBE exploits the finite nature of the game, but unfortunately does
not extend to the infinite version of this game. The proof goes as follows. First note that if θ = 1, then B can guarantee an
expected payoff of 1 − pw − c by fighting. Since there is support for f on [0, 1], there exists a positive probability that A
is facing a B with belief θ = 1, i.e., that B is certain she is facing a weak A (I ignore some of the measure theoretic
complications associated with continuous distribution—the result of course easily extend to the situation of a very large
but finite number of type, each with a positive probability). Hence a peaceful PBE requires that A offer xt such that
B prefers accepting than fighting—i.e., A must offer at least 1 − pw − c in t1, or (1 − pw − c)δ in t2. But A cannot
credibly promise to offer any x2 such that 1− x2 > 1− pw − c, as she would have an incentive to renege on that promise
in t2. Then the only way to prevent war with certainty is for A to offer x1 such that 1 − x1 = 1 − pw − c with probability
one—i.e., a separating equilibrium in round 1. But this setup is then the same as in the main text, and A prefers a pooling
equilibrium, in which war happens with probability f (θ = 1). Unfortunately, this proof does not extend to the case of an
infinitely repeated game. Indeed, with infinite periods, A could in fact credibly promise more than 1 − pw − c in the next
round (B could make sure of that by threatening punishment).

37It is easy to show that other offers are not viable as candidates for equilibrium.
38We assume that when B is indifferent between an offer and war, she accepts the offer. This is not a critical

assumption.
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The second step in the proof is to show that a strategy is an equilibrium strategy only if rt < 1
for all t, and hence, per lemma 4, that there can be no peaceful equilibrium. I first show that
r1 = 1 cannot be part of an equilibrium strategy.39

Proposition 2. Let r̃ = (r̃1 = 1, r̃2) be Aw’s strategy, where r̃2 ∈ [0, 1]. Then r̃ is not an
equilibrium strategy.

Proof (by contradiction). Suppose to the contrary that r̃ is an equilibrium strategy, i.e., that Aw

offers xL with probability r1 = 1. B accepts this offer (per lemma 3), leading at most to a payoff
of max(xL ) for Aw , regardless of the value of r̃2. Consider now a deviation to r′ = (r ′1, r

′
2), with

r ′1 ∈ (γ, 1), where γ is the implicit solution to F (θγ ) = pw+c
ps−c and r ′2 ∈ [0, 1].40 In that case, B

receives an offer xL with probability r ′1, which she accepts, and an offer xH with probability
1− r ′1. A expects B to accept xH with probability µA1 = µ

A(µB1 ≥ θ
r ′1 ). If B rejects it, then A can

always ensure her minimum payoff of min(xL ) = pw − c in the next round, regardless of beliefs.
In sum, Aw’s expected payoff from deviating to r ′1 is therefore at least:

r ′1xL + (1 − r ′1)
[
δmin(xL )µA1 +min(xH )

(
1 − µA1

)]
,

which is greater than xL for all δ if

µA1 < 1 −
pw + c
ps − c

, (1)

and note that

µA1 = µ
A(µB1 ≥ θ

r ′1 ) =

1∫
θ
r′1

f (θ)dθ = 1 − F (θr
′
1 ).

Furthermore, I assumed r ′1 > γ, so θr ′1 > θγ .41 Therefore, 1 − F (θr
′
1 ) < 1 − F (θγ ). Finally, γ

was defined as the implicit solution to F (θγ ) = pw+c
ps−c , so

µA1 = 1 − F (θr
′
1 ) < 1 − F (θγ ) = 1 −

pw + c
ps − c

.

This means that (1) holds and hence that r ′1 is a profitable deviation from r̃1 = 1. But this
contradicts the assumption that r̃ is an equilibrium strategy.

I now show that r2 = 1 is also not an equilibrium strategy.42 The first step in this part of the
proof is to show that r2 = 1 can only be part of an equilibrium strategy if r1 was high enough to
screen out the low types of B prior to stage 2.

