Elections and Uncertain Decisions in Politics: A Survey Experiment with U.S. Municipal Officials

Supplementary Appendix

Additional Details about the Survey

Adam Dynes and I conducted the AMOS survey together. The sample of city officials for AMOS 2014 was constructed by first obtaining a list of 26,566 municipalities from the U.S. Census Bureau. We defined municipalities as general-purpose local governments using the following categorizations from the Census Bureau:

- Incorporated Places - In most states, they are called cities, towns, boroughs, and villages.
- Consolidated Cities - These are a unit of government for which the functions of an Incorporated Place and its county or Minor Civil Divisions have merged."
- Minor Civil Divisions (MCDs) in CT, ME, MA, MI, MN, NH, NJ, NY, PA, RI, VT, and WI - In these states, they are usually called townships or towns. We included Minor Civil Divisions from these states based on the Census Bureau's assessment that "Most of the MCDs in [these] twelve states ... serve as general-purpose local governments that can perform the same governmental functions as incorporated places."

Student research assistants then searched for the website of each municipality on this list with a population of 3,000 or more. If the research assistants were able to identify the city website, they then collected the name and email address of the elected executive (i.e., mayor) and elected members of the governing legislative body (e.g., city councilors). The survey itself was created using the web-based program Qualtrics and was administered to municipal officials by emailing them a link to the survey. Each official received three email invitations, sent 2 to 3 weeks apart. The survey was conducted in July and August 2014 with 28,725 municipal officials invited to participate.

We invited these officials to take the survey by emailing them the following message:
"Dear [Official's Title] [Official's Name],
My name is [Redacted] and I am a [Position] at [Name of University]. I am conducting research to learn more about municipal officials, the decisions they make, and local politics and policy. Would you be willing
to complete a confidential, 15 -minute survey on this topic?
To take the confidential survey, please click the link below:
Take the Survey
Or copy and paste the URL below into your internet browser: [Redacted]

The results from the study we conducted two years ago can be accessed at the following website: [Redacted] ...
[Information about human subjects protection, including contact information]

[Salutation]"

Ultimately, there were thus three types of municipalities: (1) municipalities that did not have a website with email addresses available, (2) municipalities that did have emails listed but where no official accepted the invitation to take the survey, and (3) municipalities where at least one of the officials took the survey. Figure A1 shows the relationship between cities' population and these three categories. In general, cities with websites and respondents were systematically larger cities than those without websites or respondents. Finally, Figure A2 presents the number of respondents by state.

Overall we emailed the survey to 28,725 officials. We do not have data on how many emails were successfully delivered or on how many emails were opened. We do know that 5,839 officials at least started the survey. Many dropped off early in the survey. A total 5,049 respondents participated in the survey long enough to see the survey question (see Figure 1). Of these 96 percent answered the question.

Figure A1. Density Plot of Cities' Population by Email Availability and Response.

Figure A2. Response Rates by State

Note: Distribution of the number of respondents by state. Darker shades indicate more respondents in the sample from that state.

Table A1. Distribution of Randomized Treatments in Vignette

Timing:	Learn results this year		Learn results in 5 years	
Expected Value:	Positive	Negative	Positive	Negative
Win blowout	350	340	-	-
Win close race	378	332	359	-
Lose blowout	363	355	-	-
Lose close race	347	331	-	331
Retire	334	325	352	356

Note: The primary analysis (Figures 2 and 3) uses those who will learn the results this year (i.e., columns 2 and 3). The supplementary analysis on time horizons (Figure 4) compares those who learn the results in 5 years (i.e., columns 4 and 5) to the respondents in the same conditions (i.e., the same expected value and type of election) who learn the results this year.

Table A1 presents the number of respondents randomly assigned to each of the possible treatments. The cells marked "NA" are the treatments that I excluded from the randomization (i.e., no respondents were assigned to vignettes with those combinations of treatments). Qualtrics performed the randomization individually for each respondent as they took the survey. Table A1 lists the number of municipal officials who were assigned to each treatment. As noted, the bulk of the officials read vignettes where the results of the risky proposal would be realized before the election. ${ }^{1}$

