Database	Limits	Search Terms
Cochrane	Trials only	"sodium intake" OR "sodium consumption" OR "dietary sodium" OR "sodium chloride intake" OR
Library	Search in title, abstract,	"sodium chloride consumption" OR "dietary sodium chloride" OR "salt intake" OR "salt consumption" OR
	keywords	"dietary salt" OR "sodium, dietary" OR "salt, dietary" OR "sodium chloride, dietary") AND ("BW" OR bmi
		OR "body mass index" OR "bmi score" OR "bmi z-score" OR "bmi sds" OR "body fat" OR "body fat
		percentage" OR "% body fat" OR "percent body fat" OR "fat mass" OR "bmi percentile" OR obes* OR
		overweight OR adipos* OR "waist circumference" OR "waist circumference z-score" OR "waist-to-height-
		ratio" OR "WHtR" OR "centrally obese" OR "central adiposity" OR "body composition" OR "sugar-
		sweetened beverage" OR "sugar-sweetened beverages")
Medline	English Language; Human	"sodium intake" OR "sodium consumption" OR "dietary sodium" OR "sodium chloride intake" OR
Complete	Search modes Boolean/	"sodium chloride consumption" OR "dietary sodium chloride" OR "salt intake" OR "salt consumption" OR
(EBSCO Host)	Phrase	"dietary salt" OR "sodium, dietary" OR "salt, dietary" OR "sodium chloride, dietary") AND ("BW" OR bmi
		OR "body mass index" OR "bmi score" OR "bmi z-score" OR "bmi sds" OR "body fat" OR "body fat
		percentage" OR "% body fat" OR "percent body fat" OR "fat mass" OR "bmi percentile" OR obes* OR
		overweight OR adipos* OR "waist circumference" OR "waist circumference z-score" OR "waist-to-height-
		ratio" OR "WHtR" OR "centrally obese" OR "central adiposity" OR "body composition" OR "sugar-
		sweetened beverage" OR "sugar-sweetened beverages"
CINAHL (EBSCO	English Language; Human,	"sodium intake" OR "sodium consumption" OR "dietary sodium" OR "sodium chloride intake" OR
Host)	Peer-reviewed	"sodium chloride consumption" OR "dietary sodium chloride" OR "salt intake" OR "salt consumption" OR
	Search modes Boolean/	"dietary salt" OR "sodium, dietary" OR "salt, dietary" OR "sodium chloride, dietary") AND ("BW" OR bmi
	Phrase	OR "body mass index" OR "bmi score" OR "bmi z-score" OR "bmi sds" OR "body fat" OR "body fat
		percentage" OR "% body fat" OR "percent body fat" OR "fat mass" OR "bmi percentile" OR obes* OR
		overweight OR adipos* OR "waist circumference" OR "waist circumference z-score" OR "waist-to-height-
		ratio" OR "WHtR" OR "centrally obese" OR "central adiposity" OR "body composition" OR "sugar-
2		sweetened beverage" OR "sugar-sweetened beverages"
Scopus	English Language,	TITLE-ABS-KEY ("sodium intake" OR "sodium consumption*" OR "dietary sodium" OR "sodium
	Document type: Article	chloride intake" OR "sodium chloride consumption" OR "dietary sodium chloride" OR "salt
	Search mode:	intake" OR "salt consumption*" OR "dietary salt" AND ("BW" OR bmi OR "body mass
	Boolean/phrase	index" OR "bmi score" OR "bmi z-score" OR "bmi sds" OR "body fat" OR "body fat
	Search in title, abstract, key	percentage" OR "% body fat" OR "percent body fat" OR "fat mass" OR "bmi
	words	percentile" OR obes* OR overweight OR adipos* OR "waist circumference" OR "waist
		circumference z-score" OR "waist-to-height-ratio" OR "WHtR" OR "centrally obese" OR "central

Supplemental Table 1. Initial search strategy¹

		adiposity" OR "body composition" OR "sugar-sweetened beverage" OR "sugar-sweetened
		beverages")) AND (LIMIT-TO (DOCTYPE, "ar")) AND (LIMIT-TO (LANGUAGE, "English")
Embase	English Language,	'BW' OR bmi OR 'body mass index' OR 'bmi score' OR 'bmi z-score' OR 'bmi sds' OR 'body fat' OR 'body
	Document type: Article,	fat percentage' OR '% body fat' OR 'percent body fat' OR 'fat mass' OR 'bmi percentile' OR obes* OR
	article in press, Human	overweight OR adipos* OR 'waist circumference' OR 'waist circumference z-score' OR 'waist-to-height-
	Search in abstract, article	ratio' OR 'whtr' OR 'centrally obese' OR 'central adiposity' OR 'body composition' OR 'sugar-sweetened
	title, index term,	beverage' OR 'sugar-sweetened beverages':de,Ink,ab,ti AND ([article]/lim OR [article in press]/lim) AND
	subheading	[humans]/lim AND [english]/lim AND [embase]/lim

¹Inital search was completed in October 2015, updated on the 10th of July 2017 and 18th of July 2019.

Database	Limits	Search Terms							
Cochrane	Trials only	"sodium intake" OR "sodium consumption" OR "dietary sodium" OR "sodium chloride intake" OR "sodium							
Library	Search in title, abstract,	chloride consumption" OR "dietary sodium chloride" OR "salt intake" OR "salt consumption" OR "dietary salt" OR							
	keywords	"sodium, dietary" OR "salt, dietary" OR "sodium chloride, dietary" OR "sodium restrict*" OR "sodium reduc*" OR							
		"salt restrict*" OR "salt reduc*" OR "sodium diet" OR "salt diet" OR "sodium limit*" OR "salt limit*" OR "low							
		sodium" OR "low salt" in Title, Abstract, Keywords in Trials'							
Medline	English Language; Human	"sodium intake" OR "sodium consumption" OR "dietary sodium" OR "sodium chloride intake" OR "sodium							
Complete	Search modes Boolean/	chloride consumption" OR "dietary sodium chloride" OR "salt intake" OR "salt consumption" OR "dietary salt"							
	Phrase	OR "sodium, dietary" OR "salt, dietary" OR "sodium chloride, dietary" OR "sodium restrict*" OR "sodium							
		reduc*" OR "salt restrict*" OR "salt reduc*" OR "sodium diet" OR "salt diet" OR "sodium limit*" OR "salt limit*"							
		OR "low sodium" OR "low salt" AND randomized controlled trials or rtc or randomised control trials OR							
		andomized control trial OR randomized clinical trial							
CINAHL	English Language; Human,	"sodium intake" OR "sodium consumption" OR "dietary sodium" OR "sodium chloride intake" OR "sodium							
	Peer-reviewed	chloride consumption" OR "dietary sodium chloride" OR "salt intake" OR "salt consumption" OR "dietary salt"							
	Search modes Boolean/	OR "sodium, dietary" OR "salt, dietary" OR "sodium chloride, dietary" OR "sodium restrict*" OR "sodium							
	Phrase	reduc*" OR "salt restrict*" OR "salt reduc*" OR "sodium diet" OR "salt diet" OR "sodium limit*" OR "salt limit*"							
		OR "low sodium" OR "low salt" AND randomized controlled trials or rtc or randomised control trials OR							
		randomized control trial OR randomized clinical trial							
Scopus	English Language,	TITLE-ABS-KEY ("sodium intake" OR "sodium consumption*" OR "dietary sodium" OR "sodium chloride							
	Document type: Article	intake" OR "sodium chloride consumption" OR "dietary sodium chloride" OR "salt intake" OR "salt							
	Search mode:	consumption*" OR "dietary salt" OR "sodium chloride, dietary" OR "sodium restrict*" OR "sodium							
	Boolean/phrase	reduc*" OR "salt restrict*" OR "salt reduc*" OR "sodium diet" OR "salt diet" OR "sodium limit*" OR "salt							
	Search in title, abstract,	limit*" OR "low sodium" OR "low salt" AND "randomi*ed controlled trial*" OR "randomi*ed controled							
	key words	trial*" OR "randomi*ed control trial*" OR "randomi*ed clinical trial*" OR "controlled clinical							
		trial" OR "controled clinical trial" OR "rtc") AND (LIMIT-TO (DOCTYPE, "ar") OR LIMIT-							
		TO(DOCTYPE,"ip"))AND(LIMIT-TO(LANGUAGE,"English"))							
Embase	English Language,	'sodium intake' OR 'sodium consumption' OR 'dietary sodium' OR 'sodium chloride intake' OR 'sodium chloride							
	Document type: Article,	consumption' OR 'dietary sodium chloride' OR 'salt intake' OR 'salt consumption' OR 'dietary salt' OR 'sodium,							
	article in press, Human,	dietary' OR 'salt, dietary' OR 'sodium chloride, dietary' OR 'sodium restrict*' OR 'sodium reduc*' OR 'salt							
	"randomized controlled	restrict*' OR 'salt reduc*' OR 'sodium diet' OR 'salt diet' OR 'sodium limit*' OR 'salt limit*' OR 'low sodium' OR							
	trial" OR "controlled	'low salt' AND ([controlled clinical trial]/lim OR [randomized controlled trial]/lim) AND ([article]/lim OR [article							
	clinical trial"	in press]/lim) AND [humans]/lim AND [english]/lim AND [embase]/lim							

Supplemental Table 2. Updated search strategy to capture eligible randomized controlled trials¹

Search in abstract, article	
title, index term,	
subheading"	

¹Search was completed on the 10th of July 2017 and 18th of July 2019.

Study	Country	Study population/Study Name	N, sample characteristics	Exposure			Adipos	ity outo	come		Included in meta- analyses
					BMI	Weight category	BW	wc	Abdominal obesity	Body composition	unuryses
Pan et al. 1990 ⁽⁷⁷⁾	Taiwan	Convenience sample of men aged 45-64 y recruited via routine health checks with Government Employees Clinic in Taipei, Taiwan	401 Male 100%; mean age 53 y	7 x timed overnight urine samples *Extrapolated to 24-hr period (average of 7 samples) UrNa concentration x 24 and by urine volume / sleep duration	Х						N: correlation only
Ferdaus et al.2015 ⁽⁶¹)	Japan	Adults recruited via existing cohort study Shimane CoHRE Study	1016	1 x spot urine Daily intake estimated using Kawasaki equation	х						N: correlation only
Staessen et al. 1991 ⁽³⁵⁾	London, UK	Male civil servants working at the Department of Environment The Whitehall Department of the Environment Study	301 Male 100%; mean age 45 y; mean BMI 24.1 kg/m ²	1 x 24-hr urine	X						N: correlation only
Ribi et al. 2010 ⁽⁸⁶⁾	Slovenia	Random sample of adults 25-65 years	143 Male 43%; mean age 45 y; mean BMI 26.1 (kg/m ²)	1 x 24-hr urine	Х						N: correlation only
Buranaki tjaroen et al. 2015 ⁽⁵⁴⁾	Thailand	Adults aged >18 years with diagnosed hypertension recruited via hypertension outpatient clinic at Siriraj Hospital	320 Mean age 61 y; mean BMI 25.9 kg/m ²	2 x 24-hr urine (consecutive days, average used)	Х						N: correlation only

Supplemental Table 3. Study characteristics of included cross-sectional studies assessing the association between sodium intake and adiposity outcomes among adults

Strazzull o et al. 1983 ⁽⁹²⁾	Naples, Italy	Men aged 28-56 years employed at Olivetti factory Olivetti Study data	188 Male 100%; mean age 41 y; mean BMI	1 x 24-hr urine	Х	X	N:correlatio n only
		collection period 1976- 1977	26.3 kg/m ²				
Polonia et al. 2006 ⁽⁸¹⁾	Portugal	Convenience sample of adult population living and working in an urban area of northern Portugal	426 Male 44%; mean age 50 y; mean BMI 27.9 kg/m ²	1 x 24-hr urine	X		N: correlation only
Polonia et al. 2014 ⁽⁸²⁾	Portugal	Nationally representative sample of adults aged 18-90 years PHYSA study	2565 Male 48%, mean age 49 y, mean BMI 27.1 kg/m ²	1 x 24-hr urine	Х		N: correlation only
Shim et al. 2013 ⁽⁹⁰⁾	Korea	Students aged 20-26 years studying at a University in Gyeonggi Province	228 Male 31%	125 item dish frequency questionnaire (validated in adults)	Х		N: correlation only
Rashidah et al. 2014 ⁽⁸⁴⁾	Malaysia	Adults aged 20-56 y recruited via Ministry of Health staff departments	445 Male 46%; mean age 35 y; mean BMI 25.4 kg/m ²	1 x 24-hr urine	Х		N: correlation only
Cheung et al. 2000 ⁽⁵⁶⁾	China	Convenience sample of Hong Kong Chinese adults aged 18-75 y	117 Male 77%; 60% hypertensive	1 x 24-hr urine	Х	X	N: correlation only
Campino et al. 2016 ⁽⁵⁵⁾	Chile	Convenience sample of adults aged 19-66 years	135	1 x 24-hr urine		X	N: correlation only
Villani et al. 2012 ⁽⁹⁶⁾	Adelaide, Australia	Adults with diagnosed T2DM aged 18-75 y recruited from local community to	88 Male 59%; mean age male 62 γ &	1 x 24-hr urine		X	N: correlation only

		participate in weight loss intervention trial (data from baseline cross- sectional analysis)	female 59 y; mean BMI male 34.5 kg/m ² & female 35.9 kg/m ²					
Sanchez- Castillo et al. 1987 ⁽⁸⁷⁾	Cambrid geshire, UK	Random sample of adults aged 20-65 y listed on the local Health Centre's register	83 Male 40%	12 x 24-hr urine		X		N: correlation only
Jiet & Soma 2017 ⁽⁶⁸⁾	Malaysia	Convenience sample of university students aged 18-25 y recruited from University of Nottingham Malaysia Campus	28 Male 54%; mean age 22 y	1 x 24-hr urine	x	x	x	N: correlation only
Perin et al. 2019 ⁽⁷⁸⁾	Brazil	Population based random sample of adults aged 20-80 y residing in town of Artur Nogueira, southeast region of Brazil	517 Male 42%; mean age 54 y	1 x 24-hr urine	x	x		N: correlation only
Asfar et al. 2013 ⁽⁵²⁾	Turkey	Adults with newly diagnosed Type 2 Diabetes recruited via outpatient nephrology unit	114 Male 50%, mean age 45 y; mean BMI 30.1 kg/m ²	1 x 24-hr urine (log sodium)	Х			N: exposure logarithmic scale
Shay et a. 2012 ⁽⁸⁹⁾	USA	Adults aged 40-59 years participating in USA arm of International Study of Macro-/Micronutrients and Blood Pressure (INTERMAP)	1794 53% male	2 x 24-hr urine	Х			N: standardised regression coefficient
Venezia et al. 2010 ⁽⁹⁴⁾	Naples, Italy	Men aged 32-81 employed at Olivetti factory	940 Male 100%; mean age 60 y; 56%	1 x 24-hr urine	X			N: standardised regression coefficient

		Olivetti Study data collection period 2002- 2004	overweight & 21% obese; 71% hypertensive								
Hashimo to et al. 2016 ⁽⁶⁴⁾	Japan	Convenience sample of adults aged ≥20 y recruited via local hospital	7629 Male 63%; mean age 56 (12) y	1 x morning spot urine extrapolated to daily sodium intake using Tanaka equation			Х				N: standardised regression coefficient
Choi & Run 2017 ⁽⁵⁷⁾	Korea	Convenience sample of healthy adults aged 19- 69 years recruited from Gwangju area, Korea	80 50% male	1 x 24-hr diet recall	х		Х	x		х	N: standardised regression coefficient
Crouch et al. 2018 ⁽⁵⁸⁾	South Africa	Apparently healthy adults aged 20-30 years recruited from the Potchefstroom area of South Africa. African- Predict study (African Prospective study on the Early Detection and Identification of Cardiovascular disease and Hypertension	761 43% male; 46% overweight/o bese	1 x 24-hr urine	x		x	x		X	N: exposure logarithmic sodium
Navia et al. 2014 ⁽⁷⁴⁾	Spain	Nationally representative sample of adults aged 18-60 y FANPE Study	418 Male 47%; mean age 37 y; 34% overweight, 14% obese	1 x 24-hr urine	X	X		Х			N: exposure as mmol/L
Yoon et al. 2013 ⁽¹²⁾	Korea	Nationally representative sample of adults aged ≥19 y KHANES 2007-10	20586 Male 40%; 31% obese	1 x 24-hr diet recall		Х		Х	Х		N: exposure sodium density
Muraka mi et al. 2015 ⁽⁷²⁾	Japan	Female dietetic students aged 18-22 y from 15 institutions in Japan	1043 Female 100%; mean age 20	1 x 24-hr urine	Х	Х		Х	Х		N: exposure sodium density

Aballay	Argentin	Multistage population	y; 7.7% obese i.e. BMI ≥25 kg/m ² 4328	1 x validated semi-quantitative		X	N
et a. 2014 ⁽⁵¹⁾	a	random sample of adults aged ≥18 y residing in Cordoba Córdoba Obesity and Diet Study (CODIES)	58% male; mean age 43 (18) y; 34% overweight, 17% obese	FFQ (past 12 months)		^	N
Perin et al. 2013 ⁽⁷⁹⁾	Brazil	Adults diagnosed with HT recruited via cardiology outpatient centre in Sao Paulo	108 Male 48%; mean age 57 y; mean BMI 32 kg/m ²	1 x 24-hr urine	Х		Y
Baudran d et al. 2014 ⁽⁵³⁾	Santiago, Chile	Adults recruited from low and middle income primary care centres	370 Male 30%; mean age 50 y; mean BMI 29.3 kg/m ² ; 72% hypertensive	1 x 24-hr urine	X	X	Y
Rhee et al. 2014 ⁽⁸⁵⁾	Korea	Random sample of adults aged 20-65 y	463 28% had metabolic syndrome	1 x 24-hr urine	Х		Y
Sharma et al. 2014 ⁽⁸⁸⁾	USA	Nationally representative sample of adults aged ≥18 years NHANES 2001-06	6985 Mean age 42 y	1 x 24-hr diet recall	Х		Y
Lee et al. 2015 ⁽⁷⁰⁾	Korea	Population based cohort of healthy Korean adults <70 y Korean Genome Epidemiology Study (2007-2008)	1586 51% male	1 x spot urine (1 st morning void following 8hr fast) converted to 24hr excretion using Tanaka's equation, validated for Asian population	X	X	Y

Yan et al. 2016 ⁽¹⁰⁰⁾	China	Multi-stage stratified, cluster sample of adults aged 18-69 years residing in 20 districts across north China SMASH (Shandong- Ministry of Health Action on Salt and Hypertension) Study	1975 Male 53%, mean age 41 (14) y, 52% overweight or obese	1 x 24-hr urine	X	Х	Y
Yokokaw a et al. 2016 ⁽¹⁰¹⁾	Thailand	Baseline data from a cluster randomized trial assessing education messages for reducing salt intake. Recruited via diabetes or hypertension clinics	793 Males 52%; mean age 66.5 (8.9) γ	3 x overnight urine (average), extrapolated to daily sodium intake using unspecified published formula	Х	Х	Y
Radhika et al. 2007 ⁽⁸³⁾	Chennai, India	Random sample of adults aged ≥20 years residing in Chennai Chennai Urban Rural Epidemiology Study (CURES)	1902 27% hypertensive	Semi-quantitative FFQ (22 items, consumption during previous year). Salt intake (g/d) also included quantitative intake used during cooking/table (no description of how this was done)	X	X	Y
Verhave et al. 2004 ⁽⁹⁵⁾	Netherla nds	Adults aged 28-75 y residing in Groningen, Netherlands Prevention of Renal and Vascular End-stage Disease (PREVEND) study	7850 Male 53%	2 x 24-hr urine (consecutive days, average used)	x		Y
Hulthen et al. 2010 ⁽⁶⁷⁾	Sweden	Males were randomly selected from the existing Gothenburg Obesity and Osteoporosis Determinants (GOOD)	79 Male 100%; mean age 19 y; mean BMI 22.5 kg/m ²	1 x 24-hr urine	X	Х	Y

		study, which includes							
		adults aged 18-20 y							
Eufinger	USA	Randomly selected	286	12 month Willet semi-	Х		Х		Y
et al.		samples of middle aged	Male 100%;	quantitative FFQ					
2012 ⁽⁶⁰⁾		adult twins who served	mean age 54 y						
		in US military between							
		1964-1975							
		Emory Twins Heart Study							
Han et al.	China	Stratified random cluster	1445	1 x spot urine (2 nd morning urine,	Х	Х			Y
2017 ⁽⁶³⁾		sample of Kazakh	Male 49%	unclear how factored to daily salt					
		population		intake)					
		China Altay Kazakh Heart							
	<u> </u>	Study	766	2 241 3 4 1 1 1 1 1					
Hoffman	Caracas,	Adults aged 18-70 years	766	2 x 24-hr urine (completed within	Х		Х	Х	Y
et al. 2009 ⁽⁶⁵⁾	Venezuel	residing in the town of	33% male;	2 weeks, average used)					
2009(00)	а	Caracus	mean age 45						
Madhava	New	Random selection of	(17) y 808	1 x 24-hr urine	х		х		γ
n et al.	York City,	adults who were union	Mean age 51	1 x 24-111 utilie	^		^		f
1994 ⁽⁷¹⁾	USA	sponsored employees	y; 76%						
1994	UJA	diagnosed as	hypertensive;						
		hypertensive or	44% Black,						
		normotensive at	56%						
		workplace screenings	Caucasian						
Oh et al.	Korea	Representative sample	18146	1 x spot urine after 8 hr fast.	Х			Х	Y
2015 ⁽⁷⁵⁾		of adults	Male 46%;	Extrapolated to 24-hr sodium					
		KHANES 4 & 5 (data	mean age 47 y	intake using Kawasaki formula					
		collection 2008-11)	- .	-					
Webster	Samoa	Representative sample	293	1 x 24-hr urine	Х				Y
et al.		of adults aged 18-64 y	Male 42%;						
2016 ⁽⁹⁸⁾		Samoan STEPS Survey	mean age						
			36±0.9 y;						
			mean BMI						
			31.9 kg/m ²						
Lee et al.	Korea	Convenience sample of	79	9-10 x spot urine sample,	Х				Y
2014 ⁽⁶⁹⁾		adults aged 31-38 y		extrapolated to daily salt intake					