39The logic is the same as the model in the text: Aw can improve upon a separating equilibrium by offering a dose of
pooling such that extracts the maximum from Bs who might think she is strong.

40Recall that F ( ·) is the cumulative distribution function of f .
41Intuitively: if r ′1 is larger, then the threshold at which B rejects is higher, i.e., it takes a larger level of certainty for B

to reject.
42The intuition for this part of the proof is that for A to make separating offers in stage 2, she must be confident

enough that B thinks she is weak. Otherwise she would prefer a dose of pooling, as in the first stage. But in order to be
confident enough, it must be that r1 (in the previous stage) was high enough that most types of B have been screened out
(i.e., those for whom θ is small).
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Lemma 5. Suppose r∗ = (r∗1, r
∗
2 = 1) is an equilibrium strategy. Then r∗1 is an implicit solution

to µ(µB2 > θ1−ε |h2, r∗1) ≥ 1 − 2c
ps−pw for all ε ∈ (0, 1].43

Proof (by contradiction). Suppose to the contrary that µ(µB2 > θ1−ε |h2, r∗1) < 1 − 2c
ps−pw for

some arbitrary ε. I now show that A can profitably deviate from r∗2 = 1 and hence that r∗ cannot
be an equilibrium strategy. First note that A’s expected utility from r∗2 = 1 in stage 2 following
any history is at most pw + c. Consider now a deviation to r ′2 < 1 − ε. Then, with probability
r ′2, A offers pw + c and with probability 1 − r ′2 she offers ps − c, in which case B rejects if
µB2 ≡ µB2 (φ = w |h2) ≥ θ1−ε , giving A a payoff of at least pw − c. So A’s expected value for
offering r ′2 is at least

u(r ′2) = r ′2(pw + c) + (1 − r ′2)
[
(pw − c)µA2 + (1 − µA2 )(ps − c)

]
,

with µA2 = µ(µB2 ≥ θ
1−ε |h2, r∗1).

Since r∗ is an equilibrium strategy, as assumed, then it must be that u(r∗2) ≥ u(r ′1) for all r ′,
and hence that µA2 ≥ 1 − 2c

ps−pw , which contradicts our initial assumption.

I now show that there exists a profitable deviation from r∗.

Proposition 3. Let r∗ = (r∗1, r
∗
2 = 1), with r∗1 as in lemma 5. Then r∗ is not an equilibrium

strategy if F (θr
∗
1 ) > 1

2 .

Proof. To see this, note first that A’s expected value from strategy r is:

E[uA(r)] = r1(pw + c) + (1 − r1)

1∫
0

f (θ)V (xH
1 |θ, r)dθ, (2)

where V (xH |θ, r) is A’s continuation value for offering xH
1 to a B who observed signal θ and

given strategy r. Consider first strategy r∗ and note that

V (xH |θ, r∗) =



ps − c if θ ∈ [0, θr ∗1 ),
δ(pw + c) if θ ∈ [θr ∗1 , 1]

Suppose now that A deviates to r′ = {r ′1, r
′
2}, where r ′1 = r∗1 − ε with ε > 0, and r ′2 = 1 − γ,

with γ > 1−r ∗1
δ (1−r ∗1+ε) . Then:

V (xH |θ, r′) =



ps − c if θ ∈ [0, θr ′1 ),
δ(r2(pw + c) + (1 − r2)(ps − c)) if θ ∈ [θr ′1, θr ∗1 ),
δ(r2(pw + c) + (1 − r2)(pw − c)) if θ ∈ [θr ∗1 , 1]

Intuition: those with θ ≥ θr ∗1 still reject, as before, because they are even more convinced to be
facing a weak A. But those with θ a little below θ∗ also now reject, but in the second round face a
different offer.