[^0]Table A2. Regression Results Corresponding to Figure 2

DV=Mayor Implements Policy Variables	Negative Expected Value		Positive Expected Value	
	(1)	(2)	(3)	(4)
	OLS	Probit	OLS	Probit
Incumbent expects to lose	0.052*	0.202*	0.069*	0.180*
	(0.026)	(0.101)	(0.032)	(0.084)
Incumbent expects to win	0.006	0.024	0.012	0.030
	(0.026)	(0.103)	(0.032)	(0.084)
Constant	0.151*	-1.033*	0.574*	0.185*
	(0.021)	(0.085)	(0.027)	(0.069)
Observations	1,681	1,681	1,767	1,767
R-squared	0.004		0.004	

Note: Standard errors in parentheses. ${ }^{*} \mathrm{p}<0.05$.
Table A3. Regression Results Corresponding to Figure 3

	Negative		Expected Value	Positive Expected Value	
DV=Mayor Implements Policy	(1)	(2)	(3)	(4)	
Variables	OLS	Probit	OLS	Probit	
Expects to win by large margin	0.020	0.081	0.037	0.095	
	(0.029)	(0.117)	(0.037)	(0.097)	
Expects to win by small margin	-0.009	-0.038	-0.011	-0.029	
	(0.030)	(0.120)	(0.037)	(0.095)	
Expects to lose by large margin	0.015	0.064	0.071	0.185	
	(0.029)	(0.116)	(0.037)	(0.097)	
Expects to lose by small margin	0.092^{*}	0.335^{*}	0.067	0.175	
	(0.030)	(0.114)	(0.037)	(0.098)	
Constant	0.151^{*}	-1.033^{*}	0.574^{*}	0.185^{*}	
	(0.021)	(0.085)	(0.027)	(0.069)	
Observations	1,681	1,681	1,767	1,767	
R-squared	0.009		0.005		

Note: Standard errors in parentheses. * p <0.05.

Positive Expected Value	Win Close Race		Retire	
DV=Mayor Implements Policy	(1)	(2)	(3)	(4)
Variables	OLS	Probit	OLS	Probit
Learn outcome before election	0.004	0.009	0.051	0.128
	(0.037)	(0.093)	(0.027)	(0.096)
Constant	0.559*	0.148*	0.523*	0.057
	(0.026)	(0.067)	(0.038)	(0.067)
Observations	735	735	685	685
R-squared	0.000		0.003	
Negative Expected Value DV=Mayor Implements Policy Variables	Lose Close Race		Retire	
	(5)	(6)	(7)	(8)
	OLS	Probit	OLS	Probit
Learn outcome before election	0.031	0.103	0.002	0.008
	(0.033)	(0.108)	(0.027)	(0.118)
Constant	0.211*	-0.801*	0.149*	-1.041*
	(0.023)	(0.078)	(0.027)	(0.081)
Observations	661	661	681	681
R-squared	0.001		0.000	

Note: Standard errors in parentheses. * p <0.05.

Additional Analyses

Figure A3. Pooled Results

Table A5. Pooled Regression (Results Corresponding to Figure A3)
$\mathrm{DV}=$ Mayor Implements Policy

Variables
OLS
Probit

Incumbent expects to lose	0.062^{*}	0.160^{*}
	(0.023)	(0.060)
Incumbent expects to win	0.015	0.039
	(0.023)	(0.060)
Constant	0.365^{*}	-0.346^{*}
	(0.019)	(0.050)
Observations	3,448	3,448
R-squared	0.003	

Note: Standard errors in parentheses. * $\mathrm{p}<0.05$.

Table A6. Multinomial Probit Predicting Treatment Assignment

Variables	Condition Assigned to (Baseline $=$ "Win" Condition)	
	"Retire" Condition (1)	"Lose" Condition (2)
Mayor	0.113	-0.064
	(0.089)	(0.080)
Female	0.102	0.024
	(0.078)	(0.069)
Some College, No Degree	-0.091	-0.076
	(0.205)	(0.175)
Associate Degree	0.071	0.080
	(0.227)	(0.195)
Bachelor's Degree	0.130	0.032
	(0.192)	(0.165)
Master's Degree	0.149	-0.032
	(0.195)	(0.169)
Professional Degree or PhD	0.237	0.094
	(0.203)	(0.175)
Republican	0.128	0.228*
	(0.098)	(0.086)
Democrat	0.026	-0.009
	(0.100)	(0.089)
Liberal	-0.052	0.058
	(0.225)	(0.197)
Somewhat Liberal	0.120	-0.071
	(0.219)	(0.194)
Middle of the Road	0.034	-0.079
	(0.216)	(0.190)
Somewhat Conservative	-0.066	-0.141
	(0.227)	(0.199)
Conservative	-0.022	-0.176
	(0.234)	(0.206)
Very Conservative	0.138	-0.174
	(0.282)	(0.251)
Constant	-0.887*	-0.085
	(0.286)	(0.250)
Observations	3,579	3,579

Note: Standard errors in parentheses. * $\mathrm{p}<0.05$.