			Male 60%; median age 35 y; median BMI 22.8 kg/m ²	(g/d) using Kawasaki and Tanaka equations and average used							
Ohta et al. 2017 ⁽⁷⁶⁾	Japan	Adults recruited from hospital outpatient	429 Male 48%; mean age 71 (11) y	1 x spot urine Daily intake estimated using equation (equation not specified)	X						Y
Song et al 2013 ⁽⁹¹⁾	Korea	Representative sample of adults aged 19-64 years KHANES IIII (2007-09)	5955 46% male; 26% overweight (BMI ≥25 Kg/m ²)	1 x 24-hr diet recall		x					Y
Nam et al. 2017 ⁽⁷³⁾	Korea	Healthy adults aged 19- 69 y recruited from eight provinces in South Korea	640 Male 50%; 27% obese	2 x non-consecutive 24-hr urine (average)	Х	Х	Х	х	Х		Y
Huh et al. 2015 (66)	Korea	Nationally representative sample of Korean adults ≥45 y 2008-2010 KNHANES	7162 50% male; mean age 20 y; mean BMI 22.5 kg/m ²	1 x spot urine (early morning if possible) extrapolated to 24-hr excretion using Tanaka's equation	Х			Х	Х	Х	Y
Yi et al. 2014 ⁽¹¹⁾	USA	Representative sample of non-institutionalized adults residing in NYC aged >18 years The New York City (NYC) Heart Follow-Up Study	1656	1 x 24-hr urine	X	X	X	X			Y
Yi et al. 2015 ⁽¹⁰⁾	USA	Nationally representative sample of adults aged ≥20 years NHANES 2009-10	4613	2 x 24-hr diet recall (average used)	Х		Х	Х		Х	Y
Ma et al. 2015 ^{(9)I}	United Kingdom	Nationally representative sample of adults aged ≥18 y	785 47% male; mean age 49	1 x 24-hr urine	Х	Х		Х	Х	Х	Y

		National Diet and Nutrition Survey Rolling Programme	y; mean BMI 27.7 kg/m ²								
Ge et al. 2015 ⁽⁶²⁾	China	Nationally representative sample of adults aged 18-69 y. SMASH: the Shandong and Ministry of Health Action on Salt and Hypertension Study	1906 53% male	1 x 24-hr urine					х		Y
Elfassy et al. 2018 ⁽⁵⁹⁾	USA	Population based cohort study 16,415 community-dwelling, self-identified Hispanics/Latinos aged 18-74 y Hispanic Community Health Study/Study of Latinos (HCHS/SOL)	435 sub- sample with 24-hr urine 47% male; mean age 42 y	1 x 24-hr urine sample	X					x	Y
Peterma nn-Rocha et al. 2019 ⁽⁸⁰⁾	Chile	Nationally representative sample of Chileans aged ≥15 years Chilean National Health Survey 2009-10	2913 42% male; mean age 46 y	1 x spot urine extrapolated to 24- hr excretion using Tanaka equation	Х			Х			Y
Vega- Vega et a. 2018 ⁽⁹³⁾	Mexico	Adults were recruited from the National Institute of Medical Sciences and Nutrition Salvador Zubiran Salt and Mexico (SALMEX) cohort study	727 36% male; mean age 39 y	1 x 24-hr urine	Х		X				Y
Watanab e et al. 2019 ⁽⁹⁷⁾	Japan	Community based sample of adults aged ≥40 years recruited from Takahata town	2297 Male 46%; mean age 60 y	1 x spot urine extrapolated to 24- hr excretion using Kawasaki equation	Х	Х					Y

		Yamagata (Takahata) studu									
Zhang et al. 2018 (102)	USA	study Nationally representative sample of generally healthy adults aged 24 to 48 years 1999-2006 National Health and Nutrition Examination Survey (NHANES)	9306 Male 53% Median age 35 y 23% obese	1 to 2 x 24-hr diet recall	X	X	x	x	X	X	Y
Zhou et al. 2019 (104)	Japan, China, UK, USA	Adults aged 40-59 y recruited from 17 population samples in Japan (4 samples), China (3 samples), UK (2 samples), USA (8 samples) International Study of Macro-/Micro-nutrients and Blood Pressure (INTERMAP)	4680 (Japan n=1145, China n=839, UK n=501, USA n=2195) Male 50% Mean age 49 y; 52% overweight/o bese	2 x 24-hr urine (average)	X	X					Y
Zhao et al. 2019 (103)	USA	Nationally representative sample of non-pregnant adults aged 20-69 years National Health and Nutrition Examination Survey (NHANES 2014)	730 Male 50%; Mean age 43 y; 73% overweight/o bese	Up to 2 x 24-hr urine (usual intake estimated from National Cancer Institute (NCI) measurement error model)	Х	Х		x	X		Y
Welsh et al. 2019 (99)	UK	Population based sample of adults aged 40-69 years recruited from Scotland, England and Wales UK Biobank	430, 110 45% male; Mean age 56 y	1 x spot urine extrapolated to 24- hr excretion using Kawasaki equation	Х						Y

Abbreviations: BMI body mass index, BW body weight, WC waist circumference, UK United Kingdom, USA United States of America

Study	Country		tion (0-3*)	Comparability (0- 2*) ^a	Outcome		Total NOS Score	Included in meta-
		Representativeness of cohort <i>(0-1*)</i>	Assessment of the exposure (sodium/salt intake) (0-2*)	Methods to control confounding (0- 2*)	Assessment of outcome (0-1*)	Non-response rate (0-1*)	(0-7*) ^b	analysis
Pan et al.		 a) truly representative of the source population (1*) b) somewhat representative of the source population (1*) c) selected group of users e.g. nurses, volunteers (0) d) no description of the derivation of the cohort (0) 	 a) 24-hr urine collection (1 or more) (2*) b) 24-hr dietary recall method (1*) c) Weighed dietary record (1 or more days) (1*) d) Urine sample: spot, timed or overnight (0) e) Food frequency questionnaire (0) 	a) study controls for age and sex (1*) b) study controls for energy intake (1*)	a) objectively measured adiposity outcome (e.g. BW and height for BMI) (1*) b) self-report BW and height (0) c) no description (0)	a) Non- response rate =<20% (1*) b) Non- response rate >20% (0) c) no description (0)	-	
Pan et al. 1990 ⁽⁷⁷⁾	Taiwan	0	0	0	1	0	1	Ν
Ferdaus et al.2015 ⁽⁶¹⁾	Japan	1	0	0	1	0	2	Ν
Staessen et al. 1991 ⁽³⁵⁾	UK	0	2	0	0	0	2	Ν
Ribi et al. 2010 ⁽⁸⁶⁾	Slovenia	1	2	0	0	0	3	Ν
Buranakitj aroen et al. 2015 ⁽⁵⁴⁾	Thailand	0	2	0	0	0	2	Ν
Strazzullo et al. 1983 ⁽⁹²⁾	Italy	0	2	0	1	1	4	Ν
Polonia et al. 2006 ⁽⁸¹⁾	Portugal	0	2	0	1	1	4	Ν

Supplemental Table 4. Newcastle Ottawa Scale quality assessment of cross-sectional studies assessing the association between sodium intake and adiposity outcomes among adults

Portugal	1	2	0	1	0	4	Ν
Korea	0	0	0	0	0	0	Ν
Malaysia	0	2	0	1	0	3	Ν
China	0	2	0	1	0	3	Ν
Chile	0	2	0	1	0	3	Ν
Australia	0	2	0	1	0	3	Ν
UK	1	2	0	0	0	3	Ν
Turkey	0	2	0	1	0	3	Ν
USA	1	2	2	1	0	6	Ν
Italy	0	2	0	1	0	3	Ν
Japan	0	0	1	1	1	3	Ν
Spain	1	2	2	1	0	6	Ν
Korea	1	1	2	1	1	6	Ν
Japan	0	2	1	1	0	4	N
Brazil	0	2	0	1	0	3	Y
	Korea Malaysia China Chile Chile Australia UK UK UK USA USA Italy Japan Spain Korea Japan	Korea0Malaysia0China0Chile0Australia0UK1Turkey0USA1Italy0Japan0Korea1Japan0	Korea00Malaysia02China02Chile02Australia02UK12Turkey02USA12Italy02Japan02Japan02Japan02Japan02Japan02	Korea 0 0 0 Malaysia 0 2 0 China 0 2 0 China 0 2 0 Chile 0 2 0 Australia 0 2 0 UK 1 2 0 Turkey 0 2 0 USA 1 2 0 Japan 0 2 0 Spain 1 2 2 Japan 0 2 1 0 2 1 2 Japan 0 2 1	Korea 0 0 0 0 Malaysia 0 2 0 1 China 0 2 0 1 Australia 0 2 0 1 UK 1 2 0 1 UK 1 2 0 1 USA 1 2 0 1 Japan 0 2 0 1 Japan 1 2 1 1 Japan 0 2 1 1 Japan 0 2 1 1	Korea 0 0 0 0 0 Malaysia 0 2 0 1 0 China 0 2 0 1 0 China 0 2 0 1 0 China 0 2 0 1 0 Chile 0 2 0 1 0 Australia 0 2 0 1 0 UK 1 2 0 1 0 UK 1 2 0 1 0 USA 1 2 0 1 0 Japan 0 2 0 1 1 Japan 0 2 1 0 1	Korea 0 0 0 0 0 0 0 Malaysia 0 2 0 1 0 3 China 0 2 0 1 0 3 China 0 2 0 1 0 3 Chile 0 2 0 1 0 3 Australia 0 2 0 1 0 3 UK 1 2 0 1 0 3 UK 1 2 0 1 0 3 USA 1 2 0 1 0 3 Iapan 0 2 0 1 0 3 Spain 1 2 2 1 0 6 Korea 1 2 1 1 6 6 Japan 0 2 1 1 6 6

Baudrand et al. 2014 ⁽⁵³⁾	Chile	0	2	0	1	0	3	Y
Rhee et al. 2014 ⁽⁸⁵⁾	Korea	1	2	0	1	0	4	Y
Sharma et al. 2014 ⁽⁸⁸⁾	USA	1	1	0	1	0	3	Y
Lee et al. 2015 ⁽⁷⁰⁾	Korea	1	0	0	1	0	2	Y
Yan et al. 2016 ⁽¹⁰⁰⁾	China	1	2	0	1	0	4	Y
Aballay et a. 2014 ⁽⁵¹⁾	Argentin a	1	0	2	1	1	5	Ν
Yokokawa et al. 2016 ⁽¹⁰¹⁾	Thailand	0	0	0	1	0	1	Y
Radhika et a. 2007 ⁽⁸³⁾	India	1	0	0	1	1	3	Y
Verhave et al. 2004 ⁽⁹⁵⁾	Netherla nds	1	2	0	1	0	4	Y
Hulthen et al. 2010 ⁽⁶⁷⁾	Sweden	1	2	0	1	0	4	Υ
Eufinger et al. 2012 ⁽⁶⁰⁾	USA	0	0	0	1	0	1	Y
Han et al. 2017 ⁽⁶³⁾	China	1	0	0	1	1	3	Y
Hoffman et al. 2009 (65)	Venezuel a	1	2	0	1	0	4	Y
Madhavan et al. 1994 ⁽⁷¹⁾	USA	0	2	0	1	0	3	Y
Oh et al. 2015 ⁽⁷⁵⁾	Korea	1	0	0	1	0	2	Y
Webster et al. 2016 ⁽⁹⁸⁾	Samoa	1	2	1	1	1	6	Y

Lee et al. 2014 ⁽⁶⁹⁾	Korea	0	0	0	1	0	1	Y
Ohta et al. 2017 ⁽⁷⁶⁾	Japan	0	0	0	1	0	1	Y
Song et al 2013 ⁽⁹¹⁾	Korea	1	1	2	1	0	5	Y
Nam et al. 2017 ⁽⁷³⁾	Korea	1	2	2	1	0	6	Y
Huh et al. 2015 ⁽⁶⁶⁾	Korea	1	0	0	1	0	2	Y
Yi et al. 2014 ⁽¹¹⁾	USA	1	2	1	1	0	5	Y
Yi et al. 2015 ⁽¹⁰⁾	USA	1	1	2	1	0	5	Y
Ma et al. 2015 ⁽⁹⁾	UK	1	2	2	1	0	6	Y
Ge et al. 2015 ⁽⁶²⁾	China	1	2	0	1	0	4	Y
Choi & Run 2017 ⁽⁵⁷⁾	Korea	0	1	2	1	0	4	Ν
Crouch et al. 2018 ⁽⁵⁸⁾	South Africa	0	2	2	1	0	5	Ν
Elfassy et al. 2018 ⁽⁵⁹⁾	USA	1	2	2	1	0	6	Y
Jiet & Soma 2017 (68)	Malaysia	0	2	0	1	0	3	Ν
Perin et al. 2019 ⁽⁷⁸⁾	Brazil	1	2	0	1	0	4	Ν
Petermann -Rocha et al. 2019 ⁽⁸⁰⁾	Chile	1	0	0	1	0	2	Y
Vega-vega et al. 2018 ⁽⁹³⁾	Mexico	0	2	0	1	0	3	Y

Watanabe et al. 2019 ⁽⁹⁷⁾	Japan	1	0	0	1	0	2	Y
Zhang et al. 2018 (102)	USA	1	1	2	1	0	5	Y
Zhou et al. 2019 ⁽¹⁰⁴⁾	Japan, China, UK, USA	1	2	2	1	0	6	Y
Zhao et al. 2019 ⁽¹⁰³⁾	USA	1	2	2	1	0	6	Y
Welsh et al. 2019 ⁽⁹⁹⁾	UK	1	0	0	1	0	2	Y

Abbreviations: NOS Newcastle-Ottawa Scale Score; USA United States of America; UK United Kingdom

^a Scoring for adjustment for confounders is based on the primary outcome model (i.e. BMI or weight category)

^b Studies with total scores of ≥5*, 3-4* and ≤2* were assessed as high, moderate and low-quality studies, respectively

Study	Country	N, sample characteristics	Adiposit y outcome	Sodium/salt intake ^a	Covariates; stratification	Findings ^b	Summary ^c	Included in meta- analyses related to this outcome
Pan et al. 1990 ⁽⁷⁷⁾	Taiwan	401 Male 100%; mean age 53 y	BMI (kg/m ²)	Mean Na 168 (63) mmol/d	None	Significant positive correlation between sodium intake (mmol/d) and BMI (kg/m ²) (r=0.21 P<0.001)	+ weak BMI (unadjusted)	Ν
Ferdaus et al.2015 ⁽⁶¹⁾	Japan	1016	BMI (kg/m ²)	Mean salt 9.6 g/d	None	Significant positive correlation between sodium intake (mmol/d) and BMI (kg/m ²) (Spearman's pho=0.11, P=0.0003)	+ very weak BMI (unadjusted)	Ν
Staessen et al. 1991 ⁽³⁵⁾	London, UK	301 Male 100%; mean age 45 y; mean BMI 24.1 kg/m ²	BMI (kg/m²)	Mean Na 174 (57) mmol/d	None	Significant positive correlation between sodium intake (mmol/d) and BMI (kg/m ²) (<i>r</i> =0.29, P<0.001)	+ BMI men (unadjusted)	N
Ribi et al. 2010 ⁽⁸⁶⁾	Slovenia	143 Male 43%; mean age 45 y; mean BMI 26.1 kg/m ²	BMI (kg/m²) ^d	Mean Na 192 (83) mmol/d	None	Significant positive correlation between sodium intake (mmol/d) and BMI (kg/m ²) (r=0.38, P=0.001).	+ BMI (unadjusted)	N
Buranakitjar oen et al. 2015 ⁽⁵⁴⁾	Thailand	320 Mean age 61 y; mean BMI 25.9 kg/m ²	BMI (kg/m²) ^e	Mean Na 148 (69) mmol/d	None	Significant positive correlation between sodium intake (mmol/d) and BMI (kg/m ²) (<i>r</i> =0.30, P<0.01)	+ BMI (unadjusted)	Ν
Strazzullo et al. 1983 ⁽⁹²⁾	Naples, Italy	188 Male 100%; mean age 41 y; mean BMI 26.3 kg/m ²	BMI (kg/m²) ^d	Mean Na 177 (59) mmol/d	None	Significant positive correlation between sodium intake (mmol/d) and BMI (kg/m ²) (<i>r</i> =0.29, P<0.001)	+ BMI men (unadjusted)	N
Polonia et al. 2006 ⁽⁸¹⁾	Portugal	426 Male 44%; mean age 50	BMI (kg/m²)	Mean Na 210 (no SD) mmol/d	None	Significant positive correlation between sodium intake (mmol/d) and BMI (kg/m ²) (r=0.13, P<0.05)	+ weak BMI (unadjusted)	Ν

Supplemental Table 5. Summary of findings from cross-sectional studies among adults, outcome: BMI or weight category

		y; mean BMI 27.9 (kg/m²)						
Polonia et al. 2014 ⁽⁸²⁾	Portugal	2565 Male 48%, mean age 49 y, mean BMI 27.1 (kg/m ²)	BMI (kg/m²)	Mean Na 183 (65) mmol/d	None	Significant positive correlation between sodium intake (mmol/d) and BMI (kg/m²) (r=0.01, P=0.001)	+ very weak BMI (unadjusted)	N
Shim et al. 2013 ⁽⁹⁰⁾	Korea	228 Male 31%	BMI (kg/m ²)	Mean Na 231 (166) mmol/d	Age, etoh consumption and smoking	Significant positive correlation between sodium intake (mmol/d) and BMI (kg/m²) (r=0.207, P=0.002) *adjusted for age, etoh consumption and smoking	+ weak BMI (adjusted)	N
Rashidah et al. 2014 ⁽⁸⁴⁾	Malaysia	445 Male 46%; mean age 35 y; mean BMI 25.4 kg/m ²	BMI (kg/m²)	Mean Na 142 (72) mmol/d	None	Significant positive correlation between sodium intake (mmol/d) and BMI (kg/m²) (r=0.22, P<0.001, R²=0.05)	+ BMI (unadjusted)	N
Cheung et al. 2000 ⁽⁵⁶⁾	China	117 Male 77%; 60% hypertensive	BMI (kg/m²)	Not reported	None	No correlation between sodium intake and BMI (kg/m ²) (<i>r</i> =0.16, P=NS)	Null BMI (unadjusted)	N
Jiet & Soma 2017 ⁽⁶⁸⁾	Malaysia	Convenience sample of university students aged 18-25 y recruited from University of Nottingham Malaysia Campus	BMI (kg/m²)	Mean Na 175 mmol/d	None	Significant positive correlation between sodium intake (mmol/d) and BMI (kg/m²) (r=0.45, P=0.02)	+ BMI (unadjusted)	Ν
Perin et al. 2019 ⁽⁷⁸⁾	Brazil	Population based random sample of adults aged 20-80 y residing in town of Artur	BMI (kg/m²)	Mean salt 10.5 (SD 4.5) g/d	None	Significant weak positive correlation between sodium intake (mmol/d) and BMI (kg/m ²) (<i>r</i> =0.16, P<0.001)	+ weak BMI (unadjusted)	N

