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1  Appendix
Proposition 1: Unless either 
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, all voters use threshold voting strategies.

Proof of Proposition 1.

Suppose, without loss of generality, that 
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. If any voter switches their vote, then 
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 so no voter can unilaterally alter who wins: 
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. In this case 
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 need not use a threshold strategy (although she could if 
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Now suppose that 
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. Voters in 
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 cannot unilaterally alter the outcome. However, consider the incentives of voter 
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. If she continues to vote A then A always wins the election because at most the 
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 switches her vote to B and all voters in 
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 vote for B, which occurs with probability 
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, then B wins. Hence 
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. This contradicts 
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 uses a threshold strategy. Similarly, for all other values 
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 for all voters. This contradicts their using a pure voting strategy. QED.

Proposition 2: If 
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 (i.e. party A is guaranteed to win the election), then in equilibrium voter 
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 in group 
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 only always votes for B (
[image: image31.wmf]B

mZ

Î

) if either 
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 (in which case 
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Proof of Proposition 2.

Since 
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, A always wins the election so 
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 strictly prefers A to B. Hence 
[image: image42.wmf]m

 can only support the losing party B if 
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. This requires that either group 
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 could never win the prize from A even if voter 
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 switched her voter, or that group 
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 always wins the prize from A despite 
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's lack of support. Group 
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 can never win the prize even if 
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 switches her vote if 
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 then group 
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 always wins the prize from A even without 
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's support. QED.

Proof of Proposition 3.

Proof: Since by symmetry all voters adopt the same strategy, either 
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 or all voters adopt threshold strategies. If all voters support A then 
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. Therefore all voters strictly prefer to support A. Therefore, all voters supporting one party is always an equilibrium. Similarly if all voters support party B then 
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. It is important to differentiate this equilibrium from a common pathology in voting equilibria. Nash equilibria require that no player can improve her payoff by switching her vote. The common pathology in voting is that even if everyone prefers outcome C to outcome D, a unanimous vote for D is a Nash equilibrium because for any individual, changing his or her vote does not alter the outcome. Therefore voting for D is a best response. To avoid these pathological cases, researchers typically focus on weakly undominated equilibria in which voters vote as if their decision matters, i.e. as if they are pivotal. Although it might be the case that 
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 for all voters, such that even in the best case scenario support for A means voting for the least preferred party, voting for A is strictly better than voting for B when the prize allocation rule is contingent and 
[image: image59.wmf]p

 is substantial. In the contingent prize context, weakly undominated has no bite.

Next consider the interior case. The existence of an interior equilibrium is best demonstrated graphically. First evaluate 
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 is the inverse function of 
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. The value 
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 is the threshold in a threshold voting strategy that is consistent with voting for party A with probability 
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. If 
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 then when every other voter supports party A with probability 
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, voter 
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 is indifferent between supporting A or B when her evaluation of 
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 would also support party A with probability 
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, which is a fixed point. To show that an interior equilibrium exists we need to show that there exist some 
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As shown above, as 
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 are continuous in 
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The existence of an interior equilibrium is only guaranteed if both parties use a contingent prize allocation rule. If, for example, 
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