Table A7. Regression Results when Controlling for Partisanship

	Negative Expected Value		Positive Expected Value	
DV=Mayor Implements Policy	(1)	(2)	(3)	(4)
Variables	OLS	Probit	OLS	Probit
Incumbent expects to lose	0.052^{*}	0.203^{*}	0.069^{*}	0.180^{*}
	(0.026)	(0.101)	(0.032)	(0.084)
Incumbent expects to win	0.006	0.025	0.011	0.029
	(0.026)	(0.103)	(0.032)	(0.084)
Republican	-0.015	-0.058	-0.008	-0.021
	(0.024)	(0.092)	(0.030)	(0.078)
Democrat	-0.004	-0.012	-0.015	-0.038
	(0.024)	(0.093)	(0.030)	(0.078)
Constant	0.158^{*}	-1.007^{*}	0.582^{*}	0.208^{*}
	(0.026)	(0.104)	(0.034)	(0.087)
Observations	1,681	1,681	1,767	1,767
R-squared	0.004		0.004	

Note: Standard errors in parentheses. * $\mathrm{p}<0.05$.
Table A8. Heterogeneous Treatment Effects by Respondent's Position

	Negative Expected Value		Positive Expected Value	
DV=Mayor Implements Policy	(1)	(2)	(3)	(4)
Variables	OLS	Probit	OLS	Probit
Incumbent expects to lose	0.063^{*}	0.240^{*}	0.093^{*}	0.240^{*}
	(0.028)	(0.111)	(0.037)	(0.095)
Incumbent expects to win	0.006	0.027	0.047	0.119
	(0.028)	(0.114)	(0.037)	(0.094)
Mayor/Executive	0.012	0.051	0.144^{*}	0.379^{*}
	(0.056)	(0.222)	(0.063)	(0.167)
Mayor*Expect to lose	-0.059	-0.227	-0.085	-0.217
	(0.067)	(0.267)	(0.080)	(0.212)
Mayor*Expect to win	-0.004	-0.018	-0.148	-0.389
	(0.067)	(0.266)	(0.078)	(0.206)
Constant	0.149^{*}	-1.042^{*}	0.539^{*}	0.099
	(0.023)	(0.094)	(0.031)	(0.079)
Observations				
R -squared	1,681	1,681	1,767	1,767

Note: Standard errors in parentheses. ${ }^{*} \mathrm{p}<0.05$.

Table A9. Weighted Results

	Negative Expected Value		Positive Expected Value	
DV=Mayor Implements Policy	(1)	(2)	(3)	(4)
Variables	OLS	Probit	OLS	Probit
Incumbent expects to lose	0.050	0.191	0.083^{*}	0.26^{*}
	(0.026)	(0.103)	(0.033)	(0.086)
Incumbent expects to win	0.005	0.020	0.023	0.059
	(0.025)	(0.105)	(0.033)	(0.085)
Republican	0.154^{*}	-1.019^{*}	0.563^{*}	0.160^{*}
	(0.021)	(0.087)	(0.028)	(0.070)
Democrat	-0.004	-0.012	-0.015	-0.038
	(0.024)	(0.093)	(0.030)	(0.078)
Constant	0.158^{*}	-1.007^{*}	0.582^{*}	0.208^{*}
	(0.026)	(0.104)	(0.034)	(0.087)
Observations	1,681	1,681	1,767	1,767
R-squared	0.004		0.004	

Note: Standard errors in parentheses. * $\mathrm{p}<0.05$. To get the inverse probability weights I estimated a model that used city population and state dummies to predict whether the individual in the sampling frame answered the question. I used that model to get predicted probabilities that each respondent answered the question and then used the inverse of those probabilities as weights.

[^0]: ${ }^{1}$ I only presented the longer-time horizon to two sets of officials: those officials who were told the mayor would be retiring and those officials who were told that the election would be close (see Table A1). For the analysis, I compared the officials in the longer-time horizon vignettes to officials who received otherwise similar vignettes with short time horizons.