Asfar et al. 2013 ⁽⁵²⁾	Turkey	Nogueira, southeast region of Brazil 114 Male 50%,	BMI (kg/m²)	Mean Na 171 (92) mmol/d	None	Difference in BMI (kg/m ²) associated with logarithmic sodium intake (mmol/d)	+ BMI (unadjusted)	N
		mean age 45 y; mean BMI 30.1 kg/m ²				β=0.013 (95% Cl 0.004, 0.022) β(standardised)=0.289, P=0.004.	()	
Shay et a. 2012 ⁽⁸⁹⁾	USA	1794 53% male	BMI (kg/m²)	Not reported	Age, smoking status, dietary supplement use, history of HT/CVD, moderate or heavy PA, total energy intake, stratified by sex	Difference in BMI (kg/m ²) associated with sodium intake (mmol/d), stratified by sex Male n=947 θ(standardised)=1.27±0.15 P<0.001 Female n=847 θ(standardised)=1.44±0.19 P<0.001 *adjusted for age, smoking status, dietary supplement use, history of HT/CVD, moderate or heavy PA, total energy intake **note no model without energy adjustment was available	+ BMI men and women (adjusted, including energy intake)	Ν
Perin et al. 2013 ⁽⁷⁹⁾	Brazil	108 Male 48%; mean age 57 y; mean BMI 32 kg/m ²	BMI (kg/m²)	Mean Na 209 (100) mmol/d	None	Mean BMI (kg/m ²) by quartile of sodium intake (mmol/d) Q1 BMI 28.8 kg/m ² (no variance measure reported) ^f Q1 BMI 34.1 kg/m ² (no variance measure reported) ^f P=0.001	+ BMI (unadjusted)	Y
Baudrand et al. 2014 ⁽⁵³⁾	Santiago, Chile	370 Male 30%; mean age 50 y; mean BMI 29.3 (kg/m ²); 72% hypertensive	BMI (kg/m²)	Mean Na 195 (81) mmol/d	None	Mean (SD) BMI kg/m ² by level of sodium intake i.e. high sodium intake vs. adequate intake High sodium intake >150 mmol/d, n=255: BMI 29.4 (4.2) kg/m ² Adequate sodium intake 51, 149 mmol/d, n=115: BMI 29.0 (4.6) kg/m ² P=NS	Null BMI by high and adequate Na intake	Y
Petermann- Rocha et al. 2019 ⁽⁸⁰⁾	Chile	2913 42% male; mean age 46 y	BMI (kg/m²)	Not reported	None	Mean (SD) BMI (kg/m ²) by category of low <3.6 g/d) or high \geq 3.6 g/d salt intake (as defined by median of 3.6 g/d) Low salt intake <3.6 g/d n=939: 26.5 (5.0) kg/m ² High salt intake \geq 3.6 g/d n=1974: 28.5 (5.5) kg/m ²	No statistical test performed	Y
Vega-Vega et a. 2018 ⁽⁹³⁾	Mexico	727 36% male; mean age 39 y	BMI (kg/m ²)	Mean Na 151 (SD 60) mmol/d	None	Mean (SD) BMI (kg/m ²) across three groups of sodium intake (mmol/d) (groups based on recommended sodium	+ BMI (unadjusted)	Y

						intake <2000 mg/d; high sodium 2000-3600 mg/d; very high sodium >3600 mg/d) G1: <2000 mg/d; n=77, BMI 25.3 (3.8) kg/m ² G2: 2000-3600 mg/d; n=330, BMI 26.8 (4.5) kg/m ² G3: >3600 mg/d; n=320, BMI 28.8 (4.7) kg/m ² ANOVA between group difference P<0.0001		
Rhee et al. 2014 ⁽⁸⁵⁾	Korea	463 28% had metabolic syndrome	BMI (kg/m²)	Mean Na metabolic syndrome Na 195 (68) mmol/d; Non-MS 195 (68) mmol/d	None	Mean (SD) BMI (kg/m ²) by tertile of sodium intake (mmold) T1: <140 mmol/d; BMI 22.5 (2.8) kg/m ² T2: 140-192 mmol/d; BMI 23.7 (2.8) kg/m ² T3: >192 mmol/d; BMI 25.2 (3.2) kg/m ² ANOVA between group difference P<0.0001	+ BMI (unadjusted)	Y
Sharma et al. 2014 ⁽⁸⁸⁾	USA	6985 42 у	BMI (kg/m²)	Mean Na 156 (110) mmol/d	None	Mean±SE BMI kg/m ² by quartile of sodium intake(mg/d) Q1 \leq 2190: BMI 26.7±0.2 (reference category) Q2 2191-3142: BMI 26.9±0.2* kg/m ² Q3 3143-4349: BMI 27.5±0.2 kg/m ² Q4 >4349: BMI 27.5±0.2 kg/m ² ANOVA between group difference P=<0.01	+ BMI (unadjusted)	Y
Lee et al. 2015 ⁽⁷⁰⁾	Korea	1586 51% male	BMI (kg/m²)	Mean Na 156 (34) mmol/d	None	Mean (SD) BMI (kg/m ²) by teritle of sodium intake T1 n=528: sodium 119 (16); BMI 23.8 (2.6) kg/m ² T2 n=529: sodium 154 (8); BMI 24.1 (2.7) kg/m ² T3 n=529: sodium 193 (18); BMI 24.7 (2.8) kg/m ² P for trend <0.001	+ BMI (unadjusted)	Y
Yan et al. 2016 ⁽¹⁰⁰⁾	China	1975 Male 53%, mean age 41 (14) γ, 52% overweight or obese	BMI (kg/m²)	Mean Na 232 (87) mmol/d	None	Mean (SD) BMI (kg/m ²) by quartile of sodium intake (mmol/d) Q1 mean Na 138 (SD 32) mmol/d: 23.6 (3.7) kg/m ² Q2 mean Na 206 (SD 15) mmol/d: 24.3 (3.9) kg/m ² Q3 mean Na 247 (SD 8) mmol/d: 24.7 (3.5) kg/m ² Q4 mean Na 344 (SD 86) mmol/d: 25.56 (4.1) kg/m ² P<0.001	+ BMI (unadjusted)	Y
Yokokawa et al. 2016 ⁽¹⁰¹⁾	Thailand	793 Males 52%; mean age 66.5 (SD 8.9) у	BMI (kg/m²)	Mean salt 9.9 (2.3) g/d	None	Mean (SD) BMI (kg/m ²) by category of low <10.0 g/d or high ≥10 g/d salt intake Low salt intake <10.0 g/d n=431: 24.1 (3.6) kg/m ² High salt intake ≥10.0 g/d n=362: 25.1 (3.9) kg/m ² P=0.18	Null BMI (unadjusted)	Y

Radhika et al. 2007 ⁽⁸³⁾	Chennai, India	1902 27% hypertensive	BMI (kg/m²)	Mean salt 8.5 g/d	None	Mean BMI (kg/m2) (SD) by salt (g/d) quintile Q1 n=385, mean salt 4.9 g/d: 22.1 (3.9) kg/m ² Q2 n=391, mean salt 6.6 g/d: 23.1 (4.5) kg/m ² Q3 n=384, mean salt 7.9 g/d: 24.2 (4.7) kg/m ² Q4 n=376, mean salt 9.6 g/d: 24.7 (4.9) kg/m ² Q5 n=366), mean salt 13.8 g/d: 24.8 (4.4) kg/m ² P for trend<0.0001	+ BMI (unadjusted)	Ŷ
Verhave et al. 2004 ⁽⁹⁵⁾	Netherlands	7850 Male 53%	BMI (kg/m²)	Not reported	None	Mean (SD) BMI (kg/m ²) by quintile of sodium intake (mmol/d) Q1 n=1613 sodium <99 mmol/d: 24.9 (3.9) kg/m ² Q2 n=1612 sodium 99, 124 mmol/d: 25.3 (3.9) kg/m ² Q3 n=1614 sodium 125, 149 mmol/d: 25.9 (4.1) kg/m ² Q4 n=1613 sodium 150, 180 mmol/d: 26.4 (4.0) kg/m ² Q5 n=1613 sodium >180 mmol/d: 27.8 (4.7) kg/m ² P for trend<0.001	+ BMI (unadjusted)	Y
Hulthen et al. 2010 ⁽⁶⁷⁾	Sweden	79 Male 100%; mean age 19 y; mean BMI 22.5 kg/m ²	BMI (kg/m²)	Mean Na 198 (69) mmol/d	None	Mean (SD) BMI kg/m ² by lowest and highest quartile of sodium intake (mmol/d) Q1 n=20 mean sodium 100 (18) mmol/d: 21.1 (2.8) kg/m ² Q4 n=20 mean sodium 297 (40) mmol/d: 24.1 (4.2) kg/m ² Mann-Whitney U test P=0.006	+ BMI (unadjusted)	Y
Eufinger et al. 2012 ⁽⁶⁰⁾	USA	286 Male 100%; mean age 54 y	BMI (kg/m ²)	Intake not stated; 81% Na intake ≤1500 mg/d (USDA maximum recommendati on for adults ≥51 y)	Adjusted for pair clustering (i.e. twins)	Mean±SE BMI (kg/m ²) ±SEM by quantile of sodium intake (mg/d) ^g Q1 n=57 <732 mg/d: BMI 29.2±0.6 kg/m ² Q2 n=57 732-973 mg/d: BMI 28.8±0.6 kg/m ² Q3 n=58 974-1179 mg/d: BMI 29.1±0.6 kg/m ² Q4 n=57 1180-1456 mg/d: BMI 25.5±0.6 kg/m ² Q5 n=57 >1456mg/d: BMI 30.2±0.6 kg/m ² P-value for trend across quintiles P=0.35	Null BMI men	Y
Han et al. 2017 ⁽⁶³⁾	China	1445 Male 49%	BMI (kg/m ²⁾ , weight category: overweig ht BMI	Mean salt male 18.7 g/d; female 16.4 g/d	None, stratified by sex	Mean (SD) BMI (kg/m ²) by quartile of sodium intake (mmol/d), stratified by sex Males n=712 Q1 n=178 sodium range 52, 238 mmol/d: 25.1 (4.0) kg/m ² Q2 n=178 sodium range 239, 289 mmol/d: 25.2 (4.0) kg/m ² Q3 n=178 sodium range 290, 346 mmol/d: 25.7 (4.0) kg/m ²	+ BMI men, null women (unadjusted) Null weight category	Y

	≥24 kg/m²			Q4 n=178 sodium range ≥347 mmol/d: 26.3 (4.3) kg/m² P for trend 0.004	men and women (unadjusted)	
				Females n=733	(unaujusteu)	
				Q1 n=183 sodium range 73, 206 mmol/d: 25.9 (4.4) kg/m ²		
				Q2 n=184 sodium range 207, 258 mmol/d: 26.5 (4.9) kg/m ²		
				Q3 n=182 sodium range 259, 310 mmol/d: 26.4 (4.9) kg/m ²		
				Q4 n=184 sodium range \geq 310 mmol/d: 26.8 (5.0) kg/m ²		
				P for trend 0.0964		
				Prevalence overweight (BMI ≥24 kg/m²) n, % by quartile of sodium intake (mmol/d), stratified by sex		
				Males n=712		
				Q1 n=178 sodium range 52, 238 mmol/d: n=96, 53.9%,		
				reference category		
				Q2 n=178 sodium range 239, 289 mmol/d: n=101, 56.7%		
				Q3 n=178 sodium range 290, 346 mmol/d: n=110, 61.8%		
				Q4 n=178 sodium range ≥347 mmol/d: n=113, 63.5%,		
				P for trend 0.0409		
				*calculated by author OR 1.50 (95%Cl 0.96, 2.35, P=0.06)		
				Females n=733		
				Q1 n=183 sodium range 73, 206 mmol/d: n=119, 64.7%,		
				reference category		
				Q2 n=184 sodium range 207, 258 mmol/d: n=116, 63.4%		
				Q3 n=182 sodium range 259, 310 mmol/d: n=125, 68.7%		
				Q4 n=184 sodium range ≥310 mmol/d: n=119, 64.7%		
				P for trend 0.7380		
				*calculated by author OR 0.98 (95%CI 0.63, 1.55, P=0.94)		
Watanabe et Japan 2297	BMI	Mean Na 204	None	Mean (SD) BMI kg/m ² by quartile of sodium intake(mmol/d)	+ BMI	Y
al. 2019 ⁽⁹⁷⁾ Male 46%;	(kg/m²),	(SD 53)		Q1 ≤167 n=574: BMI 22.4 (SD 3.1) kg/m ²	(unadjusted)	
mean age 60 y	weight	mmol/d		Q2 167-202 n=574: BMI 22.9 (3.1) kg/m ²		
	category			Q3 203-235 n=573: BMI 23.2 (3.0) kg/m ²	+ weight	
	obesity			Q4 ≥236 n=576: BMI 23.8 (3.0) kg/m²	category	
	defined			ANOVA overall P<0.01	(unadjusted)	
	as BMI					

			≥25 kg/m²			Prevalence obese (BMI ≥25 kg/m ²) n, % by quartile of sodium intake (mmol/d) Q1 ≤167 n=574: n=117, 20.4%, reference category Q2 167-202 n=574: n=144, 25.1% Q3 203-235 n=575: n=148 25.8% Q4 ≥236 n=576: n=188, 32.6% ANOVA overall P<0.01 *calculated by author OR 1.89 (95%CI 01.44, 2.50, P<0.001)		
Zhang et al. 2018 ⁽¹⁰²⁾	USA	9306 Male 53% Median age 35 y 23% obese	BMI (kg/m ²), weight category obesity defined as BMI ≥30 kg/m ²	Median Na 3320 mg/d	Age, sex, race, smoking, alcohol drinking, physical activity, education, family annual income, and total energy intake	Difference in BMI (kg/m ²) associated with sodium intake 1000 mg/d β=0.50 (95%Cl 0.09, 0.91), P=not reported *adjusted for age, sex, race, smoking, alcohol drinking, physical activity, education, family annual income, and total energy intake Odds (OR 95% Cl) of obese vs. overweight/healthy weight according sodium intake (mg/d) categories defined as low Na <1500 mg/d, normal Na 1500-2300 mg/d and high Na >2300 mg/d G1 sodium <1500 mg/d, median 1171 mg/d: OR 1.12 (95%Cl 0.84, 1.49) G2 sodium 1500-2300 mg/d, median 1948 mg/d: Reference category G3 sodium >2300 mg/d, median 3771 mg/d: OR 1.12 (95%Cl 0.97, 1.29) P for trend=0.33 *adjusted for age, sex and ethnicity Additional adjustment with energy intake G1 sodium <1500 mg/d, median 1171 mg/d: OR 0.95 (95%Cl 0.48, 1.89) G2 sodium 1500-2300 mg/d, median 1948 mg/d: Reference category G3 sodium <2300 mg/d, median 1948 mg/d: Reference category G3 sodium <2300 mg/d, median 1948 mg/d: Reference category G3 sodium >2300 mg/d, median 171 mg/d: OR 0.95 (95%Cl 0.48, 1.89) G2 sodium 1500-2300 mg/d, median 1948 mg/d: Reference category G3 sodium >2300 mg/d, median 3771 mg/d: OR 1.55 (95%Cl 1.09, 2.20) P for trend=0.01	+ BMI (adjusted, including energy intake) + weight category (adjusted, including energy intake)	Y

						*adjusted for age, sex, race, smoking, alcohol drinking, physical activity, education, family annual income, and total energy intake		
Hoffman et al. 2009 ⁽⁶⁵⁾	Caracas, Venezuela	766 33% male; mean age 45 (17) γ	BMI (kg/m²)	Mean Na 143 (69) mmol/d	None, stratified by sex	Mean±SE BMI (kg/m²) by quartile of sodium intake (mmol/d), stratified by sex Male: Q1 n=63: <120; BMI 27.8 (1.0) kg/m² Q2 n=69: 120-159; BMI 28.2 (1.0) kg/m² Q3 n=56: 159-211; BMI 30.7 (1.0) kg/m² Q4 n=61: >211; BMI 30.3 (1.0) kg/m² P=0.001 Female: Q1 n=129: <92; BMI 27.6 (0.4) kg/m² Q2 n=146: 92-125; BMI 28.3 (0.4) kg/m² Q3 n=113: 125-158; BMI 28.4 (0.4) kg/m² Q4 n=127: >158; BMI 29.6 (0.5) kg/m² P=0.001	+ BMI (unadjusted)	Y
Madhavan et al. 1994 ⁽⁷¹⁾	New York City, USA	808 51 y; 76% hypertensive; 44% Black, 56% Caucasian	BMI (kg/m²)	Mean Na Black male 137 (70) mmol/d; Black female 112 (50) mmol/d; Caucasian male 139 (70) mmol/d; Caucasian female 113 (56) mmol/d	None, stratified by sex and race	Mean (SD) BMI (kg/m ²) by tertile of sodium intake (mmol/d) tertile, stratified by sex and race Black male: T1 n=76, <102 mmol/d: 25.4 (2.6) kg/m ² T2 n=67, 102-156 mmol/d: 26.3 (3.5) kg/m ² T3 n=74 ≥157 mmol/d: 27.7 (4.1) kg/m ² Between group difference P≤0.01 Black females: T1 n=41, <102mmol/d: 26.2 (5.3) kg/m ² T2 n=49, 102-156 mmol/d: 27.3 (4.0) kg/m ² T3 n=48, ≥157 mmol/d: 28.1 (5.1) kg/m ² Between group difference P≤0.05 Caucasian males: T1 n=103, <102 mmol/d: 26.4 (3.4) kg/m ² T2 n=118, 102-156 mmol/d: 26.1 (3.0) kg/m ² T3 n=108, ≥157 mmol/d: 27.8 (3.7) kg/m ² Between group difference P≤0.01 Caucasian females: T1 n=46, <102 mmol/d: 23.8 (3.1) kg/m ²	+ BMI male & female, Black & Caucasian (unadjusted)	Y

						T2 n=36, 102-156 mmol/d: 25.2 (4.0) kg/m ² T3 n=42, ≥157 mmol/d: 27.3 (5.0) kg/m ² Between group difference P≤0.01		
Oh et al. 2015 ⁽⁷⁵⁾	Korea	18146 Male 46%; mean age 47 y	BMI (kg/m²)	Median Na 4100 mg/d	None	Mean (SD) BMI (kg/m ²) by quartile of salt intake (g/d) Q1 n=4536 median salt 2.7 (IQR 2.3, 3.1) g/d: 23.0 (3.3) kg/m ² Q2 n=4537 median salt 3.7 (IQR 3.4, 4.1) g/d: 23.5 (3.2) kg/m ² Q3 n=4537 median salt 4.6 (IQR 4.1, 5.0) g/d: 23.7 (3.2) kg/m ² Q4 n=4536 median salt 5.9 (IQR 5.2, 6.5) g/d: 24.5 (3.4) kg/m ² Between group difference P-value <0.001	+ BMI (unadjusted)	Y
Welsh et al. 2019 ⁽⁹⁹⁾	UK	430, 110 45% male; Mean age 56 y	BMI (kg/m ²)	Not reported	None	Mean (SD) BMI (kg/m ²) by quintile of sodium intake (mg/d) Males n=190,964 Q1 n=38193 Na range 740, 3430 mg/d: 26.99 (3.91) kg/m ² Q2 n=38193 Na range 3431, 4080 mg/d: 27.18 (3.82) kg/m ² Q3 n=38193 Na range 4081, 4660 mg/d: 27.44 (3.91) kg/m ² Q4 n=38193 Na range 4061, 5350 mg/d: 27.91 (4.08) kg/m ² Q5 n=38192 Na range 5351, 7000 mg/d: 28.69 (4.54) kg/m ² Between group difference P-value <0.001 Females n=239, 146 Q1 n=47830 Na 710, 2890 mg/d: 26.48 (4.82) kg/m ² Q2 n=47829 Na range 3481, 4010 mg/d: 26.67 (4.85) kg/m ² Q4 n=47829 Na range 4010, 4660 mg/d: 27.09 (5.07) kg/m ² Q5 n=47829 Na range 4661. 7000 mg/d: 28.05 (5.65) kg/m ² Between group difference P-value <0.001	+ BMI (unadjusted)	Y
Webster et al. 2016 ⁽⁹⁸⁾	Samoa	293 Male 42%; mean age 36±0.9 y; mean BMI 31.9 kg/m ²	BMI (kg/m²)	Mean salt 7.09±0.19 g/d	Adjusted for sex, age, region	Difference in BMI (kg/m²) associated with salt intake (g/d) β= -0.02 (95%Cl -0.05, 0.01) g/d, P=0.1663 *adjusted for sex, age, region	Null BMI (adjusted)	Y
Lee et al. 2014 ⁽⁶⁹⁾	Korea	79 Male 60%; median age 35 y; median BMI 22.8 kg/m ²	BMI (kg/m²)	Mean salt based on Kawasaki equation 14.2 (3.9) g/d; based on	Adjusted for age, systolic blood pressure and taste perception.	Difference in BMI (kg/m ²) associated with salt intake 1g/d Kawasaki equation salt estimate: β=0.36 (95%CI 0.08, 0.64), P=0.012 *Adjusted for age, systolic blood pressure and taste perception Tanaka equation salt estimate	+ BMI male & female (adjusted)	Y

	lanan	420	DA4	Tanaka equation 8.4 (1.8) g/d		β=0.17 (95%Cl 0.30, 0.44), P=0.000 *Adjusted for age, systolic blood pressure and taste perception Difference in BMI kg/m ² associated with salt intake 1 g/d	+ BMI	Y
Ohta et al. 2017 ⁽⁷⁶⁾	Japan	429 Male 48%; mean age 71 (11) γ	BMI (kg/m²)	Mean salt 9.2 (2.8) g/d	Adjusted for age, chronic kidney disease and hyperuricemia	β = 0.125 kg/m ² , P<0.001 *Adjusted for age, chronic kidney disease and hyperuricemia	(adjusted)	Ŷ
Venezia et al. 2010 ⁽⁹⁴⁾	Naples, Italy	940 Male 100%; mean age 60 y; 56% overweight & 21% obese; 71% hypertensive	BMI (kg/m²)	Mean Na 203 (71) mmol/d	Adjusted for frequency consumption of pasta, cold cuts, bread, meat, fish, canned food and cheese, anti-HT treatment	Difference in BMI (Kg/m ²) associated with sodium intake (mmol/d) β(standardised)=0.127 (95% CI 0.104, 0.150), P-value<0.001 *adjusted for frequency consumption of pasta, cold cuts, bread, meat, fish, canned food and cheese, anti-HT treatment	+ BMI men (adjusted)	Ν
Crouch et al. 2018 ⁽⁵⁸⁾	South Africa	761 43% male; 46% overweight/o bese	BMI (kg/m²)	Mean Na 130 mmol/d	Age, SES, energy expenditure, energy intake derived from 3 x 24-hr diet recalls, cotinine, y- glutamyltransferase , high-density lipoprotein cholesterol, SBP, glucose, C-reactive protein, aldosterone	Difference in BMI kg/m ² associated with logarithmic sodium sodium intake (mg/d) β =0.38 ±0.58 (P=0.52) *adjusted for age, SES, energy expenditure, cotinine, y- glutamyltransferase, high-density lipoprotein cholesterol, SBP, glucose, C-reactive protein, aldosterone Additional adjustment with energy intake β =0.49 ±0.58 (P=0.41) *adjusted for age, SES, energy expenditure, energy intake, cotinine, y-glutamyltransferase, high-density lipoprotein cholesterol, SBP, glucose, C-reactive protein, aldosterone, energy intake	Null BMI (adjusted, including energy intake)	Ν
Song et al 2013 ⁽⁹¹⁾	Korea	5955 46% male; 26% overweight (BMI ≥25 kg/m ²)	Weight category: overweig ht defined as BMI >25 kg/m ²	Not reported	Age, sex, energy intake, calcium, water, coffee, tea and soda, smoking, etoh consumption, PA, educational attainment, income, survey	Odds (OR 95% CI) of overweight by quintile of sodium intake (mg/d), stratified by sex Male: n=2765 Q1 Na range <3565, median 2742 mg/d: Reference category Q2 Na range 3565-4932, median 4247 mg/d: OR 1.33 (95%CI 1.02, 1.73) Q3 Na range 4936-6248, median 5564 mg/d: OR 1.20 (95%CI 0.92, 1.56)	+ weight category men (adjusted model, including energy intake)	Y

year and	Q4 Na range 6249-8230, median 7132 mg/d: OR 1.33 (95%Cl	
menopausal status	1.02, 1.73)	null weight
in females	Q5 Na range ≥8231, median 9804 mg/d: OR 1.56 (95%Cl 1.20,	category
	2.03)	women
	P for trend=0.0021	(adjusted
	*only adjusted for age	model
	Female: n=3190	including
	Q1 Na range <2394, median 1788 mg/d: Reference category	energy
	Q2 Na range 2394-3293, median 2861 mg/d: OR 0.92 (95%CI	intake)
	0.71, 1.21)	
	Q3 Na range 3294-4371, median 3782 mg/d: OR 0.93 (95%CI	
	0.71, 1.22)	
	Q4 Na range 4372-5879, median 4982 mg/d: OR 0.97 (95%CI	
	0.75, 1.27)	
	Q5 Na range ≥5880, median 7475 mg/d: OR 1.10 (95%Cl 0.85,	
	1.43)	
	P for trend=0.3046	
	*only adjusted for age	
	Model with energy intake adjustment	
	Odds (OR 95% CI) of overweight by quintile of sodium intake	
	(mg/d), stratified by sex	
	Male: n=2765	
	Q1 Na range <3565, median 2742 mg/d: Reference category	
	Q2 Na range 3565-4932, median 4247 mg/d: OR 1.35 (95%Cl	
	1.03, 1.78)	
	Q3 Na range 4936-6248, median 5564 mg/d: OR 1.22 (95%CI	
	0.92, 1.61)	
	Q4 Na range 6249-8230, median 7132 mg/d: OR 1.37 (95%Cl	
	1.02, 1.82)	
	Q5 Na range ≥8231, median 9804 mg/d: OR 1.67 (95%Cl 1.23,	
	2.27)	
	P for trend=0.0033	
	*adjusted for age, sex, energy intake, calcium, water, coffee,	
	tea and soda, smoking, etoh consumption, PA, educational	
	attainment, income, survey year	

