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These notes clarify and expand upon comments made in the paper (denoted by AT-DM).

1. Sen’s theorem

Sen’s Theorem1 is an interesting illustration of Arrow’s result. As Arrow permits se-

lecting any decision rule for each pair, Sen’s choice is motivated by individual rights; it is

where each of at least two decisive agents determines the societal outcome for at least one

assigned pair. For other pairs, even an unanimous vote could be required.2 Sen shows, by

use of examples, that cycles can occur. In other words, his result shows that “individual

rights,” which can arise in society, can define a particular reductionist approach; thus his

theorem further illustrates the reductionist methodology’s failure.

The source of Sen’s cycles is clear: Thm. 1 in AT-DM proves that Sen’s cycles can be

caused only by ranking wheel configurations embedded within the list of voter preferences.

But because Sen models actual practices, knowing what causes problems is not sufficient.

The challenge is to resolve Sen’s reductionist difficulties in a way that respects individual

rights while explaining why these personal prerogatives generate unexpected consequences.

Suppose a Sen society has two agents and four alternatives, where the first agent de-

termines {A,C} and {B,D} societal outcomes; the second determines {A,B} and {C,D}

1Sen 1970
2Sen has a slightly relaxed “no-cycle” societal condition. I know of no Sen-example with indifference in

the outcomes, so Sen’s “no-cycle” becomes the same as Arrow’s requirement of transitive outcomes. Indeed,

the only general proof of Sen’s result (Li and Saari 2008) closely mimics a proof of Arrow’s Theorem.
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outcomes. Their rankings are, respectively,

(1) C � A � D � B and B � A � D � C.

As both agents prefer A � D, that is the societal outcome. Consistent with their personal

rights and preferences, the first and second agents designate, respectively, D � B and

B � A as societal rankings to define a A � D,D � B,B � A Sen-cycle.

Because ranking wheel links cause this cycle (Thm. 1, AT-DM), it is reasonable to search

this example for unexpected features. What emerges is the subtle consequence that, rather

than having a minimal impact on others, each agent’s personal decision imposes a strong

negative externality on the other agent! The first agent’s D � B societal selection strongly

conflicts with the second agent’s B � D preference, where “strong” means that the ranking

of these alternatives is separated by at least another choice (here, A). Similarly, the second

agent’s choice of B � A imposes a strong negative externality on the first agent’s strong

A � B ranking (with D being the separating alternative).

Instead of harmless personal decisions, each agent inflicts a strong negative impact on

the other agent! This is not an isolated peculiarity; the ranking wheel structure ensures

that dissatisfaction accompanies all possible Sen cycles.3 These guaranteed strong negative

externalities are counterparts of the landslide victories in the AT-DM Eq. 2 cycle.

Theorem 1. 4 With any number of agents and with any Sen cycle, each agent suffers a

strong negative externality.

This reinterpretation of Sen’s theorem makes his assertion understandable; rather than

involving innocuous individual decisions, his cycles more accurately reflect a dysfunctional

society where personal decisions cause everyone—even non-decisive agents—to suffer strong

3Saari 2008

4Li and Saari 2008; Saari 2008, Chap. 2
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discontent. Examples include uncomfortable transitions between societal norms,5 such as

where one group insists on the personal right to smoke in a restaurant while another group

strenuously objects. While this unexpected dysfunctionality introduces novel twists for

Sen’s conditions (which have not been adequately explored), a first challenge is to find

ways to attenuate the negative consequences.

Problems are caused by ignored pairwise links, so answers must identify how interactions

among agents can restore these links. To motivate an approach, the Eq. 1 rankings come

from the game

(2) T

B

L R

5 5 −1 7

7 −1 1 1

with the A B

C D

labeling for the cells.

Agent one is the row player (deciding the {A,C} and {B,D} outcomes); agent two is the

column player (determining {A,B} and {C,D} outcomes). Both prefer 7 to 5 to 1 to -1,

which defines the Eq. 1 rankings.

The dysfunctional societal nature (Thm. 1) of this Sen-cycle (Eq. 1) is manifested by

being identified with the Prisoner’s Dilemma (Eq. 2), where players could cooperate to

achieve the common payoff of 5, but temptations of a personally preferred payoff of 7

threaten cooperative efforts—and induce the Eq. 1 Sen-cycle. Permitting punishment of

those who deviate from the common payoff, as prescribed by tit-for-tat strategies, can

force cooperation. The Eqs. 1-2 equivalence means that this same strategy (i.e., “as long

as you create a strong negative externality for me, I will do the same for you”) can generate

cooperation to rectify the Eq. 1 Sen cycle.

