ERIC S. DICKSON AND KENNETH SCHEVE
Social Identity, Electoral Institutions, and the Number of Candidates: Appendix for Proofs of Propositions 7–11
Proof of Proposition 7. Same logic as in the corresponding plurality case.| | 
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Proof of Proposition 8. For 
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, the proof is almost identical to that in the corresponding plurality case (Proposition 2). For 
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, consider a potential group A entrant who shares the incumbent A candidate’s ideal point. If she enters, she wins vote share 
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 in the first round. There are then three cases for the first round depending on 
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: (1) the A candidates tie for first; (2) the A candidates tie for second; and (3) all candidates tie for first. In (1), the two A candidates both advance to a runoff, which is also tied; each wins with probability 
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. In (2), each of the A candidates advances to (and then certainly wins) a runoff against B with probability 
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. In (3), with probability 
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, the two A candidates both advance to the runoff, which each wins with equal probability; in addition, each of the A candidates advances to (and then certainly wins) a runoff against B with probability 
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. In all three cases, the entrant wins with probability 
[image: image10.wmf]1

2

. Because A candidate(s) always win(s) the election and maximum possible vote share regardless of entry, there are no identity costs or benefits to entry; and because here the A candidates share the same policy position, there are no policy costs or benefits to entry. The entry condition is then just 
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Proof of Proposition 9. Take 
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 equilibrium existence the (i) A and (ii) B candidates must wish to stay in, and no other (iii) A or (iv) B candidates must wish to enter. (i) and (iii): The B candidate wins vote share 
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 in the first round, earning no worse than second place, so the B candidate always makes it to the runoff against one ultimately victorious A opponent. Thus, being the top first-round A candidate is tantamount to election, and the strategic problem facing A candidates in the first round of the runoff system in a divided society is exactly the same as the one they would face in a plurality system in which the A group comprised the entire electorate. As such, Proposition 2 of Osborne and Slivinski, along with the observation that there are no identity reasons for A exit or entry, demonstrate that (i) and (iii) can can both be satisfied. (ii) The B candidate will clearly not wish to exit because 
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 as well as for identity reasons. (iv) Group B entrants could be motivated either by group leadership concerns (which can be deterred by a B incumbent at the median B voter if 
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) or by identity concerns. A solo B candidate in a runoff always loses; identity-motivated entry can occur here if and only if it leads both the B candidates to at least tie the top A candidate in the first round. The most efficient (and always feasible) allocation of B votes is to divide them equally between the B candidates, so deterrence of this case is necessary and sufficient for condition (iv). Since A candidates must tie in 
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Now take 
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. Clearly the B candidate cannot tie or beat both of the A candidates. And, any A candidate trailing B does not make the runoff, so would wish to drop out to save entry costs. So either (1) both the A’s beat the B in the first round or (2) one of the A’s beats the B while the other ties. Two A candidates in a runoff must tie in the runoff, or the trailing candidate would drop out; so the A’s either have the same policy or are symmetrically arranged around the overall median voter. An A always wins the election. For 
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 equilibrium existence the (i) A and (ii) B candidates must wish to stay in, and no other (iii) A or (iv) B candidates must wish to enter. (i) There are clearly no identity reasons for A exit. For (1), 
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 implies that there will be no incentive for exit; for (2), this will still be true so long as 
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. (ii) The incumbent B candidate will clearly not wish to exit because 
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 and for identity reasons. (iv) If the B incumbent is at the median B voter, all potential B entrants can be deterred so long as 
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, as there are no identity motivations for entry in a situation where the sole B candidate was no better than tied for second to begin with. (iii) Consider (1). Suppose that the A incumbents have positions symmetric about the overall median voter. There are no identity incentives for entry since an A candidate always wins the election. For entry at a position that is either to the left or to the right of both A incumbents, there can be no policy incentive since entrants drain votes only from the incumbent whose policy the entrant prefers. An A incumbent would still make the runoff for sure, and would beat any such entrant who also made the runoff because of distance from the median voter. By familiar logic, it is also possible to deter entry between the two A incumbents; if the incumbents are sufficiently close together, such entrants would fail to make the runoff or change the composition of the candidates who do make the runoff. The remaining possibility is of a potential entrant at the policy of one of the incumbent candidates. An entrant at the policy of candidate 
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 (which we assume without loss of generality). If 
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, such an entrant would finish no better than a two-way tie for second in the first round: this best case scenario leads to a runoff place with probability 
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. (If the entrant does worse than a two-way tie for second place, the expected winning and policy benefits of entry will both be at least weakly worse, so deterrence will be possibly for a weakly wider range of conditions.) If 
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, then the entrant would be tied for first place among the A candidates, with an expected winning benefit 
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 and an improved distribution of policy outcomes for the entrant. The deterrence condition here is 
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 which is clearly possible if the policy separation 
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 between the A incumbents is not too large. Finally, if 
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, then the entrant would be tied for first, and win the runoff with probability 
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. So in this case, entry cannot be deterred at all. As such, for (1), A entrants can be deterred as long as 
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 is already included here.) Now consider (2), with first-round vote shares 
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[image: image52.wmf]1