						Female: n=3190 Q1 Na range <2394, median 1788 mg/d: Reference category Q2 Na range 2394-3293, median 2861 mg/d: OR 1.02 (95%Cl 0.77, 1.35) Q3 Na range 3294-4371, median 3782 mg/d: OR 1.03 (95%Cl 0.77, 1.37) Q4 Na range 4372-5879, median 4982 mg/d: OR 1.10 (95%Cl 0.82, 1.48) Q5 Na range ≥5880, median 7475 mg/d: OR 1.31 (95%Cl 0.96, 1.79) P for trend=0.0580 *adjusted for age, sex, energy intake, calcium, water, coffee, tea and soda, smoking, etoh consumption, PA, educational attainment, income, survey year and menopausal status		
Nam et al. 2017 ⁽⁷³⁾	Korea	640 Male 50%; 27% obese	BMI (kg/m²), weight category: obesity defined as BMI ≥25 kg/m²	Not reported	Adjusted for age, smoking status, physical activity, monthly household income, education level, and daily energy intake	Mean±SE BMI (kg/m ²) by quartile of sodium intake (mmol/d), stratified by sex Male n=320 Q1n=46 mean Na 86 mmol/d: 23.3 (0.4) kg/m ² Q2 n=71 mean Na 128 mmol/d: 23.7 (0.4) kg/m ² Q3 n=97 mean Na 166 mmol/d: 23.9 (0.3) kg/m ² Q4 n=112 mean Na 232 mmol/d: 25.3 (0.3) kg/m ² P for trend<0.001 *Adjusted for age, smoking status, physical activity, monthly, household income, education level, and daily energy intake Female n=320 Q1 n=115 mean Na 86 mmol/d: 21.5 (0.5) kg/m ² Q2 n=88 mean Na 128 mmol/d: 22.5 (0.5) kg/m ² Q3 n=69 mean Na 166 mmol/d: 22.7 (0.6) kg/m ² Q4 n=48 mean Na 232 mmol/d: 24.1 (0.6) kg/m ² P for trend<0.001 *Adjusted for age, smoking status, physical activity, monthly, household income, education level, and daily energy intake	+ BMI men & women (adjusted, including energy intake) + obesity men & women (adjusted, including energy intake)	Y
						Odds (OR 95% CI) of obesity associated with higher sodium intake (Q4 compared to Q1-Q3), stratified by sex Male n=320		

						Healthy weight BMI <25 kg/m ² : reference category Obese BMI ≥25 kg/m ² : OR 2.86 (95%CI 1.72, 4.75) *Adjusted for age, smoking status, physical activity, monthly, household income, education level, and daily energy intake Female n=320 Healthy weight BMI <25 kg/m ² : reference category Obese BMI ≥25 kg/m ² : OR 3.60 (95%CI 1.81, 7.15) *Adjusted for age, smoking status, physical activity, monthly, household income, education level, and daily energy intake **Note no base model without inclusion of energy intake available		
Huh et al. 2015 ⁽⁶⁶⁾	Korea	7162 50% male; mean age 20 y; mean BMI 22.5 kg/m ²	BMI (kg/m²)	Not reported	Unadjusted	Mean (SD) BMI (kg/m²) by tertile of sodium intake (mmol/d), stratified by sex Male n=3544: T1 n=1181 sodium ≤ 133 mmol/d: BMI 23.5 (3.1) T2 n=1182 sodium 133, 164 mmol/d: BMI 23.7 (3.0) T3 n=1181 sodium >164 mmol/d: BMI 24.1 (3.0) Overall between group P<0.001; T1 vs. T2 P=NS; T1 vs. T3	+ BMI men & women (unadjusted)	Y
Yi et al. 2014 ⁽¹¹⁾	USA	1656	BMI (kg/m²), weight category	Not reported	Adjusted for age, sex, race/ethnicity, poverty, education, physical activity, sugary drinks, and self-reported diet quality	*note unadjusted Difference in BMI (kg/m ²) associated with sodium intake (1000 mg/d) Overall: β =0.57 (95% CI 0.26, 0.89), P<0.001 Male: β =0.61 (95% CI 0.19, 1.02), P<0.001 Female: β =0.75 (95% CI 0.31, 1.19), P<0.001 *All models adjusted for age, sex (in main model), race/ethnicity, poverty, education, physical activity, sugary drinks, and self-reported diet quality	+ BMI men & women (adjusted) + weight category men &	Y

						Odds (OR 95% CI) of obesity associated with sodium intake (1000 mg/d) Overall: OR 1.26 (95% CI 1.11, 1.42), P<0.001 Male: OR 1.26 (95% CI 1.07, 1.49), P<0.05 Female: OR 1.39 (95% CI 1.18, 1.64), P<0.001 *All models adjusted for age, sex (in main model), race/ethnicity, poverty, education, physical activity, sugary drinks, and self-reported diet quality **note no base models without adjustment for sugary drink consumption were available however authors reported in text that inclusion of sugar drinks consumption did not appear to mediate the association between Na intake and measures of body size	women (adjusted)	
Yi et al. 2015 ⁽¹⁰⁾	USA	4613	BMI (kg/m²)	Mean Na 154 (104) mmol/d	Adjusted for sex, age, race/ethnicity, education and energy intake using residual method *note excludes mis- reporters (n=165) for energy intake outside range of 500-3500 kcal/d for women & 800-4000 kcal/day for men (n=165)	Difference in BMI (kg/m ²) associated with sodium intake (1000 mg/d) Overall: β =0.47 kg/m ² (95%Cl 0.24, 0.71), P<0.01 Male: β =0.37 kg/m ² (95%Cl 0.14, 0.60), P<0.01 Female: β =0.56 kg/m ² (95%Cl 0.21, 0.91), P<0.01 *adjusted for sex, age, race/ethnicity, education Additional adjustment energy intake Overall: β =1.03 kg/m ² (95%Cl 0.70, 1.35), P<0.001 Male: β =0.81 kg/m ² (95%Cl 0.38, 1.24), P<0.01 Female: β =1.32 kg/m ² (95%Cl 0.74, 1.90), P<0.001 *adjusted for sex, age, race/ethnicity, education and energy intake using residual method	+ BMI overall, male & female (adjusted, including energy intake)	Y
Aballay et a. 2014 ⁽⁵¹⁾	Argentina	4328 58% male; mean age 43 (18) y; 34% overweight, 17% obese	Weight category	Mean Na 2000 mg/d	Age, sex, SES, physical activity and energy intake	Odds (OR 95% CI) of obese vs. overweight/normal weight intake above or below Upper Level (i.e. 2300 mg/d) ≤UL 2300 mg/d: reference group >UL 2300 mg/d: OR 1.5 (95%CI 1.1, 1.8) *adjusted for age, sex, SES, physical activity and energy intake *Note no base model without inclusion of energy intake provided	+ weight category only when comparing obese vs. overweight/ normal (adjusted, including	N

							energy intake)	
Ma et al. 2015 ^{(9)I}	UK	785 Male 47%; mean age 49 y; mean BMI 27.7 kg/m ²	BMI (kg/m²), weight category	Mean salt 7.6 (3.3) g/d	Adjusted for age sex, ethnic group, household income, physical activity level, energy intake, etoh intake, smoking, education level	Mean±SE BMI (kg/m2) by tertile of salt intake (g/d) T1 mean salt 4.3 (1.1) g/d n=261: 27.3±0.6 kg/m ² T2 mean salt 7.2 (0.8) g/d n=265: 27.3±0.6 kg/m ² T3 mean salt 11.5 (2.4) g/d n=259: 28.6±0.6 kg/m ² P for trend <0.001 *adjusted for age, sex, ethnic group, household income, physical activity level, energy intake, misreporting of energy intake, etoh intake, smoking, education level Odds (OR 95% Cl) of overweight/obesity associated with salt intake (g/d) Healthy weight n=266, salt intake 6.2±0.2 g/d: reference group Overweight/obese n=519, salt intake 9.7±0.2: OR 1.26 (95% Cl 1.16, 1.37), P<0.001 *adjusted for age, sex, ethnic group, household income, physical activity level, energy intake, misreporting of energy intake, etoh intake, smoking, education level Alternative adjustment with SSB intake Healthy weight n=266, salt intake 6.2±0.2 g/d: reference group Overweight/obese n=519, salt intake 9.7±0.2: OR 1.26 (95% Cl 1.16, 1.37), P<0.001 *adjusted for age, sex, ethnic group, household income, physical activity level, energy intake, misreporting of energy intake, etoh intake, smoking, education level Alternative adjustment with SSB intake Healthy weight n=266, salt intake 6.2±0.2 g/d: reference group Overweight/obese n=519, salt intake 9.7±0.2: OR 1.28 (95% Cl 1.17, 1.39), P<0.001 *adjusted for age, sex, ethnic group, household income, physical activity level, SSB intake, misreporting of energy intake, etoh intake, smoking, education level	+ BMI (adjusted, including energy intake) + weight category (adjusted, including energy intake)	Y
						*Note no base models without inclusion of energy intake provided		
Navia et al. 2014 ⁽⁷⁴⁾	Spain	418 Male 47%; 37 y; BMI 25.3; 34% overweight, 14% obese	BMI (kg/m²), weight category	Mean Na 168 (79) mmol/d	Adjusted for age, sex *additional adjustment for energy intake only	Difference in BMI (kg/m ²) associated with sodium intake (mmol/L) β=0.0082±0.0024, P<0.001 , R ² =0.30 *adjusted for age, sex	+ very weak BMI (adjusted, including energy intake)	Ν

					in weight category model	Odds (OR 95% CI) of overweigh/obesity associated with sodium intake (mmol/L) OR=1.0041 (95%CI 1.0015, 1.0067) P<0.01 *adjusted for age, sex and energy intake **note no base model without inclusion of energy intake provided		
Zhou et al. 2019 ⁽¹⁰⁴⁾	Japan, China, UK, USA	4680 (Japan n=1145, China n=839, UK n=501, USA n=2195) Male 50% Mean age 49 y	BMI (kg/m ²), weight category (overwei ght/obes e defined as BMI ≥25 kg/m ²	Mean salt intake (g/d) Japan 11.6 (3.3), China 13.3 (5.9), UK 8.5 (2.9), USA 9.5 (3.5), total sample 10.6 (4.2)	Adjusted for age, gender, sample centre, smoking status, drinking status, years of education, PA in leisure time, dietary fibre intake, and total energy intake (derived from 4 x 24-hr diet recalls)	Difference in BMI (kg/m ²) associated with salt intake (1 g/d) Japan n=1145 β =0.28 (95% Cl 0.23, 0.33), P<0.0001 China n=839 β =0.11 (95% Cl 0.06, 0.15), P<0.0001 UK n=501 β =0.41 (95% Cl 0.27, 0.56), P<0.0001 USA n=2195 β =0.53 (95% Cl 0.46, 0.60), P<0.0001 All n=4680 β =0.35 (95% Cl 0.31, 0.38), P<0.0001 *all models adjusted for age, gender, sample centre, smoking status, drinking status, years of education, PA in leisure time Additional adjustment energy intake + fibre intake Japan n=1145 β =0.28 (95% Cl 0.23, 0.34), P<0.0001 China n=839 β =0.10 (95% Cl 0.27, 0.56), P<0.0001 UK n=501 β =0.42 (95% Cl 0.27, 0.56), P<0.0001 USA n=2195 β =0.52 (95% Cl 0.45, 0.59), P<0.0001 All n=4680 β =0.34 (95% Cl 0.30, 0.38), P<0.0001 *all models adjusted for age, gender, sample centre, smoking status, drinking status, years of education, PA in leisure time, energy intake, fibre intake	+ BMI (adjusted, including energy intake) + weight category (adjusted, including energy intake)	Y
						Odds (OR 95% CI) of overweight/obesity vs. healthy weight associated with salt intake (1 g/d)		

Zhao et al.	USA	730	BMI	Mean Na	Adjusted for age,	Difference in BMI (kg/m ²) associated with sodium intake	+ BMI	Y
2019 ⁽¹⁰³⁾		Male 50%;	(kg/m²),	3567±40 mg/d	sex, race-Hispanic	(1000 mg/d)	(adjusted,	
		Mean age 43	weight		origin, PA, ETOH	β=3.8 (95% Cl 2.8, 4.8), P<0.001	including	
		y; 73%	category		consumption,	*adjusted for age, sex, race-Hispanic origin, PA, ETOH	energy	
		overweight/o	(overwei		smoking status,	consumption, smoking status, educational attainment	intake)	
		bese	ght/obes		educational	Additional adjustment usual energy intake (kcal/d)		
			e defined		attainment and	β=3.8 (95% CI 2.8, 4.8), P<0.001	+ weight	
			as BMI		either usual intake	*adjusted for age, sex, race-Hispanic origin, PA, ETOH	category	
			≥25		of total energy or	consumption, smoking status, educational attainment, usual	(adjusted,	
			kg/m²		SSB (diet measures	total energy intake	including	
					derived from up to	Alternative additional adjustment usual SSB intake (g/d)	energy	
					2 x 24-hr diet	β=3.8 (95% Cl 2.8, 4.7), P<0.001	intake)	
					recalls adjusted to	*adjusted for age, sex, race-Hispanic origin, PA, ETOH		
					usual intakes)	consumption, smoking status, educational attainment, usual		
						SSB intake		
						Odds (Or 95% CI) of overweight/obesity by quartile of		
						sodium intake (mg/d)		
						Q1 median sodium 2505 mg/d: Reference category		
						Q2 median sodium 3176 mg/d: OR 1.36 (95%Cl 1.26, 1.46)		
						Q3 median sodium 3753 mg/d: OR 1.60 (95%Cl 1.44, 1.79)		
						Q4 median sodium 4662 mg/d: OR 1.87 (95% Cl 1.65, 2.13)		
						P for trend<0.001		
						*adjusted for age, sex, race-Hispanic origin, PA, ETOH		
						consumption, smoking status, educational attainment		
						Additional adjustment usual energy intake (kcal/d)		
						Q1 median sodium 2505 mg/d: Reference category		
						Q2 median sodium 3176 mg/d: OR 1.38 (95%Cl 1.28, 1.49)		
						Q3 median sodium 3753 mg/d: OR 1.65 (95%Cl 1.48, 1.85)		
						Q4 median sodium 4662 mg/d: OR 1.93 (95% CI 1.69, 2.20)		
						P for trend<0.001		
						*adjusted for age, sex, race-Hispanic origin, PA, ETOH		
						consumption, smoking status, educational attainment, usual		
						total energy intake		
						Alternative additional adjustment usual SSB intake (g/d)		
						Q1 median sodium 2505 mg/d: Reference category		

						Q2 median sodium 3176 mg/d: OR 1.35 (95%Cl 1.26, 1.45) Q3 median sodium 3753 mg/d: OR 1.60 (95%Cl 1.44, 1.77) Q4 median sodium 4662 mg/d: OR 1.86 (95% Cl 1.64, 2.11) P for trend<0.001 *adjusted for age, sex, race-Hispanic origin, PA, ETOH consumption, smoking status, educational attainment, usual total SSB intake		
Choi & Run 2017 ⁽⁵⁷⁾	Korea	80 Male 50%; mean age 43 y; mean BMI 22.4 kg/m ² ; 18% obese (BMI>25)	BMI (kg/m²)	Mean Na 3960 (1824) mg/d)	Adjusted for age, sex, total energy intake, potassium intake, smoking status, household income, education level, PA	Difference in BMI (kg/m ²) associated with sodium intake (mg/d) β (standardised)=0.11±0.18, P=NS, R ² =0.20	Null BMI (adjusted, including energy intake)	Ν
Elfassy et al. 2018 ⁽⁵⁹⁾	USA	435 sub- sample with 24-hr urine 47% male; mean age 42 y	BMI (kg/m²)	Not reported	*adjusted for age, sex, heritage, education, income, language preference, nativity/years in the US, study site, missing one urine void + smoking, hypertension, diabetes, alcohol use, depression, PA (total METs/wk), energy intake derived from DLW	Difference in BMI (kg/m ²) associated with sodium intake (500 mg/d) β =0.46 kg/m ² (95%CI 0.26, 0.66), P<0.05 *adjusted for age, sex, heritage, education, income, language preference, nativity/years in the US, study site, missing one urine void Additional adjustment energy intake) β =0.27 kg/m ² (95%CI 0.08, 0.45), P<0.05 *adjusted for age, sex, heritage, education, income, language preference, nativity/years in the US, study site, missing one urine void + smoking, hypertension, diabetes, alcohol use, depression, PA (total METs/wk), energy intake derived from DLW Alternative model using sodium density (250 mg/1000 kcal) as independent variable β =0.12 kg/m ² (95%CI -0.13, 0.37), P=NS *adjusted for age, sex, heritage, education, income, language preference, nativity/years in the US, study site, missing one urine void + smoking, hypertension, diabetes, alcohol use, depression, PA (total METs/wk)	+ BMI (adjusted, including energy intake) Null BMI (adjusted based on sodium density)	Y

Yoon et al. 2013 ⁽¹²⁾	Korea	20586 Male 40%; 31% obese	BMI (kg/m²), weight category: obesity defined as BMI ≥25 kg/m²	Mean Na 5057 mg/d	Adjusted for age, sex, household income, total weekly physical activity (MET/week) and energy intake (kcal/day) *exposure is sodium density mg/g/d	Odds (OR 95% CI) of obesity by quintile of sodium density (mg/g/d) Q1 sodium density 0.1, 2.1 mg/g/d: reference category Q2 sodium density 2.2, 3.0 mg/g/d: OR 1.02 (95%CI 0.89, 1.16) Q3 sodium density 3.1, 3.9 mg/g/d: OR 1.04 (95%CI 0.91, 1.18) Q4 sodium density 4.0, 5.2 mg/g/d: OR 1.08 (95%CI 0.96, 1.21) Q5 sodium density 5.3, 29.3 mg/g/d: OR 1.18 (95%CI 1.04, 1.35) P for trend =0.002 *adjusted for age, sex, household income, total weekly physical activity (MET/week) and energy intake (kcal/day) *Note no base models without inclusion of estimated energy intake provided	+ weight category (adjusted, including energy intake))	Ν
Murakami et al. 2015 ⁽⁷²⁾	Japan	1043 Female 100%; mean age 20 y; 7.7% obese i.e. BMI ≥25	BMI (kg/m²), weight category: obesity defined as BMI ≥25 kg/m²	Mean Na density 1962 (751) mg/4184 kJ/d	Adjusted for estimated energy intake (EER), survey year, region, municipality level, residential status, physical activity, potassium and protein intake *exposure sodium density mg/4184 kJ/d	Mean±SE BMI (kg/m ²) by quartile of energy adjusted sodium intake (mg/4184 kJ) Q1 median sodium 1155 mg/4184 kJ: 21.0± 0.2 Q2 median sodium 1659 mg/4184 kJ: 21.2±0.2 Q3 median sodium 2124 mg/4184 kJ: 21.1±0.2 Q4: median 2766 mg/4184 kJ: 21.7±0.2 P for trend=0.005 * adjusted for survey year, region, municipality level, residential status, current etoh, current smoking status, PA, estimated energy intake (EER) and 24 h urine K and protein Odds (OR 95% CI) of obesity by quartile of energy adjusted sodium intake (mg/4184 kJ) Q1 median sodium 1155 mg/4184 kJ: reference category Q2 median sodium 1659 mg/4184 kJ: OR 1.81 (95% CI 0.88, 3.74) Q3 median sodium 2124 mg/4184 kJ: OR 1.43 (95% CI 0.66, 3.09) Q4: median 2766 mg/4184 kJ: OR 2.49 (95% CI 1.15, 5.42) P for trend=0.04	+ BMI (adjusted, including energy intake) + weight category (adjusted, including energy intake)	Ν