Prisoner’s Dilemma games always have a Sen-cycle representation. For such Sen-settings,

tit-for-tat interactions (which affect ranking wheel terms) allow Sen’s decisive agents to

5Saari 2008, Chap 2.
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retain individual rights, but the pressure coming from others—the tit-for-tat punishment—

can persuade them to adopt a societal cooperative choice that would drop the negative

externalities that they impose on others.

Surprisingly, even for Sen-settings not associated with a Prisoner’s Dilemma, the same

tit-for-tat resolution6 applies. This is because the dysfunctional nature of any Sen-society

(Thm. 1) grants each decisive agent the power to inflict a strong negative externality

punishment upon another decisive agent.

Rather than rare, such techniques are commonly adopted resolutions. For instance, a

person over-fishing in a common pool of resources may be ostracized or have equipment

damaged.7 Similar resolutions arise in tragedy-of-the-commons settings.8

2. Extending results

As all paired comparison problems are caused by ranking wheel configurations, it is

reasonable to expect that these configurations can be used to explain all of the results

found in that large literature developed to prevent cycles. This includes the Black single

peaked requirement,9 , the so-called Nakamura number used with supermajority voting,10

Greenberg’s Theorem11 ensuring the existence of a core in spatial voting, super-majority

voting, as well as conditions yet to be discovered. A description of how this is done, along

6Saari 2008, Chap. 2

7Seihi and Somanathan 1996; Tavoni, Schlüter, Leven 2014

8Levin 2014.

9Black 1958

10Nakamura 1975, 1978

11Greenberg 1979
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with several new conclusions, is in Saari.12 Difficulties in non-parametric statistics can be

similarly handled.13

If paired comparisons cause problems, then why not replace pairs with triplets, or

quadruples, or . . . ? The same difficulties arise;14 while ranking wheel configurations always

cause problems, they are accompanied with new kinds of connecting strands of information

that, again, can introduce difficulties when severed. With four alternatives and triplets,

for instance, a new link (reflecting symmetries of a square) is

(3) A � B � C � D, D � C � B � A, B � A � D � C, C � D � A � B.

Again, each alternative is in first, second, third, and fourth place once, so the natural

outcome is a complete tie, which occurs with all positional outcomes (where each candidate

is a assigned a specific weight depending on where she is positioned on a ballot). Each

ranking is accompanied by its reversal, so all majority vote outcomes are ties.

It remains to determine the outcomes of triplets. But emphasizing triplets defines a

reductionist program, so expect problems. Indeed, computing the outcomes for triplets

severs the Eq. 3 information threads as reflected by the fact that, rather than ties, their

plurality outcomes (where X ∼ Y is a tie) are

A � C ∼ D, B � C ∼ D, C � A ∼ B, D � A ∼ B

to create an unusual kind of cycle caused, again, by the reductionist method. Along

with ranking wheel configurations, these Eq. 3 kinds of arrangements create all triplet

complications. Again, the Borda Count handles these problems.

12Saari 2014

13Bargagliotti and Saari 2010

14Saari 2000
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An evolving pessimistic message about the reductionist approach is that difficulties ap-

pear to arise almost everywhere. Indeed, all positional election paradoxical outcomes can

be completely explained in terms of the reductionist method. An insidious feature is how

it may not be recognized that the true nature of complications (such as with Arrow’s

Theorem), puzzles, and perhaps incorrect answers reflect this methodology.

3. General problems with reductionist methods

The reader probably has developed a sense about how to create any number of “Arrow-

type” extensions that apply to, well, almost everything! The idea is simple: The reduc-

tionist approach divides whatever is being considered into component parts. But the whole

rarely is a helter-skelter collection of whatever happens with components; in general, con-

sistency conditions (such as transitive outcomes for voting settings, satisfying dictates of

the church for the example of registering for a church, or consistency with Newton’s laws for

the dark matter discussion) dictate how conclusions must interact to provide an acceptable

description of the whole. These consistency conditions are what determine connecting links

among components. What permits an Arrow-type conclusion is that, by separately con-

centrating on each component, the reductionist division ignores crucial linking information

and introduces violations of consistency.

Rather than stating formal “impossibility theorems” (which are easy to pose and prove),15

combining this prescription with lessons learned from Arrow-type results suffices to iden-

tify what to explore. In doing so, it is not necessary to understand what constitutes the

whole—an accepted consistency requirement suffices. Anticipate difficulties in settings with

an emphasis on individual components.

15Saari 2010
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Of particular importance is the new theme that, by identifying what are the connecting

links, it can be possible to find resolutions that preserve the spirit of the original assump-

tions. This was demonstrated for Arrow’s and Sen’s problems, the controversy between

Borda and Condorcet rankings, and even the mystery of dark matter.
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