43Intuition: r ∗1 is the smallest value of r1 such that enough Bs will be screened out (i.e., A’s posterior probability of
facing B with beliefs µB

2 > θr
′
2 is at least 1 − 2c

ps−pw . I.e., A is then sufficiently confident that B thinks she is weak,
and hence such that there is no profitable deviation from the separating equilibrium.
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Now we just need to show that E[uA(r′)] > E[uA(r∗)], which can for simplicity be rewritten
as the sum of conditional expectations for all three possible sets of values of θ:∫ 1

0
E[uA(r′) − uA(r∗) |θ]dθ > 0

Using (2), algebra yields:

E[uA(r′) − uA(r∗) |θ] =



(xH − xL )ε if θ < θr
′
1

xLε if θr ′1 < θ < θr
∗
1

(δxL − xH )ε if θ > θr
∗
1

Putting these together:

E[uA(r′)] − E[uA(r∗)] = (xH − xL )ε

θ′∫
0

f (θ) dθ + xLε

θ
r∗1∫

θ
r′1

f (θ) dθ − (xH − δxL )ε

1∫
θ
r∗1

f (θ) dθ

Rearranging, we find E[uA(r′)] − E[uA(r∗)] > 0 if:

1∫
θ
r∗1

f (θ) dθ <
(xH − xL )

∫ θr′1
0 f (θ) dθ + xL

∫ θ
r∗1

θ
r′1

f (θ) dθ

xH − δxL
(3)

Note that
∫ r ′1
0 f (θ)dθ can easily be shown to be smaller than the right hand side of inequality (3),

and so A has an incentive to deviate if 1 − F (θr
∗
1 ) < F (θr

′
1 ). Moreover, r ′1 = r∗ − ε can be made

arbitrarily close to r∗1, and hence A will have an incentive to deviate if F (θr
∗
1 ) > 1

2

Theorem .1. Suppose F (θr
∗
1 ) > 1

2 , where r∗1 is as in lemma 5. Then there is no Peaceful Perfect
Bayesian Equilibrium in this game.

Proof. The proof follows immediately. Lemma 4 shows that in a peaceful equilibrium, either
r1 = 1 or r2 = 1, or both. Yet propositions 2 and 3 show that any strategy that offers rt = 1 in any
t cannot be an equilibrium strategy.

Intuition

In this section, I discuss the intuition for why adding periods is insufficient to avoid war. I focus
on a simplified version of the model discussed in the section above.

Suppose that there are two periods and three types of B. For ease of exposition, call them
the ‘skeptical’ type (i.e., B is certain or quite certain that A is weak), the ‘medium’ type (e.g., B
thinks there is a 50% chance A is weak), and the ‘gullible’ type (B is quite convinced that A is
strong). Suppose furthermore that the distribution of B types is such that the skeptical type is a
priori sufficiently unlikely.

First, note that if there is to be a peaceful equilibrium, A must adopt a separating strategy in at
least one of the two periods (i.e., a strategy whereby a weak (strong) A offers a low (high) offer).
Otherwise (i.e., if A includes some pooling in both rounds), there is a positive probability that a
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skeptical B would receive two high offers from A, and reject both, leading to war. Second, note
that this separating equilibrium cannot take place in the first stage, for the same reasons as in the
one-stage game: because all three types remain in the first stage, A is better off incorporating at
least some pooling in her strategy in order to extract as much as possible from the ‘gullible’ Bs.

So if there are to be separating offers, they must be made in the second stage. But in the
second stage, it is only rational for A to adopt a separating strategy if she thinks the ‘gullible’
Bs have already been weeded out. Indeed, if all types of B are as likely in the second stage as
they were in the first stage, then we are again faced with the same situation as in the text, and
pooling is rational in order to extract as much as possible from gullible Bs. If, instead, all but the
‘skeptical’ types of B have been weeded out, then pooling would be too risky a strategy and A has
an incentive to make separating offers.