* adjusted for survey year, region, municipality level, residential status, current etoh, current smoking status, PA, estimated energy intake (EER) and 24 h urine K and protein *Note no base models without inclusion of estimated energy intake were provided

Abbreviations: Na sodium; BMI body mass index; WHO World Health Organization; WC waist circumference; SES socio-economic status; FFQ food Frequency Questionnaire; PA physical Activity; SSB sugar sweetened beverage; ETOH alcohol consumption, UK United Kingdom, USA United States of Australia

Red text is used to highlight those studies which have considered adjustment with energy or SSB intake

^a Measures of variance represent (SD) or ±SE unless otherwise specified

^br correlation coefficient, θ represents unstandardized regression beta-coefficient unless otherwise stated

^c Where possible summary based on most adjusted model

^d Self-reported measure of BW and height

^e methods used to measure BW and height not stated

Study	Country	N, sample characteristics	Adiposity outcome	Sodium/salt intake ^a	Covariates; stratification	Findings ^b	Summary ^c	Included in meta- analyses related to this outcome
Strazzullo et al. 1983 ⁽⁹²⁾	Naples, Italy	188 Male 100%; mean age 41 y; mean BMI 26.3 kg/m ²	BW (kg) ^d	Mean Na 177 (59) mmol/d	None	Significant positive correlation between sodium intake (mmol/d) and BW (kg) (<i>r</i> =0.30, P<0.001)	+ BW men (unadjuste d)	N
Cheung et al. 2000 ⁽⁵⁶⁾	China	117 Male 77%; 60% hypertensive	BW (kg)	Not reported	None	No correlation between sodium intake and BW (kg) (<i>r</i> =0.23, P=0.06)	Null BW (unadjuste d)	Ν
Campino et al. 2016 ⁽⁵⁵⁾	Chile	135	BW (kg)	Mean Na 4160 (SD 1651) mg/d	None	Significant positive correlation between sodium intake (mmol/d) and BW (kg) (<i>r</i> =0.46, P<0.001))	+ BW (unadjuste d)	Ν
Villani et al. 2012i ⁽⁹⁶⁾	Adelaide, Australia	88 Male 59%; mean age male 62 y & female 59 y; mean BMI male 34.5 kg/m ² & female 35.9 kg/m ²	BW (kg)	Mean Na male 195 (74) mmol/d; female 144 (42) mmol/d	None	Significant positive correlation between sodium intake (mmol/d) and BW (kg) (<i>r</i> =0.36, P <0.001).	+ weak BW	Ν
Sanchez- Castillo et al. ⁽⁸⁷⁾	Cambridg eshire, UK	83 Male 40%	BW (kg) ^d	Mean Na male 187 (55) mmol/d;	None, sex stratified	Significant positive correlation between sodium intake (mmol/d) and BW (kg) in both men (P<0.05) and women (P<0.001). Regression equations:	+ BW men & women (unadjuste d)	Ν

Supplemental Table 6. Summary of findings from cross-sectional studies among adults, outcome: body weight (BW)

				female 131 (35) mmol/d		Male: Salt (g/d)=0.10 BW + 2.4 Female: Salt (g/d)=0.10 BW+0.8		
Baudrand et al. 2014 ⁽⁵³⁾	Santiago, Chile	370 Male 30%; mean age 50 y; mean BMI 29.3 (kg/m ²); 72% hypertensive	BW (kg)	Mean Na 195 (81) mmol/d	None	Significant positive correlation between sodium intake (mmol/d) and BW (kg) (r=0.29, P<0.001).	+ weak BW (unadjuste d)	Ν
Jiet & Soma 2017 ⁽⁶⁸⁾	Malaysia	Convenience sample of university students aged 18-25 y recruited from University of Nottingham Malaysia Campus	BW (kg)	Mean Na 175 mmol/d	None	Significant positive correlation between sodium intake (mmol/d) and BW (kg) (r=0.47, P=0.01)	+ BW (unadjuste d)	Ν
Hashimoto et al. 2016 ⁽⁶⁴⁾	Japan	7629 Male 63%; mean age 56 (12) y	BW (kg)	Mean salt 8.8 (1.9) g/d	Age, sex, SBP, DBP, heart rate, FPG, LDL-C, HDL- C, TG, serum Cr, uric acid, smoking status, eGFR, ECG voltage, urine albumin-to- creatinine ratio	Difference in BW (kg) associated with salt intake (g/d) β(standardised)=0.317, P<0.001 *adjusted for age, sex, SBP, DBP, heart rate, FPG, LDL-C, HDL-C, TG, serum Cr, uric acid, smoking status, eGFR, ECG voltage, urine albumin-to-creatinine ratio	+ BW (adjusted)	Ν
Yi et al. 2014 ⁽¹¹⁾	USA	1656	BW (kg)	Not reported	Adjusted for age, sex, race/ethnicity, poverty, education,	Difference in BW (pounds) associated with sodium intake (1000 mg/d) Overall: β=4.18 (95% CI 2.01, 6.36), P<0.001 Male: β=4.88 (95% CI 1.73, 8.02), P<0.001 Female: β=4.61 (95% CI 1.81, 7.41), P<0.001	+ BW men & women (adjusted)	Ν

					physical activity, sugary drinks, and self-reported diet quality	*All models adjusted for age, sex (in main model), race/ethnicity, poverty, education, physical activity, sugary drinks, and self-reported diet quality **note no base models without adjustment for sugary drink consumption were available however authors reported in text that inclusion of sugar drinks consumption did not appear to mediate the association between Na intake and measures of body size		
Yi et al. 2015 ⁽¹⁰⁾	USA	4613	BW (kg)	Mean Na 154 (104) mmol/d	Adjusted for sex, age, race/ethnicity, education and energy intake using residual method *note excludes mis-reporters (n=165) for energy intake outside range of 500-3500 kcal/d for women & 800-4000 kcal/day for men (n=165)	Difference in BW (kg) associated with sodium intake (1000 mg/d) Overall: β =1.72 kg (95%Cl 1.00, 2.44), P<0.001 Male: β =1.47 kg (95%Cl 0.66, 2.28), P<0.01 Female: β =1.92 kg (95%Cl 0.85, 2.99), P-value <0.01 *adjusted for sex, age, race/ethnicity, education Additional adjustment energy intake Overall: β =2.75 kg (95%Cl 1.90, 3.60), P-value <0.001 Male: β =2.51 kg (95%Cl 1.12, 3.90), P<0.01 Female: β =3.02 kg (95%Cl 1.36, 4.68), P<0.01 *adjusted for sex, age, race/ethnicity, education and energy intake using residual method	+ BW overall, male & female (adjusted, including energy intake)	Ν
Yokokawa et al. 2016 ⁽¹⁰¹⁾	Thailand	793 Males 52%; mean age 66.5 (SD 8.9) y	BW (kg)	Mean salt 9.9 (2.3) g/d	None	Mean (SD) BW (kg) by category of low <10.0 g/d) or high \geq 10 g/d salt intake Low salt intake <10.0 g/d n=431: 56.8 (10.5) kg High salt intake \geq 10.0 g/d n=362: 61.8 (11.6) kg P<0.01	+ BW (unadjuste d)	Y
Vega-Vega et a. 2018 ⁽⁹³⁾	Mexico	727 36% male; mean age 39 y	BW (kg)	Mean Na 151 (SD 60) mmol/d	None	Mean (SD) BW (kg) across three groups of sodium intake (mmold) (groups based on recommended sodium intake	+ BW (unadjuste d)	Y

						<pre><2000 mg/d; high sodium 2000-3600 mg/d; very high sodium >3600 mg/d) G1: <2000 mg/d; n=77, BW 62.2 (11.6) G2: 2000-3600 mg/d; n=330, BW 67.7 (12.4) G3: >3600 mg/d; n=320, BW 76.9 (15.1) ANOVA between group difference P<0.0001</pre>		
Hulthen et al. 2010 ⁽⁶⁷⁾	Sweden	79 Male 100%; mean age 19 y; mean BMI 22.5 (kg/m²)	BW (kg)	Mean Na 198 (69) mmol/d	None	Mean (SD) BW (kg) by lowest and highest quartile of sodium intake (mmol/d) Q1 n=20 mean sodium 100 (18) mmol/d: 69.8 (10.9) kg Q4 n=20 mean sodium 297 (40) mmol/d: 79.5 (14.6) kg Mann-Whitney U test P=0.002	+ BW (unadjuste d)	Y
Eufinger et al. 2012 ⁽⁶⁰⁾	USA	286 Male 100%; mean age 54 y	BW (kg)	Intake not stated; 81% sodium intake ≤1500 mg/d (USDA maximum recommenda tion for adults ≥51 y)	Adjusted for pair clustering (i.e. twins)	Mean±SE BW (kg) by quantile of sodium intake (mg/d) ^h Q1 n=57 <732 mg/d: 89.6±2.0 kg Q2 n=57 732-973 mg/d: 89.1±2.1 kg Q3 n=58 974-1179 mg/d: 89.41±2.0 kg Q4 n=57 1180-1456 mg/d: 88.6±2.0 kg Q5 n=57 >1456mg/d: BMI 95.0±2.0 kg P for trend across quintiles P=0.09	Null BW men	Y
Hoffman et al. 2009 ⁽⁶⁵⁾	Caracas, Venezuel a	766 33% male; mean age 45 (17) y	BW (kg)	Mean Na 143 (69) mmol/d	None, stratified by sex	Mean±SE BW (kg) (SEM) by quartile of sodium intake (mmol/d), stratified by sex Male: Q1 n=63: <120; BW 79.0 (2.0) kg Q2 n=69: 120-159; BW 80.0 (2.0) kg Q3 n=56: 159-211; BW 91.0 (2.0) kg Q4 n=61: >211; BW 91.0 (2.0) kg P<0.001 Female: Q1 n=129: <92; BW 67.5 (1.0) kg Q2 n=146: 92-125; BW 69.8 (1.0) kg Q3 n=113: 125-158; BW 71.0 (1.0) kg Q4 n=127: >158; BW 74.0 (1.0) kg	+ BW (unadjuste d)	Y

						P<0.001		
Madhavan et al. 1994 ⁽⁷¹⁾	New York City, USA	808 51 y; 76% hypertensive; 44% Black, 56% Caucasian	BW (kg)	Mean Na Black male 137 (70) mmol/d; Black female 112 (50) mmol/d; Caucasian male 139 (70) mmol/d; Caucasian female 113 (56) mmol/d	None, stratified by race	Mean (SD) BW (kg) by tertile of sodium intake (mmol/d), stratified by sex and race Black male: T1 n=76, <102 mmol/d: 78.1 (9.7) kg T2 n=67, 102-156 mmol/d: 81.9 (12.4) kg T3 n=74 ≥157 mmol/d: 87.7 (12.5) kg Between group difference P≤0.01 Black females: T1 n=41, <102 mmol/d: 69.7 (13.0) kg T2 n=49, 102-156 mmol/d: 74.0 (11.6) kg T3 n=48, ≥157 mmol/d: 78.1 (15.7) kg Between group difference P≤0.05 Caucasian males: T1 n=103, <102 mmol/d: 78.2±10.4 kg T2 n=118, 102-156 mmol/d: 80.6±10.0 kg T3 n=108, ≥157 mmol/d: 86.6±12.6 kg Between group difference P≤0.01 v Caucasian females: T1 n=46, <102 mmol/d: 62.8 (8.9) kg T2 n=36, 102-156 mmol/d: 65.6 (10.4) kg T3 n=42, ≥157 mmol/d: 70.5 (12.7) kg	+ BW male & female, Black & Caucasian (unadjuste d)	Y
Nam et al. 2017 ⁽⁷³⁾	Korea	640 Male 50%; 27% obese	BW (kg)	Not reported	Adjusted for age, smoking status, physical activity, monthly household income, education level, and daily energy intake	Between group difference P≤0.01 Mean±SE BW (kg) by quartile of sodium intake (mmol/d), stratified by sex Male n=320 Q1 mean Na 86 mmol/d: 68.0 (1.4) kg Q2 mean Na 128 mmol/d: 69.5 (1.1) kg Q3 mean Na 166 mmol/d: 70.4 (1.1) kg Q4 mean Na 232 mmol/d: 75.5 (1.0) kg P-value for trend<0.001	+ BW men & women (adjusted, including energy intake)	Y

						*Adjusted for age, smoking status, physical activity, monthly, household income, education level, and daily energy intake		
						Female n=320 Q1 mean Na 86 mmol/d: 55.7 (1.6) kg Q2 mean Na 128 mmol/d: 58.9 (1.6) kg Q3 mean Na 166 mmol/d: 58.9 (1.7) kg Q4 mean Na 232 mmol/d: 63.5 (1.8) kg *P for trend<0.001 *Adjusted for age, smoking status, physical activity, monthly, household income, education level, and daily energy intake		
Yi et al. 2014 ⁽¹¹⁾	USA	1656	BW (kg)	Not reported	Adjusted for age, sex, race/ethnicity, poverty, education, physical activity, sugary drinks, and self-reported diet quality	Difference in BW (pounds) associated with sodium intake (1000 mg/d) Overall: β =4.18 (95% CI 2.01, 6.36), P<0.001 Male: β =4.88 (95% CI 1.73, 8.02), P<0.001 Female: β =4.61 (95% CI 1.81, 7.41), P<0.001 *All models adjusted for age, sex (in main model), race/ethnicity, poverty, education, physical activity, sugary drinks, and self-reported diet quality **note no base models without adjustment for sugary drink consumption were available however authors reported in text that inclusion of sugar drinks consumption did not appear to mediate the association between Na intake and measures of body size	+ BW men & women (adjusted with sugary drinks)	Ν
Yi et al. 2015 ⁽¹⁰⁾	USA	4613	BW (kg)	Mean Na 154 (104) mmol/d	Adjusted for sex, age, race/ethnicity, education and energy intake using residual method	Difference in BW (kg) associated with sodium intake (1000 mg/d) Overall: β =1.72 kg (95%Cl 1.00, 2.44), P<0.001 Male: β =1.47 kg (95%Cl 0.66, 2.28), P<0.01 Female: β =1.92 kg (95%Cl 0.85, 2.99), P-value <0.01 *adjusted for sex, age, race/ethnicity, education	+ BW overall, male & female (adjusted, including	Ν

					*note excludes mis-reporters (n=165) for energy intake outside range of 500-3500 kcal/d for women & 800-4000 kcal/day for men (n=165)	Additional adjustment energy intake Overall: β =2.75 kg (95%Cl 1.90, 3.60), P-value <0.001 Male: β =2.51 kg (95%Cl 1.12, 3.90), P<0.01 Female: β =3.02 kg (95%Cl 1.36, 4.68), P<0.01 *adjusted for sex, age, race/ethnicity, education and energy intake using residual method	energy intake)	
Crouch et al. 2018 ⁽⁵⁸⁾	South Africa	761 43% male; 46% overweight/ob ese	BW (kg)	Mean Na 130 mmol/d	Age, SES, energy expenditure, energy intake derived from 3 x 24-hr diet recalls, cotinine, y- glutamyltransfera se, high-density lipoprotein cholesterol, SBP, glucose, C- reactive protein, aldosterone	Difference in BW (kg) associated with logarithmic sodium sodium intake (mg/d) β =2.83±1.65 (P=0.09) *adjusted for age, SES, energy expenditure, cotinine, y- glutamyltransferase, high-density lipoprotein cholesterol, SBP, glucose, C-reactive protein, aldosterone Additional adjustment with energy intake β =03.13±1.64 (P=0.06) *adjusted for age, SES, energy expenditure, energy intake, cotinine, y-glutamyltransferase, high-density lipoprotein cholesterol, SBP, glucose, C-reactive protein, aldosterone, energy intake	Null BW (adjusted, including energy intake)	Ν
Choi & Run 2017 ⁽⁵⁷⁾	Korea	80 Male 50%; 43 y; BMI 22.4; 18% obese (BMI>25)	BW (kg)	Mean Na 3960 (1824) mg/d)	Adjusted for age, sex, total energy intake, potassium intake, smoking status, household income, education level, PA	Difference in BW (kg) associated with sodium intake (mg/d) β (standardised)=0.42±0.52, P=NS, R ² =0.38	Null BW (adjusted, including energy intake)	Ν
Zhang et al. 2018 ⁽¹⁰²⁾	USA	9306 Male 53%	BW (kg)	Median Na 3320 mg/d	Age, sex, race, smoking, alcohol	Difference in BW (kg) associated with sodium intake 1g/d	+ BW (adjusted,	Ν

Median age 35 y; 23% obese	drinking, physical activity, education, family annual income, and total energy intake	β=1.38 (95%Cl 0.14, 2.62), P=not reported *adjusted for age, sex, race, smoking, alcohol drinking, physical activity, education, family annual income, and total energy intake	including energy intake)
-------------------------------	--	---	--------------------------------

Abbreviations: Na sodium; BW body weight; BMI body mass index; WHO World Health Organization; WC waist circumference; SES socio-economic status; FFQ food Frequency Questionnaire; PA physical Activity; SSB sugar sweetened beverage; ETOH alcohol consumption, UK United Kingdom, USA United States of Australia

Red text is used to highlight those studies which have considered adjustment with energy or SSB intake

^a Measures of variance represent (SD) or ±SE unless otherwise specified

^br correlation coefficient, β represents unstandardized regression beta-coefficient unless otherwise stated

^c Where possible summary based on most adjusted model

^dSelf-reported measure of BW and height

Study	Country	N, sample characteristics	Adiposity outcome	Sodium/salt intake	Covariates; stratification	Findings ^b	Summary ^c	Included in meta- analyses related to this outcome
Perin et al. 2019 ⁽⁷⁸⁾	Brazil	Population based random sample of adults aged 20-80 y residing in town of Artur Nogueira, southeast region of Brazil	WC (cm)	Mean salt 10.5 (SD 4.5) g/d	None	Significant weak positive correlation between sodium intake (mmol/d) and WC (cm) in males (r=0.226, P<0.001) and in females (r=0.166, P=0.004).	+ weak WC (unadjusted)	Ν
Yi et al. 2014 ⁽¹¹⁾	USA	1656	WC (cm)	Not reported	Adjusted for age, sex, race/ethnicity, poverty, education, physical activity, sugary drinks, and self-reported diet quality	Difference in WC (inches) associated with sodium intake (1000 mg/d) Overall: β =0.51 (95% CI 0.22, 0.79), P<0.001 Male: β =0.57 (95% CI 0.19, 0.96), P<0.001 Female: β =0.61 (95% CI 0.21, 1.00), P<0.001 *All models adjusted for age, sex (in main model), race/ethnicity, poverty, education, physical activity, sugary drinks, and self-reported diet quality **note no base models without adjustment for sugary drink consumption were available however authors reported in text that inclusion of sugar drinks consumption did not appear to mediate the association between Na intake and measures of body size	+ WC men & women (adjusted for sugary drinks)	Ν

Supplemental Table 7. Summary of findings from cross-sectional studies among adults, outcome: waist circumference (WC) or abdominal obesity

Viotal	110 1	1612	MC (cm)	Moon No 154	Adjusted for	Difference in WC (cm) accordated with codium intoke		N
Yi et al. 2015 ⁽¹⁰⁾	USA	4613	WC (cm)	Mean Na 154 (104) mmol/d	Adjusted for sex, age, race/ethnicity, education and energy intake using residual method *note excludes mis- reporters (n=165) for energy intake outside range of 500-3500 kcal/d for women & 800- 4000 kcal/day for men (n=165)	Difference in WC (cm) associated with sodium intake (1000 mg/d) Overall: β =2.15 cm (95%Cl 1.41, 2.90), P<0.001 Male: β =1.85 cm (95%Cl 0.70, 3.00), P<0.01 Female: β =2.48 cm (95%Cl 1.04, 3.93), P<0.01 *adjusted for sex, age, race/ethnicity, education Additional adjustment energy intake Overall: β =1.12 cm (95%Cl 0.61, 1.63), P<0.001 Male: β =0.87 cm (95%Cl 0.24, 1.50), P<0.05 Female: β =1.40 cm (95%Cl 0.68, 2.13), P<0.01 *adjusted for sex, age, race/ethnicity, education and energy intake using residual method	+ WC overall, male & female (adjusted, including energy intake)	Ν
Navia et al. 2014 ⁽⁷⁴⁾	Spain	418 Male 47%; mean age 37 y; mean BMI 25.3; 34% overweight, 14% obese	WC (cm)	Mean Na 168 (79) mmol/d	Adjusted for age, sex	Difference in WC (cm) associated with sodium intake (mmol/L) β =1.11±0.34, P<0.001, R ² =0.37 *adjusted for age, sex	+ WC (adjusted)	Ν
Yoon et al. 2013 ⁽¹²⁾	Korea	20586 Male 40%; 31% obese	WC (cm), abdomina I obesity defined as WC ≥90 cm for men &	Mean sodium 5057 mg/d	Adjusted for age, sex, household income, total weekly physical activity	Odds (OR 95% CI) of abdominal obesity by quintile of sodium density (mg/g/d) Q1 sodium density 0.1, 2.1 mg/g/d: reference category Q2 sodium density 2.2, 3.0 mg/g/d: OR 1.03 (95%CI 0.90, 1.18)	+ abdominal obesity (adjusted, including energy intake)	Ν