A

 and 
[image: image53.wmf]2

A

 is not the same because now an infinitesimal measure of support garnered between 
[image: image54.wmf]1

A

 and 
[image: image55.wmf]2

A

 could potentially change the vote share orderings. Now suppose that all 
[image: image56.wmf]2

A

’s support comes from her “extreme” flank away from 
[image: image57.wmf]1

A

, that 
[image: image58.wmf]1

A

 gets from her “extreme” flank support less than 
[image: image59.wmf]2

A

, that 
[image: image60.wmf]1

A

’s “centrist” support is at least three times closer to 
[image: image61.wmf]1

x

 than to 
[image: image62.wmf]2

x

, and that 
[image: image63.wmf]1

x

 and 
[image: image64.wmf]2

x

 are sufficiently close. Then there is no incentive for entry in between the incumbents (no chance to win since policies sufficiently close; and entrants cannot achieve policy improvements since the relevant voters are out of reach). So the conditions are the same in (2) as in (1). Thus, (i)-(iv) can be simultaneously satisfied, so 
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 is possible under the conditions described.(
Proof of Proposition 10. An A candidate must win the election for sure; otherwise either A candidate would wish to drop out for identity payoff reasons. As such, the B candidates must tie each other; otherwise, trailing B candidates would wish to drop out, because group leadership payoffs provide the only incentive for entry. Also, an A candidate with no chance of winning would drop out, so both A candidates must make the runoff with some probability. And at least one A must be in the runoff every time as an A candidate must win for sure: so either (1) both A’s beat the B’s, or (2) one A beats the B’s while the other A ties the B’s. If both A candidates advance to the runoff, they must tie in the runoff (or one would wish to exit). For 
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 equilibrium existence the (i) A and (ii) B candidates must wish to stay in, and no other (iii) A or (iv) B candidates must wish to enter. (iv) There can be no identity motivation for B entry as all A candidates beat or tie all B candidates in the first round. Since B entrants cannot affect A policy choices, entry incentives are limited to B group leadership. The only way for tied B candidates to deter such entry is with candidates symmetrically spaced about the median. (ii) Identity motivations for exit can exist only if a B candidate’s exit creates positive probability that two B candidates will simultaneously qualify for the runoff (if only one B candidate is in the runoff, she would lose for certain). For 
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 this cannot exist because exit leaves only one B candidate. As such, B candidates will not exit so long as 
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 and conditional on that wins half the time. So it is possible for both A candidates to wish to stay in for either of cases (1) and (2). (iii) The argument in part (iii) of the proof of Proposition 9 for 
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Proof of Proposition 11. For 
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, holds here except that the relevant reference in Osborne and Slivinski (“OS”) is Proposition 3, and the deterrence condition for B entry is instead 
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Now take 
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, there are 20 different relative orderings (including potential indifference) of these vote shares along with that of the B candidate. The six with 
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 unambiguously as the top two cannot be in equilibrium; if the last-placed A candidate exited, it would not affect who made the runoff, and therefore not affect policy, nor does the trailing A get identity or winning gains from staying in. The six with 
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 do not get winning or identity benefits from running, since an A candidate ultimately wins regardless, so only policy reasons could keep them from exiting. Only a candidate in the middle of three dispersed candidates could have such an incentive; extreme or coincident candidates can only draw support away from their most favored alternative. But clearly 
[image: image99.wmf]2

A

 and 
[image: image100.wmf]3

A

 cannot both be the central of three dispersed candidates, so at least one must wish to exit. 

We consider the eight remaining orderings in turn. In each instance, the incumbent B candidate will not wish to withdraw because of identity reasons (and 
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Three remaining orderings involve: (1) three A candidates tie for first place (
[image: image105.wmf]3

4

A

>

); (2) all four candidates tie for first place (
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). In their Proposition 8, OS describe alternative policy configurations leading to this vote share; to demonstrate existence here, it is sufficient to focus on a runoff equilibrium in which all three A candidates have different positions but win equal vote shares, and in which the two extreme candidates are symmetric about the (overall) median voter. Consider A exit incentives, noting there is no identity incentive for exit since an A always has to win. For (1), the analysis is identical to OS, and demonstrates that the entrants don’t exit for 
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. For (2), each of the A candidates competes in three of six possible runoff pairings; the central (non-central) candidate(s) win all of them (win one, tie one, and lose one), with no exit incentive so long as 
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). Now consider incentives of potential A entrants. There are no identity-related motives for entry. OS show in their setting that entrants whose objective is to finish first or second among the A candidates can be successfully deterred. This is sufficient to show entry deterrence is possible here for (1), (2), and (3). 

Two further orderings are (4) 
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The final three orderings are (6,7) 
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