The existence of a peaceful equilibrium, then, hinges on how many types are left in the second
round. If both the skeptical and the medium types are left, then we are back to the situation in
the main text, and A will be tempted to introduce an element of pooling—and risk war with the
skeptical types. War will therefore be avoided for sure only if both the gullible type and the
medium type have been weeded out by A’s first round offer, leaving only the skeptical type in the
second round. In that case only will A offer make a low offer with probability one.

Unfortunately, A could instead only weed out the gullible type in the first stage, keeping both
the medium and ‘skeptical’ types in the second round. If so, then she should incorporate an
element of pooling in the second round, leading the skeptical types to receive a high offer with
some probability, which they will reject, leading to war.

The decision of whether to weed out both the gullible and the medium type in the first round,
or only the gullible type, depends on the relative probability of facing each type. In particular, if
the gullible type and the medium type are sufficiently likely, then A will be tempted to ignore the
skeptical type, and hence to first weed out the gullible type, and in the second round to weed out
the medium type, leaving the skeptical type to fight.

Repeated game (Infinite periods)

The reader might think that an infinite number of periods would solve the problem, since each
type could be weeded out in each round, over an infinite number of rounds. But this is in fact not
the case. To understand why, note that there are limits to how long a skeptical B would wait for a
satisfying offer. Even if Aw could somehow credibly promise to make an offer pw − c in time
t∗—where t∗ is the time it takes for A to screen the ‘gullible’ types of B—B may not be willing to
wait this long.

More precisely, note that B can fight today with expected payoff 1 − pw − c. So B will only
prefer an offer 1 − pw + c (the most A can credibly offer, regardless of future punishments) in
time t∗ to war if:

δt
∗

(1 − pw + c) > 1 − pw − c

⇒ t∗ < logδ (
1 − pw − c
1 − pw + c

)

t∗ is an upper bound on the duration of the negotiation, and as a result on the number of possible
types that a peaceful equilibrium can possibly accommodate. Note that t∗ may in fact be very
small. As an example, with pw = 0.4, c = 0.1 and δ = 0.9, t∗ . 3, so that 4 possible types of B
may be enough to prevent a peaceful PBE.



7

One-period bargaining with communication

Suppose now that the game in the main text is modified to allow B to send A a message m from
a set M of possible messages immediately after Nature’s move. After A receives m, the game
proceeds exactly as in the original game, with the same payoffs.

Let φB ∈ {n, nk} refer to B’s two different types. Furthermore, for all m ∈ M and φB , let
f (m, φB) be the probability that type φB announces message m in a given equilibrium. I refer
to f (·) as B’s message strategy. Upon observing m and given strategy f , A updates her beliefs
to µA(φB = φ|m, f ) and responds with a demand x(m, f ), which associates an offer x to every
possible message m.

It will be convenient to define r∗ as the equilibrium probability with which, in the game
without communication, A makes an offer x ∈ xL , where xL = {x : x ∈ pw ± c}.

Proposition 4. Suppose that war happens with positive probability in the game without commu-
nication. Then war happens with the same probability in the game with communication.

Proof (Sketch). Suppose that there exists a message strategy f ∗(m, φB) such that war happens
with a lower probability than in the game without communication. Since war happens in the
original game when a knowledgeable B receives an offer x < xL , the probability of war in
equilibrium can only be reduced if Pr (x(m, f ∗) ∈ xL ) > Pr (x ∈ xL ), i.e., if observing m leads
A to make an offer x ∈ xL with probability r ′ > r∗.

But note that this is rational for A only if m is such that µA(φB = k |m, f ∗) > µA(φB = k),
i.e., if A’s belief that she is facing a knowledgeable type increases as a result of receiving message
m and given strategy f ∗.

If such a message exists, however, then clearly a non-knowledgeable type of B would also
want to send it. But then it must be that µA(φB = k |m, f ∗) = µA(φB = k), which contradicts the
result above. Therefore there can be no informative signal that reduces the probability of war, and
hence war happens with the same probability in the game with communication.