			≥85 cm for women		(MET/week) and energy intake (kcal/day) *exposure is sodium density mg/g/d	Q3 sodium density 3.1, 3.9 mg/g/d: OR 1.07 (95%Cl 0.93, 1.22) Q4 sodium density 4.0, 5.2 mg/g/d: OR 1.04 (95%Cl 0.91, 1.18) Q5 sodium density 5.3, 29.3 mg/g/d: OR 1.13 (95%Cl 0.99, 1.29) P for trend =0.043 * adjusted for age, sex, sleep duration (5 h or less, 6, 7, 8, and 9 h) smoking status, alcohol intake (g/d), total weekly physical activity (MET/week), education level and energy intake (kcal/day) *Note no base models without inclusion of estimated energy intake were provided		
Murakami et al. 2015 ⁽⁷²⁾	Japan	1043 Female 100%; mean age 20 y; 7.7% obese i.e. BMI ≥25	WC (cm), abdomina l obesity defined as WC ≥80cm	Mean sodium density 1962 (751) mg/4184 kJ/d	Adjusted for estimated energy intake (EER), survey year, region, municipality level, residential status, physical activity, potassium and protein intake *exposure sodium density mg/4184 kJ/d	Mean±SE WC (cm) by quartile of energy adjusted sodium intake (mg/4184 kJ) Q1 median sodium 1155 mg/4184 kJ: 72.3± 0.4 Q2 median sodium 1659 mg/4184 kJ: 72.6±0.4 Q3 median sodium 2124 mg/4184 kJ: 72.6±0.4 Q4: median 2766 mg/4184 kJ: 73.3±0.4 P for trend=0.14 * adjusted for survey year, region, municipality level, residential status, current etoh, current smoking status, PA, estimated energy intake (EER) and 24 h urine K and protein Odds (OR 95% CI) of abdominal obesity by quartile of energy adjusted sodium intake (mg/4184 kJ) Q1 median sodium 1155 mg/4184 kJ: reference category Q2 median sodium 1659 mg/4184 kJ: OR 1.06 (95% CI 0.61, 1.83) Q3 median sodium 2124 mg/4184 kJ: OR 1.20 (95%CI	Null WC (adjusted, including energy intake) + abdominal obesity (adjusted, including energy intake)	Ν

						Q4: median 2766 mg/4184 kJ: OR 1.77 (95%CI 1.00, 3.16) P for trend=0.04 * adjusted for survey year, region, municipality level, residential status, current etoh, current smoking status, PA, estimated energy intake (EER) and 24 h urine K and protein *Note no base models without inclusion of estimated energy intake were provided		
Petermann -Rocha et al. 2019 ⁽⁸⁰⁾	Chile	2913 42% male; mean age 46 y	WC (cm)	Not reported	None	Mean (SD) WC (cm) by category of low <3.6 g/d) or high ≥3.6 g/d salt intake (as defined by median of 3.6 g/d) Low salt intake <3.6 g/d n=939: 87.7 (12.3) cm High salt intake ≥3.6 g/d n=1974: 93.4 (12.9) cm	No statistical test performed	Y
Lee et al. 2015 ⁽⁷⁰⁾	Korea	1586 51% male	WC (cm)	Mean Na 156 (34) mmol/d	None	Mean (SD) WC by tertile of sodium intake (mmol/d) T1 n=528: 119 (16); WC 77.7 (8.2) cm T2 n=529: 154 (8); WC 78.7 (8.0) cm T3 n=529: 193 (18); WC 81.0 (8.0) cm P for trend <0.001	+ WC (unadjusted)	Y
Radhika et al. 2007 ⁽⁸³⁾	Chennai, India	1902 27% hypertensive	WC (cm)	Mean salt 8.5 g/d	None	Mean WC (cm) (SD) by salt (g/d) quintile Q1 n=385, mean salt 4.9 g/d: 79.3 (10.8) cm Q2 n=391, mean salt 6.6 g/d: 81.3 (11.0) cm Q3 n=384, mean salt 7.9 g/d: 84.5 (11.7) cm Q4 n=376, mean salt 9.6 g/d: 85.9 (11.9) cm Q5 n=366), mean salt 13.8 g/d: 87.0 (11.1) cm P for trend<0.0001	+ WC (unadjusted)	Y
Yan et al. 2016 ⁽¹⁰⁰⁾	China	1975 Male 53%, mean age 41 (14) y, 52% overweight or obese	WC (cm)	Mean Na 232 (87) mmol/d	None	Mean (SD) WC (cm) by quartile of sodium intake (mmol/d) Q1 mean Na 138 (SD 32) mmol/d: 80.3 (10.5) cm Q2 mean Na 206 (SD 15) mmol/d: 83.3 (11.0) cm Q3 mean Na 247 (SD 8) mmol/d: 84.2 (10.1) cm Q4 mean Na 344 (SD 86) mmol/d: 86.7 (12.2) cm P<0.001	+ WC (unadjusted)	Y

Hoffman et al. 2009 ⁽⁶⁵⁾	Caracas, Venezuel a	766 33% male; mean age 45 (17) γ	WC (cm)	Mean Na 143 (69) mmol/d	None, stratified by sex	Mean±SE WC (cm) by quartile of sodium intake (mmol/d), stratified by sex Male: Q1 n=63: <120; WC 97.0 (1.0) cm Q2 n=69: 120-159; WC 98.3 (2.0) cm Q3 n=56: 159-211; WC 104.0 (2.0) cm Q4 n=61: >211; WC 103.0 (2.0) cm P=0.007 Female: Q1 n=129: <92; WC 87.1 (1.0) cm Q2 n=146: 92-125; WC 89.4 (1.0) cm Q3 n=113: 125-158; WC 91.4 (1.0) cm Q4 n=127: >158; WC 93.9 (1.0) cm P<0.001	+ WC (unadjusted)	Ŷ
Oh et al. 2015 ⁽⁷⁵⁾	Korea	18146 Male 46%; mean age 47 у	WC (cm)	Median Na 4100 mg/d	None	Mean (SD) WC (cm) by quartile of salt intake (g/d) Q1 n=4536 median salt 2.7 (IQR 2.3, 3.1) g/d: 79.2 (10.1) cm Q2 n=4537 median salt 3.7 (IQR 3.4, 4.1) g/d: 80.5 (9.6) cm Q3 n=4537 median salt 4.6 (IQR 4.1, 5.0) g/d: 81.7 (9.5) cm Q4 n=4536 median salt 5.9(IQR 5.2, 6.5) g/d: 83.9 (9.7) cm Overall group difference P-value <0.001	+ WC (unadjusted)	Y
Nam et al. 2017 ⁽⁷³⁾	Korea	640 Male 50%; 27% obese	WC (cm) and abdomina I obesity defined as ≥90 cm in men and ≥85	Not reported	Adjusted for age, smoking status, physical activity, monthly household income, education	Mean±SE WC (cm) by quartile of sodium intake (mmol/d), stratified by sex Male n=320 Q1 mean Na 86 mmol/d: 83.4 (1.2) cm Q2 mean Na 128 mmol/d: 84.3 (1.0) cm Q3 mean Na 166 mmol/d: 85.2 (0.9) cm Q4 mean Na 232 mmol/d: 88.9 (0.8) cm *P for trend<0.001	 + WC men & women (adjusted, including energy intake) + abdominal obesity men & women 	Y

			cm in women		level, and daily energy intake	*Adjusted for age, smoking status, physical activity, monthly, household income, education level, and daily energy intake Female n=320 Q1 mean Na 86 mmol/d: 74.8 (1.6) cm Q2 mean Na 128 mmol/d: 76.8 (1.6) cm Q3 mean Na 166 mmol/d: 77.6 (1.7) cm Q4 mean Na 232 mmol/d: 81.0 (1.8) cm *P for trend<0.001 *Adjusted for age, smoking status, physical activity, monthly, household income, education level, and daily energy intake	(adjusted, including energy intake)	
						Odds (OR 95% CI) of abdominal obesity and higher sodium intake (Q4 compared to Q1-Q3), stratified by sex Male n=320 Healthy WC <90 cm : reference category Abdominal obesity ≥90 cm: OR 3.49 (2.08, 5.86) *Adjusted for age, smoking status, physical activity, monthly, household income, education level, and daily energy intake Female n=320 Healthy WC <85 cm : reference category Abdominal obesity ≥85 cm: OR 3.00 (1.49, 6.07) *Adjusted for age, smoking status, physical activity, monthly, household income, education level, and daily energy intake **Note no base model without inclusion of energy intake available		
Huh et al. 2015 ⁽⁶⁶⁾	Korea	7162 50% male; mean age 20	WC (cm), abdomina l obesity	Overall intake not reported	Abdominal obesity adjusted for	Mean (SD) WC by tertile of sodium intake (mmol/d), stratified by sex Male:	+ WC men & women (unadjusted)	Y

y; mear 22.5 kg,	/m ² as ≥90 for ≥85 for	WC D cm men & 5 cm men	age, current smoking status, regular exercise, serum creatinine, serum vitamin D, HOMA-IR, daily energy intake and hormone replacement therapy (women)	T1 sodium $\leq 133 \text{ mmol/d: } 84.1 (10.0) \text{ cm}$ T2 sodium 133, 164 mmol/d: 84.9 (8.4) cm T3 sodium >164 mmol/d: 86.3 (8.5) cm Overall between group P<0.001; T1 vs. T2 P<0.05; T1 vs. T3 P<0.05; T2 vs. T3 P<0.05 *note unadjusted Female: T1 sodium <135 mmol/d: 80.5 (9.3) cm T2 sodium 135, 166 mmol/d: 81.7 (8.8) cm T3 sodium >166 mmol/d: 84.7 (9.0) cm Overall between group P<0.001; T1 vs. T2 P<0.05; T1 vs. T3 P<0.05; T2 vs. T3 P<0.05 *note unadjusted Odds (OR 95%CI) of abdominal obesity by tertile of sodium intake (mmol/d), stratified by sex Male: T1 sodium $\leq 133 \text{ mmol/d: } \text{ reference category}$ T2 sodium 133, 164 mmol/d: OR 1.16 (95% CI 0.94, 1.42) T3 sodium >164 mmol/d: OR 1.46 (95% CI 1.19, 1.79) *adjusted for age, current smoking status, regular exercise, serum creatinine, serum vitamin D, HOMA-IR, daily energy intake Female: T1 sodium $\leq 135 \text{ mmol/d: } \text{ reference category}$ T2 sodium 135, 166 mmol/d: OR 1.23 (1.02, 1.49) T3 sodium >166 mmol/d: OR 2.01 (1.67, 2.43) * adjusted for age, current smoking status, regular exercise, serum creatinine, serum vitamin D, HOMA-IR, daily energy intake Female: T1 sodium $\leq 135 \text{ mmol/d: } \text{ OR 2.01 (1.67, 2.43)}$ * adjusted for age, current smoking status, regular exercise, serum creatinine, serum vitamin D, HOMA-IR and daily energy intake and hormone replacement therapy	+ abdominal obesity men & women (adjusted, including energy intake)

						**note no base model without inclusion of energy intake was available		
Ma et al. 2015 ⁽⁹⁾¹	UK	785 Male 47%; mean age 49 y; mean BMI 27.7 kg/m ²	WC (cm), central adiposity defined as WC >102 cm men & >88 cm female	Mean salt 7.6 (3.3) g/d	Adjusted for age sex, ethnic group, household income, physical activity level, energy intake, etoh intake, smoking, education level	Mean±SE WC (cm) by tertile of salt intake (g/d) T1 mean salt 4.3 (1.1) g/d n=261: 88.0±1.5cm T2 mean salt 7.2 (0.8) g/d n=265: 93.3±1.4 cm T3 mean salt 11.5 (2.4) g/d n=259: 95.8±1.5 cm P for trend <0.001 *adjusted for age, sex, ethnic group, household income, physical activity level, energy intake, misreporting of energy intake, etoh intake, smoking, education level Odds (OR 95% CI) of central obesity and salt intake (g/d) Not centrally obese n=464, salt intake 7.0±0.1 g/d: reference group Centrally obese n=314, salt intake 8.6±0.2: OR 1.22 (95% CI 1.14, 1.32), P<0.001 * adjusted for age, sex, ethnic group, household income, physical activity level, energy intake, misreporting of energy intake, etoh intake, smoking, education level	+ WC (adjusted, including energy intake) + central adiposity (adjusted, including energy intake)	Y
						Alternative adjustment for SSB intake Not centrally obese n=464, salt intake 7.0±0.1 g/d: reference group Centrally obese n=314, salt intake 8.6±0.2: OR 1.24 (95% CI 1.16, 1.32), P<0.001 * adjusted for age, sex, ethnic group, household income, physical activity level, SSB intake, misreporting of energy intake, etoh intake, smoking, education level		

						*Note no base models without inclusion of energy intake provided		
Ge et al. 2015 ⁽⁶²⁾	China	1906 Male 53%	Central adiposity (defined male WC ≥90 cm, female ≥80 cam)	Mean Na 229 mmol/d	Age, sex, high school education, urbanisation, leisure-time PA, etoh consumption, smoking habit and hypertension	Odds (OR 95% CI) of central adiposity by tertile of sodium intake (mmol/d) T1: <195 mmol/d; OR 1.00 (reference category) T2: 195-252 mmol/d; OR 1.45 (95%CI 1.14, 1.85) T3: ≥252 mmol/d; OR 2.32 (95%CI 1.82, 2.96) P for trend <0.001	+ central adiposity (adjusted)	Y
Choi & Run 2017 ⁽⁵⁷⁾	Korea	80 Male 50%; 43 y; BMI 22.4; 18% obese (BMI>25)	WC (cm)	Mean Na 3960 (1824) mg/d)	Adjusted for age, sex, total energy intake, potassium intake, smoking status, household income, education level, PA	Difference in WC (cm) associated with sodium intake (mg/d) β (standardised)=0.60±0.50, P=NS, R ² =0.23	Null WC (adjusted, including energy intake)	Ν
Crouch et al. 2018 ⁽⁵⁸⁾	South Africa	761 43% male; 46% overweight/ob ese	WC (cm)	Mean Na 130 mmol/d	Age, SES, energy expenditure, energy intake derived from 3 x 24-hr diet recalls, cotinine, y- glutamyltransf erase, high-	Difference in WC (cm) associated with logarithmic sodium intake (mg/d) β =2.02±1.30 (P=0.12) *adjusted for age, SES, energy expenditure, cotinine, y-glutamyltransferase, high-density lipoprotein cholesterol, SBP, glucose, C-reactive protein, aldosterone Additional adjustment with energy intake β =0.2.21±1.29 (P=0.09)	Null WC (adjusted, including energy intake)	Ν

					density lipoprotein cholesterol, SBP, glucose, C-reactive protein, aldosterone	*adjusted for age, SES, energy expenditure, energy intake, cotinine, y-glutamyltransferase, high-density lipoprotein cholesterol, SBP, glucose, C-reactive protein, aldosterone, energy intake		
Zhang et al. 2018 ⁽¹⁰²⁾	USA	9306 Male 53% Median age 35 y; 23% obese	central obesity (defined male WC>120 cm, female >88 cm)	Median Na 3320 mg/d	Age, sex, race, smoking, alcohol drinking, physical activity, education, family annual income, and total energy intake	Odds (OR 95% CI) of central obesity by category of sodium intake (mg/d) (categories defined as low Na <1500 mg/d, normal Na 1500-2300 mg/d and high Na >2300 mg/d G1 sodium <1500 mg/d, median 1171 mg/d: OR 1.22 (95%CI 0.96, 1.57) G2 sodium 1500-2300 mg/d, median 1948 mg/d: Reference category G3 sodium >2300 mg/d, median 3771 mg/d: OR 1.28 (95%CI 1.10, 1.50) P for trend=0.03 *adjusted for age, sex and ethnicity Additional adjustment with energy intake G1 sodium <1500 mg/d, median 1171 mg/d: OR 1.28 (95%CI 0.72, 2.29) G2 sodium 1500-2300 mg/d, median 1948 mg/d: Reference category G3 sodium >2300 mg/d, median 3771 mg/d: OR 1.78 (95%CI 1.29, 2.45) P for trend=0.003 *adjusted for age, sex, race, smoking, alcohol drinking, physical activity, education, family annual income, and total energy intake	+ central adiposity (adjusted, including energy intake)	Υ

Zhao et al. 2019 ⁽¹⁰³⁾	USA	730 Male 50%; Mean age 43 y; 73% overweight/ob ese	WC (cm), central obesity (defined male WC>102 cm, female >88 cm)	Mean Na 3567±40 mg/d	Adjusted for age, sex, race- Hispanic origin, PA, ETOH consumption, smoking status, educational attainment and either usual intake of total energy or SSB (diet measures derived from up to 2 x 24-hr diet recalls adjusted to usual intakes)	Difference in WC (cm) associated with sodium intake (1000 mg/d) β =9.2 (95% Cl 6.9, 11.5), P<0.001 *adjusted for age, sex, race-Hispanic origin, PA, ETOH consumption, smoking status, educational attainment Additional adjustment usual energy intake (kcal/d) β =9.2 (95% Cl 6.9, 11.5), P<0.001 *adjusted for age, sex, race-Hispanic origin, PA, ETOH consumption, smoking status, educational attainment, usual total energy intake Alternative additional adjustment usual SSB intake (g/d) β =9.2 (95% Cl 7.0, 11.4), P<0.001 *adjusted for age, sex, race-Hispanic origin, PA, ETOH consumption, smoking status, educational attainment, usual SSB intake Odds (OR 95% Cl) of central adiposity by quartile of sodium intake (mg/d) Q1 median Na 2505 mg/d: Reference category Q2 median Na 3176 mg/d: OR 1.33 (95%Cl 1.20, 1.40) Q3 median Na 3753 mg/d: OR 1.60 (95% Cl 1.69, 2.37) P for trend<0.001 *adjusted for age, sex, race-Hispanic origin, PA, ETOH consumption, smoking status, educational attainment Additional adjustment usual energy intake (kcal/d) Q1 median Na 3753 mg/d: OR 1.60 (95% Cl 1.69, 2.37) P for trend<0.001 *adjusted for age, sex, race-Hispanic origin, PA, ETOH consumption, smoking status, educational attainment Additional adjustment usual energy intake (kcal/d) Q1 median Na 2505 mg/d: Reference category Q2 median Na 3176 mg/d: OR 1.35 (95% Cl 1.25, 1.46) Q3 median Na 3753 mg/d: OR 1.65 (95% Cl 1.45, 1.88) Q4 median Na 4662 mg/d: OR 2.07 (95% Cl 1.74, 2.46) P for trend<0.001	+ WC (adjusted, including energy or SSB intake) + central adiposity (adjusted, including energy or SSB intake)	Y

*adjusted for age, sex, race-Hispanic origin, PA, ETOH consumption, smoking status, educational attainment, usual total energy intake Alternative additional adjustment usual SSB intake (g/d) Q1 median Na 2505 mg/d: Reference category Q2 median Na 3176 mg/d: OR 1.32 (95%CI 1.22, 1.43) Q3 median Na 3753 mg/d: OR 1.60 (95%CI 1.41, 1.81) Q4 median Na 4662 mg/d: OR 1.99 (95% CI 1.68, 2.36) P for trend<0.001 *adjusted for age, sex, race-Hispanic origin, PA, ETOH consumption, smoking status, educational attainment, usual total SSB intake

Abbreviations: Na sodium; BMI body mass index; WHO World Health Organization; WC waist circumference; SES socio-economic status; FFQ food Frequency Questionnaire; PA physical Activity; SSB sugar sweetened beverage; ETOH alcohol consumption, UK United Kingdom, USA United States of Australia

Red text is used to highlight those studies which have considered adjustment with energy or SSB intake

^a Measures of variance represent (SD) or ±SE unless otherwise specified

^br correlation coefficient, β represents unstandardized regression beta-coefficient unless otherwise stated

^c Where possible summary based on most adjusted model

Study	Country	N, sample characteristics	Adiposity outcome	Sodium/salt intake ^a	Covariates; stratification	Findings ^b	Summary ^c	Included in meta- analyses related to this outcome
Jiet & Soma 2017 ⁽⁶⁸⁾	Malaysia	Convenience sample of university	Body fat mass, fat free	Mean Na 175 mmol/d	Unadjusted	Significant positive correlation between sodium intake (mmol/d) and fat free mass (kg) (r=0.44, P=0.02)	+ fat free mass (unadjusted)	Ν
		students aged 18-25 y recruited from	mass, body fat %			No correlation between sodium intake (mmol/d) and body fat mass or body fat % (data not reported)	Null body fat mass	
		University of Nottingham Malaysia Campus	iversity of (measure ttingham d using alaysia BIA)				Null body fat %	
Huh et al. 2015 ⁽⁶⁶⁾	Korea	7162 50% male; mean age 20 y; mean BMI	total fat free mass, body fat	Overall intake not reported	Unadjusted	Mean (SD) total fat mass (kg) tertile of sodium intake (mmol/d), stratified by sex Male: T1 sodium ≤133 mmol/d: 14.7 (4.8) kg	+ total body fat mass (unadjusted)	N
		22.5 kg/m ²	%			T2 sodium 133, 164 mmol/d: 15.0 (4.8) kg T3 sodium >164 mmol/d: 15.6 (4.9) kg Overall between group P=0.014; T1 vs. T2 P=NS; T1 vs. T3 P<0.05; T2 vs. T3 P<0.05	Null body fat % total fat mass men (unadjusted)	
						Female: T1 sodium <135 mmol/d: 33.9 (5.7) kg T T2 sodium 135, 166 mmol/d: 34.2 (5.2) kg T3 sodium >166 mmol/d: 35.0 (5.3) kg Overall between group P<0.001; T1 vs. T2 P<0.05; T1 vs. T3 P<0.05; T2 vs. T3 P<0.05	+ % body fat mass women (unadjusted)	

Supplemental Table 8. Summary of findings from cross-sectional studies among adults, outcome: body composition

						Mean body fat (%) (SD) by tertile of sodium intake (mmol/d), stratified by sex Male: T1 sodium ≤133 mmol/d: 22.3 (5.2) % T2 sodium 133, 164 mmol/d: 22.4 (5.0) % T3 sodium >164 mmol/d: 22.7 (5.1) % Overall between group P=0.147; T1 vs. T2 P=NS; T1 vs. T3 P=NS; T2 vs. T3 P=NS Female: T1 sodium <135 mmol/d:33.9 (5.7) % T2 sodium 135, 166 mmol/d: 34.2 (5.2) % T3 sodium >166 mmol/d: 35.0 (5.3) % Overall between group P<0.001; T1 vs. T2 P=NS; T1 vs. T3 P<0.05; T2 vs. T3 P<0.05		
Yi et al. 2015 ⁽¹⁰⁾	USA	4613	Predictive body fatness (%) calculated using sex- specific formula recently validated using NHANES data	Mean Na 154 (104) mmol/d	Adjusted for sex, age, race/ethnicit y, education and energy intake using residual method *note excludes mis- reporters (n=165) for energy intake outside range of 500- 3500 kcal/d for women &	Difference in predictive body fatness (%) (dep variable) associated with sodium intake (1000 mg/d) Overall: β =0.44% (95%Cl 0.16, 0.73), P<0.05 Male: β =0.36% (95%Cl 0.05, 0.67), P<0.05 Female: β =0.43% (95%Cl -0.01, 0.87), P=NS *adjusted for sex, age, race/ethnicity, education Additional adjustment energy intake Overall: β =1.18% (95%Cl 0.73, 1.64), P<0.001 Male: β =0.97% (95%Cl 0.36, 1.59), P<0.01 Female: β =1.48% (95%Cl 0.78, 2.17), P<0.001 *adjusted for sex, age, race/ethnicity, education and energy intake using residual method	+ body fat % overall, male & female (adjusted, including energy intake)	Ν

					800-4000 kcal/day for men (n=165)			
Ma et al. 2015 ⁽⁹⁾⁽	UK	785 Male 47%; mean age 49 y; mean BMI 27.7 kg/m ²	Body compositi on (fat mass kg and lean fat mass kg) derived from doubly labelled water study in represent ative sub- sample n=117	Mean salt 7.6 (3.3) g/d	Adjusted for age sex, ethnic group, household income, physical activity level, energy intake, etoh intake, smoking, education level	Sub-sample n=117 with body composition data Difference in body fat mass (kg) associated with salt intake (g/d) β =0.91 kg, P=0.001 * adjusted for age, sex, ethnic group, energy intake Difference in body fat mass (kg) associated with salt density (g/2000kcal) β =1.16, P=0.003 * adjusted for age, sex, ethnic group Difference in body lean mass (kg) associated with salt intake (g/d) β =0.32 kg, P=0.054 * adjusted for age, sex, ethnic group, energy intake Difference in body lean mass (kg) associated with salt density (g/2000kcal) β =-0.007, P=0.984 * adjusted for age, sex, ethnic group * Note no base models without inclusion of energy intake provided	 + body fat mass (adjusted, including energy intake) Null body lean mass (adjusted, including energy intake) 	Ν
Choi & Run 2017 ⁽⁵⁷⁾	Korea	80 Male 50%; 43 y; BMI 22.4; 18% obese (BMI>25)	Body fat %, visceral fat area (cm ²)	Mean Na 3960 (1824) mg/d)	Adjusted for age, sex, total energy intake, potassium intake, smoking status,	Difference in body fat % associated with sodium intake (mg/d) β (standardised)=0.20±0.36, P=NS, R ² =0.50 * Adjusted for age, sex, total energy intake, potassium intake, smoking status, household income, education level, PA	Null body fat % (adjusted, including energy intake) Null visceral fat area (adjusted,	Ν

					income, v education f level, PA A	. ,	ncluding energy ntake)	
Crouch et al. 2018 ⁽⁵⁸⁾	South Africa	761 43% male; 46% overweight/ obese	Lean mass (kg), fat mass (kg), body fat % (measur ed with BIA)	Mean Na 130 mmol/d	Age, SES, energy expenditure, energy intake derived from 3 x 24-hr diet recalls, cotinine, y- glutamyltransfera se, high-density lipoprotein cholesterol, SBP, glucose, C- reactive protein, aldosterone	Difference in lean mass (kg) associated with logarithmic sodium sodium intake (mg/d) β=-0.78±2.09 (P=0.71) *adjusted for age, SES, energy expenditure, cotinine glutamyltransferase, high-density lipoprotein	energy intake) Null body fat (adjusted, including tein, energy intake) mic Null body fat % (adjusted, , y- including energy intake)	Ν

						lipoprotein cholesterol, SBP, glucose, C-reactive p aldosterone, energy intake	protein,	
						Difference in body fat % area a associated with logarithmic sodium sodium intake (mg/d) β =-0.54±0.87 (P=0.54) *adjusted for age, SES, energy expenditure, cotini glutamyltransferase, high-density lipoprotein cholesterol, SBP, glucose, C-reactive protein, aldosterone Additional adjustment with energy intake β =-0.52±0.87 (P=0.55) *adjusted for age, SES, energy expenditure, energy intake, cotinine, y-glutamyltransferase, high-dens lipoprotein cholesterol, SBP, glucose, C-reactive p aldosterone, energy intake	ζγ sity	
Elfassy et al. 2018 ⁽⁵⁹⁾	USA	435 sub- sample with 24-hr urine 47% male; mean age 42 y	Body fat (kg), body fat % (derived from DLW methods)	Not reported	Age, sex, heritage, education, income, language preference, nativity/year s in the US, study site, missing one urine void + smoking, hypertension , diabetes, alcohol use, depression, PA (total	Difference in body fat (kg) associated with sodium intake (500 mg/d) β =0.83 kg/m ² (95%Cl 0.41, 1.25), P<0.05 *adjusted for age, sex, heritage, education, income, language preference, nativity/years in the US, study site, missing one urine void Additional adjustment energy intake β =0.54 kg/m ² (95%Cl 0.15, 0.93), P<0.05 *adjusted for age, sex, heritage, education, income, language preference, nativity/years in the US, study site, missing one urine void + smoking, hypertension, diabetes, alcohol use, depression, PA (total METs/wk), energy intake Alternative model using sodium density (250 mg/1000 kcal) as independent variable β =0.37 kg/m ² (95%Cl -00.11, 0.86), P=NS	 + body fat (kg) but null findings when using sodium density + body fat % (adjusted, including energy intake) 	Ν

					METs/wk), energy intake derived from DLW	*adjusted for age, sex, heritage, education, income, language preference, nativity/years in the US, study site, missing one urine void + smoking, hypertension, diabetes, alcohol use, depression, PA (total METs/wk)		
						Difference in body fat % associated with sodium intake (500 mg/d) β =0.40 kg/m ² (95%Cl 0.16, 0.64), P<0.05 *adjusted for age, sex, heritage, education, income, language preference, nativity/years in the US, study site, missing one urine void Additional adjustment energy intake β =0.35 kg/m ² (95%Cl 0.11, 0.58), P<0.05 *adjusted for age, sex, heritage, education, income, language preference, nativity/years in the US, study site, missing one urine void + smoking, hypertension, diabetes, alcohol use, depression, PA (total METs/wk), energy intake		
						Alternative model using sodium density (250 mg/1000 kcal) as independent variable β =0.39 kg/m ² (95%Cl 0.09, 0.68), P<0.05 *adjusted for age, sex, heritage, education, income, language preference, nativity/years in the US, study site, missing one urine void + smoking, hypertension, diabetes, alcohol use, depression, PA (total METs/wk)		
Zhang et al. 2018 (102)	USA	9306 Male 53% Median age 35 Y 23% obese	Body fat (%), lean mass (kg), fat mass (kg)	Median Na 3320 mg/d	Age, sex, race, smoking, alcohol drinking,	Difference in body fat (%) associated with sodium intake 1g/d β=0.44 (95%Cl 0.07, 0.81), P=not reported	+ body fat % (adjusted, including energy intake)	N

measu	res physical	*adjusted for age, sex, race, smoking, alcohol	+ lean body mass
derive	d activity,	drinking, physical activity, education, family annual	(adjusted,
from D	XA education,	income, and total energy intake	including energy
in sub-	family		intake)
sample	annual	Difference in body lean mass (kg) associated with	
n=765	4 income, and	sodium intake 1g/d	+ body fat mass
partici	pan total energy	β=0.53 (95%Cl 0.14, 0.92), P=not reported	(adjusted,
ts	intake	*adjusted for age, sex, race, smoking, alcohol	including energy
		drinking, physical activity, education, family annual	intake)
		income, and total energy intake	
		Difference in body fat mass (kg) associated with	
		sodium intake 1g/d	
		β=0.79 (95%Cl 0.17, 1.40), P=not reported	
		*adjusted for age, sex, race, smoking, alcohol	
		drinking, physical activity, education, family annual	
		income, and total energy intake	

Abbreviations: Na sodium; BMI body mass index; WHO World Health Organization; WC waist circumference; SES socio-economic status; FFQ food Frequency Questionnaire; PA physical Activity; SSB sugar sweetened beverage; ETOH alcohol consumption; BIA bioelectrical impedance analysis; DLW doubly labelled water; DXA dual energy x-ray absorptiometry, UK United Kingdom, USA United States of Australia

Red text is used to highlight those studies which have considered adjustment with energy or SSB intake

^a Measures of variance represent (SD) or ±SE unless otherwise specified

^b r correlation coefficient, β represents unstandardized regression beta-coefficient unless otherwise stated

^c Where possible summary based on most adjusted model

Study	Country	Study population /Study Name	N, Sample characteristi cs	Follow up duratio n	Adiposity outcome	Exposur e	Covariates; stratification	Main findings	Summary
Larsen et al. 2013 ⁽⁸⁾	Denmar k	Name Adults from the Danish MONICA (Monitorin g Trends in Cardiovasc ular Disease) study. Includes a sub-sample who provided a 24-hr urine collection.	215 ~48% female	<u>п</u> бу	BW (kg), WC (cm), body fat (kg), FFM (kg) ^a	1 x 24hr urine complet ed at baseline	baseline age, sex, education level, smoking, PA, ETOH, menopausal status (women), height, baseline measure of outcome, baseline total energy intake, change in BW between baseline and follow up.	Median sodium intake by tertile T1 100 mmol/d, T2 153 mmol/d, T3 213 mmol/d Change (95% CI) in BW (kg) per 100 mmol/d Na increase Model 1: -0.18 (95% CI -1.16, 0.80) kg *Adjusted for baseline age, sex, education level, smoking, PA, ETOH, menopausal status (women), height, baseline BW Additional adjustment with energy intake Model 2: -0.15 (95% CI -1.12, 0.83) kg *Adjusted for Model 1 + energy intake Change (95% CI) in WC (cm) per 100 mmol/d Na increase Model 1: 0.18 (95% CI -0.81, 1.18) cm *Adjusted for baseline age, sex, education level, smoking, PA, ETOH, menopausal status (women), height, baseline WC Additional adjustment with energy intake Model 2: 0.22 (95% CI -0.77, 1.21) cm *Adjusted for Model 1 + energy intake Model 3: 0.35 (95% CI -0.31, 1.02) cm *Adjusted for Model 2 + change in BW between baseline and follow up	Null BW Null WC + body fat (only with additional adjustment for change in BW) - fat free mass (only with additional adjustment for change in BW)
								Change (95% CI) in body fat (kg) per 100 mmol/d Na increase	

Supplemental Table 9. Characteristics of longitudinal studies examining the association between sodium intake and adiposity outcomes among adults and children

								Model 1: 0.15 (95% CI -0.59, 0.89)kg	
								*Adjusted for baseline age, sex, education	
								level, smoking, PA, ETOH, menopausal status	
								(women), height, baseline body fat	
								Additional adjustment with energy intake	
								Model 2: 0.17 (95% CI -0.57, 0.91) kg	
								*Adjusted for Model 1 + energy intake	
								Model 3: 0.24 (95% CI 0.05, 0.43) kg	
								*Adjusted for Model 2 + change in BW	
								between baseline and follow up	
								Change (95% CI) in fat free mass (kg) per	
								100 mmol/d Na increase	
								Model 1: -0.28 (95% CI -0.63, 0.06)kg	
								*Adjusted for baseline age, sex, education	
								level, smoking, PA, ETOH, menopausal status	
								(women), height, baseline FFM.	
								Additional adjustment with energy intake	
								Model 2: -0.27 (95% CI -0.62, 0.07) kg	
								*Adjusted for Model 1 + energy intake	
								Model 3: -0.21 (95% CI -0.40, -0.01) kg	
								*Adjusted for Model 2 + change in BW	
								between baseline and follow up	
Ard et al.	USA	Follow-up	56	1 y	BW (kg)	1 x 24-	None, stratified by	DASH-Na intervention group (n=28)	Null BW
2004 ⁽¹⁰⁵⁾		of	Mean age 47			hr urine	original RCT group	Mean (SD) sodium intake (mmol/d)	
		participant	У			at 1, 6,	i.e. DASH-Na	Baseline (i.e. post-intervention value): 93.6	No change in
		s in the	Female n=40			12	intervention vs.	(SD 46.6) mmol/d	sodium
		Dietary				month	control group	Follow-up: 100.8 (SD 48.7) mmol/d	intake or BW
		Approache						Change from baseline to follow-up: 7.1	during follow
		s to Stop						(95%Cl -11.9, 26.1) mmol/d	up period for
		Hypertensi						Mean (SD) BW (kg)	either group,
		on (DASH)-						Baseline (i.e. post-intervention value): 78.2	no change in
		Na trial						(SD 16.2) kg	BW in DASH-

								Follow-up: 79.9 (SD 15.5) kg Change from baseline to follow-up: 1.7 (95%CI -0.1, 3.6) kg	Na group, increase in BW among control
								Control group (n=25) Mean (SD) sodium intake (mmol/d) Baseline (i.e. post-intervention value): 104.8 (SD 75.8) mmol/d Follow-up: 116.2 (SD 43.0) mmol/d Change from baseline to follow-up: 11.4 (95%CI -28.5, 51.3) mmol/d Mean (SD) BW (kg) Baseline (i.e. post-intervention value): 83.2 (SD 15.2) kg Follow-up: 85.1 (SD 15.1) kg Change from baseline to follow-up: 1.93 (95%CI 0.72, 3.14) kg	group.
Takahashi et al. 2006 ⁽¹⁰⁷⁾	Japan	Follow up of participant s who completed a 1 y RCT assessing	278 of 550 in original RCT Female 67% Baseline mean age 67 Y	3-4 у	BW(kg) ^b	Validate d self- administ ered diet history questio	Sodium is adjusted for energy (mg/1000 kcal)	Maintenance of the diet between original intervention and control groups was similar; results were combined as one group for follow up analysis. Mean (SD) sodium intake (mg/1000 kcal) Baseline (i.e. post RCT): 2651 (SD 660)	Null BW No change in sodium density of diet or BW during follow
		effect of reduced Na diet and increased vitamin C and carotene on BP and stomach				nnaire assesse d intake over past 1 month		mg/1000 kcal Follow-up: 2700 (SD 729) mg/1000 kcal Change from baseline to follow-up: 49 (698) mg/1000 kcal, P=0.243 Mean (SD) BW (kg) Baseline (i.e. post RCT): 57.5 (SD 8.5) kg Follow-up: 57.5 (SD 8.8) kg Change from baseline to follow-up: 0.0 (SD 3.0) kg, P=0.426	up period.

Sakaki at al	Janan	cancer. Included free living healthy adults aged 40-69 y recruited from two rural villages in north- eastern Japan.	248	Moon	P)W//kg)	Mean	None stratified by	Moon (SD) solt intake (g/d)	Null BW
Sakaki et al. 2014 ⁽¹⁰⁶⁾	Japan	Outpatient s with HT recruited from National Kyushu Medical Centre, Fukuoka, Japan	248 Male 43% Baseline mean age 58 y	Mean follow up 9.4 (SD 3.1) y (range 3, 14)	BW(kg)	Mean 11 x 24- hr urine over follow- up period (range 5, 22)	None, stratified by compliance for long term salt restriction	Mean (SD) salt intake (g/d) Overall: 8.9 (2.4) g/d (during study period) Baseline: 9.6 (4.0) g/d (range 0.8, 25.9) Final visit: 8.6 (3.2) g/d (range 1.8, 19.1) Baseline vs. final visit P<0.01 Mean (SD) BW (kg) Baseline: 61.0 (11.3) kg (range 31, 95) Final visit: 61.3 (11.2) kg (range 31, 95) Baseline vs. final visit P=NS Subjects grouped by good (<8g/d), moderate (8-10 g/d) and poor compliance (\geq 10 g/d) for long term salt restriction (i.e. based on	Significant decrease salt intake over time but no change in BW. This was for group overall and stratified analysis by compliance
								average salt intake over follow-up period) <u>Good compliance <8 g/d n=88</u> <u>Mean (SD) salt intake (g/d)</u> Baseline: 7.0 (2.7) g/d Final visit: 6.4 (2.0) g/d *Baseline vs. final visit P<0.01	for salt restriction

								Mean (SD) BW (kg) Baseline: 55.5 (10.1) kg Last visit: 56.1 (10.1) kg *Baseline vs. final visit P=NS	
								Moderate compliance 8-10 g/d n=81 Mean (SD) salt intake (g/d) Baseline: 9.6 (2.8) g/d Final visit: 8.3 (2.3) g/d *Baseline vs. final visit P<0.01 Mean (SD) BW (kg) Baseline: 62.0 (10.1) kg Final visit: 62.1 (10.0) kg *Baseline vs. final visit P=NS	
								Poor compliance ≥10 g/d n=81 Mean (SD) salt intake (g/d) Baseline: 9.6 (2.8) g/d Final visit: 8.3 (2.3) g/d *Baseline vs. final visit P=NS Mean (SD) BW (kg) Baseline: 66.1 (11.2) kg Final visit: 66.4 (11.2) kg *Baseline vs. final visit P=NS	
Lee et al. 2017 ⁽¹²⁶⁾	Korea	Children aged 8-9 y recruited from 7 x elementary schools located in Seoul	798 (includes healthy weight children with BMI <85 th p)	З у	Incidence of obesity during 3 y follow up Obesity defined by age and sex BMI	3 x24-hr diet recall (2 weekda ys, 1 weeken d day)	Sodium intake adjusted for energy intake using residual method	10.3% of children developed obesity during 3 y follow up Mean (SD) energy adjusted sodium intake mg/d (SD) stratified by participants who at 3 y remained non-obese and those who developed obesity Non-obese Baseline n=532: 3502 (819) mg/d	Reduced incidence of obesity among children with greatest reductions in Na intake.

	pronounced n girls with
Korean <0.001 ir	n girls with
National Obese s	specific
Growth Baseline n=61: 3371 (677) mg/d g	genetic
Chart. Follow-up n=73: 3440 (860) mg/d m	nutations
Obese Difference n=58: -37 (970) mg/d, P-value NS	
≥85 th p; *Note there was no between group 3 y	
Non- difference in sodium intake P-value=NS	
obese	
<85 th p Relative frequency of obesity during 3 y	
follow up	
There was no change (P-value=NS) in relative	
frequency of obesity (%) over 3 y period	
across variation of changes in sodium intake	
expressed as quartiles	
Q1 change in Na intake -1610 (SD 641) mg/d;	
Q2 change in Na intake -517 (189) mg/d, Q3	
change in Na intake 118 (199) mg/d, Q4	
change in Na intake 1181 (710) mg/d.	
Consistent for total sample and sex	
stratification analysis.	
There was a significant change in relative	
frequency (%) of obesity over 3 y period	
when comparing change in sodium intake	
from Q1 (mean Na -1451 mg/d) to combined	
Q2-Q4 (mean Na 115.8 mg/d). Relative	
frequency of obesity in Q2-Q4 was almost 3	
x higher compared with Q1 P=0.015.	
Among girls but not boys the risk of	
developing obesity associated with change in	

								 Na intake was more pronounced in those with hetero/mutant types of 2 salt sensitive genes NEDD4L and CYP11β2. Odds ratio (95% Cl) for risk of developing obesity was 5.75 (1.30, 25.3) for those with hetero/mutant of NEDD4L with higher Na intakes (Q2-Q4) compared with those with wild type and lowest Na intake (Q1) Trend (P=0.047) for higher frequency of obesity with higher sodium intake (across quartiles) among those with hetero/mutant CYP11 β2 vs wild type There were no other interactions for genetic variation on 7 other salt sensitive genes investigated 	
Libuda et al. 2012 ⁽⁶⁾	German y	Children aged 3-18 years, a sub-sample of participant s from the Dortmund Nutritional and Anthropom etric Longitudina Ily Designed (DONALD) Study	364	5γ	BMI-SDS, % body fat	At least 2 x 24- hr urine (range 2, 7)	Time (years after first individual data assessment), age, parental BMI, sugary drink intake, energy intake. Note maternal education and sex were explored as confounders but not included in final models as no effect.	Boys median sodium intake increased from 41 mmol/d in 3-4 y/o to 139 mmol/d in 15- 18 y/o. Girls median sodium intake increased from 49 mmol/d in 3-4 y/o to 108 mmol/d in 15- 18 y/o Change in BMI-SDS associated with difference in baseline sodium excretion of 1000 mg/d Model 1: β =0.084, P=0.602 *Adjusted for time, age, age x age, parental BMI Additional adjustment with SSB intake Model 2: β =0.146, P=0.704	Null BMI-SDS + % body fat with higher baseline Na intake (independen t of sugary drinks and energy intake) Null % body fat with change in Na intake

*Adjusted for model 1 + baseline sugar drink intake, baseline sugary drink intake x time and change in drink intake

Additional adjustment with energy intake

Model 3: β =0.146, P=0.704 *Adjusted for model 1 + baseline energy intake, baseline energy intake x time and change in energy intake

Change in BMI-SDS associated with a 1000 mg/d change in sodium intake **Model 1:** β=0.00074, P=0.945 *Adjusted for time, age, age x age, parental BMI Additional adjustment with SSB intake **Model 2:** β= -0.002, P=0.983 *Adjusted for model 1 + baseline sugar drink intake, baseline sugary drink intake x time and change in drink intake Additional adjustment with energy intake **Model 3:** β= - 0.0002, P=0.982 *Adjusted for model 1 + baseline energy intake, baseline energy intake x time and change in energy intake Change in % body fat associated with difference in baseline sodium excretion of 1000 mg/d **Model 1:** β=0.364, P=0.07 *Adjusted for time, age, age x age, parental BMI

Additional adjustment with SSB intake Model 2: β=0.610, P=0.056

*Adjusted for model 1 + baseline sugar drink
intake, baseline sugary drink intake x time
and change in drink intake
Additional adjustment with energy intake
Model 3: β=0.476, P=0.004
*Adjusted for model 1 + baseline energy
intake, baseline energy intake x time and
change in energy intake
Change in % body fat associated with a
1000 mg/d change in sodium intake
Model 1: β=0.021, P=0.854
*Adjusted for time, age, age x age, parental
BMI
Additional adjustment with SSB intake
Model 2: β=0.050, P=0.661
*Adjusted for model 1 + baseline sugar drink
intake, baseline sugary drink intake x time
and change in drink intake
Additional adjustment with energy intake
Model 3: β=0.075, P=0.529
*Adjusted for model 1 + baseline energy
intake, baseline energy intake x time and
change in energy intake

Abbreviations: BMI body mass index; FFM Fat free mass; WC waist circumference; PA physical activity; SSB sugar sweetened beverage; ETOH alcohol consumption, USA United States of America

^a Measured using bioelectrical impedance

^bSelf-reported measure of BW and height

Supplemental Table 10. Newcastle Ottawa Scale quality assessment of longitudinal studies assessing the association between sodium intake and adiposity outcomes among adults and children

Longitudinal studies	Country	Sele	ection (0-3*)	Comparability (0- 2*)	Outo	come <i>(0-2*)</i>	Total NOS
		Representativeness of cohort (0-1*)	Assessment of the exposure (sodium/salt intake) (0-2*)	Methods to control confounding (0-2*)	Assessment of outcome (0-1*)	Non-response Adequacy of follow up of cohorts (0-1*)	Score (0- 7*) ¹
		 a) truly representative of the source population (1*) b) somewhat representative of the source population (1*) c) selected group of users e.g. nurses, volunteers (0) d) no description of the derivation of the cohort (0) 	 a) 24-hr urine collection (1 or more) (2*) b) 24-hr dietary recall method (1*) c) Weighed dietary record (1 or more days) (1*) d) Urine sample: spot, timed or overnight (0) e) Food frequency questionnaire (0) 	 a) study controls for age and sex (1) b) study controls for energy intake (1*) c) only unadjusted model presented (0) 	 a) objectively measured adiposity outcome (e.g. BW and height for BMI) (1*) b) self-report BW and height (0) c) no description (0) 	 a) Complete follow up – all subjects accounted for (1*) b) Subjects lost to follow up unlikely to introduce bias (>75% follow up, or description provided of those lost) (1*) c) follow up rate <75% and no description of those lost (0) d) no statement (0) 	_
Larsen et al. 2013 ⁽⁸⁾	Denmark	1	2	2	1	1	7
Ard et al. 2004 ⁽¹⁰⁵⁾	USA	0	2	0	1	0	3
Takahashi et al. 2006 ⁽¹⁰⁷⁾	Japan	1	0	1	0	1	3
Sakaki et al. 2014 ⁽¹⁰⁶⁾	Japan	0	2	0	0	1	3
Lee et al. 2017 ⁽¹²⁶⁾	Korea	1	1	1	1	0	4
Libuda et al. 2012 ⁽⁶⁾	Germany	1	2	2	2	0	7

Abbreviations: NOS Newcastle-Ottawa Scale Score; USA United States of America

¹Studies with total scores of \geq 5*, 3-4* and \leq 2* were assessed as high, moderate and low-quality studies, respectively.

Study, Country	Design/Stu dy Nameª	Sample characteristics	No. (C/E)	Intervention	Control	Durati on	Exposur e assessm ent	Primary outcome	Diuretic use	Na intake	Included in meta- analysis
Beard et al. 1982 ⁽³⁶⁾ , Australi a	Parallel 2 groups: control; reduced Na diet	Adults aged 25-69 y receiving antihypertensi ve medication, recruited via general practitioners Mean age 49 y Male n=51	45/45	Self-selected low Na diet. Nutrition education and shopping lists provided to include lower salt foods in diet. Instructed not to diet for weight loss during trial.	Small group discussions, urged to maintain their usual Na intake.	12 wk	1 x 24- hr urine	BP	Some participants were using diuretics however the total no.is unclear. Data is only provided as no. of tablets taken per day by group. No of tablets per day Control Baseline n=32 End n=27 Experimental	Control Baseline 175 mmol/d, end 161 mmo/ld, change - 14 mmol/d, P=NS Experimental Baseline 150 mmol/d, end , 37 mmol/d, change - 113, P<0.001 mmol/d Net Na difference: -99 mmol/d	Y
									Baseline n=32 End n=1		
Hyperte nsion Preventi on Trial Researc h Group	Parallel 5 groups: control ; reduced calories; reduced Na	Community dwelling adults aged 25-49 y free of cardiovascular disease, not	175/172	Self-selected reduced Na diet, individual target ≤70 mmol/d. Group face-to-	Passive control (no instructions or counselling provided)	3 у	8-hr overnig ht urine ^b	BP	NA	Control Baseline 165 mmol/d, change 0 mmol/d Experimental	Y
1990 ⁽¹⁰⁸⁾ , USA	and calories; reduced	using antihypertensi ve		face dietary counselling sessions						Baseline 163 mmol/d, change – 16 mmol/d	

Supplemental Table 11. Characteristics of randomised controlled trials conducted in adults (n=15) and children (n=2)

		11									
	Na;	medications,		targeting							
	reduced Na	DBP between		behaviour						Net Na difference:	
	and	76-99 mm Hg		changes						-16±8 mmol/d,	
	increased K	at the first		related to						P=0.053	
		baseline visit		shopping,							
	Hypertensi	or no more		cooking and							
	on	than 89 mm		eating							
	Prevention	Hg at the		practices.							
	Trial (HPT)	second		Other							
		baseline visit		resources							
		7-30 days later		included							
		(i.e.		check-in							
		normotensive		telephone							
		population)		calls,							
				newsletters,							
		Mean age 39 y		cook books							
		Female 37%		and 'food							
				counter'							
				document of							
				portion sizes.							
Appel et	Parallel	Community	320/319	Self-selected	Face-to-face	Range	2 x 24-	Composite	Baseline 32% of	Control	Y
al.	2 groups:	dwelling		reduced Na	meetings	15-36	hr urine	endpoint	participants were	Baseline 145	
2001 ⁽²⁹⁾ ,	control,	adults aged		diet target <80	held on a	mo	collectio	that	taking a diuretic	mmol/d, end 150	
USA	reduced Na	60-80 y with		mmol/d.	regular basis	Mean	n	included	Ū	mmol/d, change -5	
		BP <145/<85		Nutrition	to enhance	27.8	(averag	recurrence		mmol/d	
	Trial of	mmHg while		education and	follow up.	mo	e used)	of high BP,		,	
	Nonpharm	taking 1		behavioural	Topics		,	resumption		Experimental	
	acologic	antihypertensi		based	discussed			of		Baseline 144	
	Interventio	ve medication		strategies	were			antihyperte		mmol/d, end 99	
	ns in the			provided via	unrelated to			nsive		mmol/d, change -	
	Elderly	Mean age 66 y		face-to-face	blood			medication,		45 mmol/d	
	(TONE)	Male 53%		sessions. No	pressure,			or a clinical			
	()			other	cardiovascul					Net Na difference:	
				Juici	cururovuscul						

		23% African- American		component of diet was targeted.	ar disease or nutrition.			cardiovas lar event		-40 mmol/d, P<0.001	
Kumanyi ka et al. 1993 ⁽³²⁾ , USA	Parallel 2 groups: control, reduced Na Trials of Hypertensi on Prevention, Phase 1 (TOPH 1)	Healthy community dwelling adults aged 30-54 y, with normal-high DBP (i.e. between 80- 89 mm Hg), not taking antihypertensi ve medications and free of cardiovascular disease. Mean age 43 y Female 29% White 77%	304/395	Self-selected reduced Na diet, counselled (group & one- to-one sessions) to target 60 mmol/d without changing other nutrient intakes. Sessions incorporated behavioural change strategies, food tasting and peer support. Information provided on Na content of foods, food shopping, eating out and label reading. Take home packages of	Control participants received no information.	18 m	1 x 24- hr urine	DBP	NA	Control Baseline 157 mmol/d, end 145 mmol/d, change - 11 mmol/d Experimental Baseline 155 mmol/d, end 99 mmol/d, change - 55 mmol/d Net Na difference: -44 mmol/d, P<0.001	Υ

				low Na food samples provided.							
The Trials of Hyperte nsion Preventi on Collabor ative Researc h Group 1997 ⁽¹¹¹⁾ , USA	Parallel 4 groups: control, weight loss, reduced Na, combined reduced Na + weight loss Trials of Hypertensi on Prevention, Phase II (TOPH II)	Adults aged 30-54 years, with DBP between 83- 89 mm Hg) not taking antihypertensi ve medications and free of cardiovascular disease recruited from nine academic medical centres. Mean age 43 y Female 37% White 80%	554/549	Self-selected reduced Na diet. Participants counselled to target goal 70 mmol/d. Intensive 10 wk phase: weekly group sessions, provided with core knowledge and behavioural skills to reduce Na. Transitional phase: 4 monthly sessions. Then, once or twice monthly contacts with all active participants and attempts to reengage	Individual and group sessions provided (topics of discussion not reported)	36 m	1 x 24- hr urine	DBP	NA	Control Baseline 188 mmol/d, end 178 mmol/d, change - 11 mmol/d Experimental Baseline 186 mmol/d, end 135 mmol/d, change - 51 mmol/d Net Na difference: -40 mmol/d, P<0.001	γ

				inactive participants. Additionally, a series of 3-6 refresher sessions were offered on intervention- related topics.							
Bulpitt et al. 1984 ⁽³⁰⁾ , UK	Parallel 2 groups: control, reduced Na	Patients attending hospital hypertension clinic with unsatisfactory blood pressure control, defined as DBP >95 mm Hg on two successive occasions despite drug treatment. Mean age 54 y Female 55%	33/32	Self-selected reduced Na diet, target of 44 mmol/d. Participants received dietary counselling from dietitian and instructed to avoid salty foods such as cured foods, most processed foods, cheese, salted butter and shell fish and limit other moderate sources of salt e.g. bread. Instructed not to use regular	Not described	3 m	1 x 48- hr urine	BP & adherence to low Na diet	94% of experimental group and 85% of control group were receiving a diuretic at baseline	Control Baseline 343 mmol/d, end 321 mmol/d, change - 22 mmol/d Experimental Baseline 262 mmol/d, end 204 mmol/d, change - 58 mmol/d Net Na difference: -36 mmol/d	Y

			salt at the table or during cooking and instead provided with a KCL salt substitute for use.							
Dodson Paralle et al. 2 group 1989 ⁽³⁷⁾ , control UK reduce	s: recruited from , the hospital's	17/17	A dietitian counselled participants and advised them to avoid: a) adding table salt; b) adding salt in cooking; c) salted meats and smoked fish; d) tinned foods - in particular tinned meats, vegetables, fish and tinned and packeted soups; e) salted cheeses; f) Oxo, Bovril and Marmite; g) bottled sauces and	Instructed to continue with their usual diet. No advice was given about salt intake.	3 mo	1 x 24- hr urine	BP	None. Use of diuretics was an exclusion criteria.	Control Baseline 183 mmol/d, end 181 mmol/d, change -3 mmol/d, P=NS Experimental Baseline 199 mmol/d, end 137 mmol/d, change - 62 mmol/d, P<0.001 Net Na difference: -59 mmol/d, P<0.05	Y

				savoury snacks, including crisps and peanuts. No advice was given on other aspects of diet (e.g. carbohydrate, fat)							
Gelejins e et al.	Parallel 2 groups:	Participants were part of	50/47	Participants were provided	Participants received	24 wk	2 x 24- hr urine	BP	None	Control Baseline 138	Y
1994 ⁽³⁸⁾ ,	control,	the Rotterdam		with a reduced	common salt					mmol/d, end 148	
Netherl	reduced Na	Study (large,		Na, increased	(Na chloride)					mmol/d	
ands	and	population-		potassium and	as table salt					innoi) a	
	increased	based cohort		magnesium	and trial					Experimental	
	K, Mg	study) and		mineral salt	foods (bread,					Baseline 139	
		included		for use in	cheese,					mmol/d, end 116	
		adults aged		cooking and at	luncheon					mmol/d	
		55-75 y		the table (Na,	meats,						
		without		K, Mg 8:6:1	canned and					Net Na difference:	
		antihypertensi		mmol;	instant soups					-38 mmol/d,	
		ve treatment		SagaSalt) and	and smoked					P<0.001	
		and SBP 140-		trial foods	sausage) that						
		200 mm Hg or		(bread,	were						
		DBP 85-100		cheese,	prepared						
		mm Hg at two		luncheon	with						
		measurements		meats, canned	common						
		1 week apart.		and instant	salt. Participants						
		Mean age 61 y		soups and smoked	Participants were asked						
		Female 40%		shoked sausage) that	to avoid						
				Jausage / mat							

				were prepared with the mineral salt. Participants were asked to avoid changes in dietary habits and lifestyle as much as possible.	changes in dietary habits and lifestyle as much as possible.						
Takahas hi et al. 2006 ⁽¹¹⁰⁾ , Japan	Parallel 2 groups: control, reduced Na and increased vitamin C and carotene Hiraka Dietary Interventio	Free living healthy adults aged 40-69 y were recruited from two rural villages in north-eastern Japan Mean age 56 y Female 67%	224/224	Self-selected diet with a focus on reduced Na intake (target <8-10 g/d salt in women & men), increased carotene intake >5000 ug/d and increased	Not described	1 y	1 x 48- hr urine	BP	11% receiving antihypertensive medication at the start of the study and this did not change during the trial, no further detail provided on drug type.	Control Baseline 248 mmol/d, end 237 mmol/d change -11 mmol/d Experimental Baseline 248 mmol/d, end 199 mmol/d change -49 mmol/d Net Na difference:	Υ
	n Study			vitamin C intake >200 mg/d. Achieved by decreasing consumption of salted foods (miso, salted vegetable						-39 mmol/d, P<0.001	

				pickles, salted fish and seasonings) and increasing consumption of fruit and vegetables. Two dietary counselling sessions, a group lecture and two newsletters were provided.							
Nowson et al. 2009 ⁽³³⁾ , Australi a	Parallel 2 groups: control (reference healthy diet); vitality diet (low Na + lean red meat)	Community dwelling women aged 45-75 y with hypertension	49/46	Dietary counselling provided by trained dietitians. Vitality Diet designed to have low dietary acid load and based on the low Na (60-70 mmol/d) DASH diet. Rich in fruits and vegetables, included lean red meat (6	Dietary counselling provided by trained dietitians. The reference healthy diet was designed to have high dietary acid load production, no reduction in Na intake. Participants received	14 wk	24-hr urine	BP	No. of participants taking a diuretic at the end of the study Control n=4 Experimental n=7	Control (reference healthy diet) Baseline 109 mmol/d, end 113 mmol/d change -4 mmol/d, P=NS Experimental (Vitality diet) Baseline 107 mmol/d, end 69 mmol/d change -38 mmol/d, P<0.001 Net Na difference:	Y

				servings/wk),	regular-salt					-42 mmol/d,	
				higher in K and	margarine					P<0.001	
				Mg.	and regular-						
					salt baked						
				Participants	beans, and						
				received 810 g	canned tuna						
				raw lean red	as an						
				meat, low-Na	incentive.						
				bread (75 mg							
				Na/100 g), no-	Both groups						
				added-salt	aimed to						
				baked beans	maintain						
				(20 mg Na/100	usual energy						
				g), salt free	intake.						
				margarine,							
				and low-Na							
				stock powder							
				(approximatel							
				y 50 mg							
				Na/100 g).							
				Both groups							
				aimed to							
				maintain usual							
				energy intake.							
Peterso	Parallel	Adults >18 y	35/30	Participants	Instructed to	3 mo	24-hr	Na intake	Individuals	Control	Y
n et al.	2 groups:	diagnosed		were	continue		urine		prescribed	Baseline 167	
2013 ⁽³⁴⁾ ,	control,	with Type 2		educated in a	with their				diuretics were	mmol/d, end 161	
Australi	reduced Na	Diabetes		single session	usual diet				eligible for	mmol/d	
а		Mellitus were		to use the					inclusion, no data	change -6 mmol/d	
		recruited from		nutrition					reported on		
		a hospital		information					diuretic usage	Experimental	
				panel on food							

		Diabetes		labels to						Baseline 174	
		Centre		choose						mmol/d, end 175	
				products						mmol/d	
		Mean age 62 y		which						change +1 mmol/d	
		Female 37%		complied with							
				the Food						Net Na difference:	
				Standards						+7 mmol/d, P=0.74	
				Australia New							
				Zealand							
				(FSANZ)							
				guideline of							
				<120 mg							
				Na/100 g							
				food. As no							
				low Na bread							
				available on							
				the market the							
				brand of bread							
				with lowest Na							
				content was							
				recommended							
				(280 mg							
				Na/100 g).							
He et al.	Parallel	Family based	261/271	Children	Children in	3.5 mo	2 x	Na intake	No information	Control	Y
2015 ⁽³⁹⁾ ,	2 groups:	intervention	adults	received	the control		consecu		on	Baseline 193	
China	control,	study, children		education	group		tive 24-		antihypertensive	mmol/d, end 207	
	reduced Na	in grade 5		materials over	carried on		hr urine		medication	mmol/d	
		attending		one school	with their		(averag		reported.	change +13	
		primary		term to pass	usual health		e used)			mmol/d (95%Cl	
		schools		onto their	education		,			3.8, 22.6)	
		located in		family	lessons as in					, ,	
		urban		members to	the					Experimental	
		Changzhi,		reduce salt in	curriculum,						

northernthe family dietand theseBaseline 215China werei.e. studyless ons didmmol/d, end 179invited toslogan 'smallnot containmmol/dparticipatehands leadinginformationchange -37 mmol/dalong with twobig hands,on slitchange -37 mmol/dfamilytogether let'smmol/eslogan 'smallmemberreduce salt'.Net Na difference:adults (i.e. oneThe target was-50 mmol/d,male & onea 20%-50 mmol/d,order ofdaily salt-50 mmol/d,preferenceintake20%grandparents,reduction in-50 mmol/d,preferenceintake50 mmol/d,aunts)nelclede-50 mmol/d,includedprogramme-50 mmol/d,aunts)included-50 mmol/d,fermale 41%worksheets,-50 mmol/d,parents,programme-50 mmol/d,grandparentsassignments50 mmol/d,grandparentsassignments50 mmol/d,grandparentsassignments50 mmol/d,26%Parents also-50 mmol/d,newsletters50 mmol/d,key cort50 mmol/d,included the-50 mmol/d,harmful-50 mmol/d,included the-50 mmol/d,harmful-50 mmol/d,included the-50 mmol/d,harmful-50 mmol/d,included the-50 mmol/d,<				
invited to slogan 'small not contain mmo/d change -37 mmo/d (95%C) -46, -27) mmo/d. Final end on salt together let's set of the angle of the a		•		
participatehands leading informationinformationchange -37 mmol/dalong with twobig hands,on salt(95%Cl -46, -27)familytogether let'smember(95%Cl -46, -27)memberreduce salt'.Net Na difference:adults (i.e. one10 target was-50 mmol/d.male & one20%-50 mmol/d.order ofdaily salt-50 mmol/d.order ofdaily salt-50 mmol/d.grandparents,grandparents,aunts)included-lessons plans,Parents 74%;mework-grandparentsgrandparentsmeme 41%worksheets,-Parents 74%;mework-grandparentsgrandparentsmeworkgrandparentsgrandparentsgrandparentsgrandparentsgrandparentsgrandparentsgrandparentsgrandparentsgrandparentsgrandparentsgrandparentsgrandparentsgrandparentsgrandparentsgrandparentsgrandparents </td <td></td> <td>•</td> <td></td> <td></td>		•		
along with twobig hands,on salt(95%Cl - 46, - 27)familytogether let'sNet Na difference:memberreduce salt'.Net Na difference:adults (i.e. oneThe target was-50 mmol/d,male & onea 20%PC0.01female, inreduction inorder ofdaily saltpreferenceintake.grandparents,regrammeuncles andprogrammeaunts)rogrammeaunts)lessons plans,Female 41%worksheets,Parents 74%;homeworkgrandparentsasignments.26%Parents 3koreceivededucationaleducationalmaterials viamemberasignments.Parents 74%;homeworkmaterials vianewsletters.Key contentincluded theharmfuleffects of salt,included theharmfuleffects of salt,sources of saltin diet andindict and the	invited to	-		-
familytogether let'smemberreduce salt'.Net Na difference:aduits (i.e. orehe target was-50 mmol/d,male & onea 20%P<0.001	participate	hands leading	information	change -37 mmol/d
memberreduce salt'.Net Na difference:adults (i.e. oneThe target was-50 mmol/d,male & one20%>50 mmol/d,female, inreduction in><0.001	along with two	-	on salt	(95%Cl -46, -27)
adults (i.e. oneThe target was-50 mmol/d,male & onea 20%P<0.001		-		
male & onea 20%P<0.001female, inreduction inorder ofdaily saltorder ofintake.grandparents,intake.parents,The educationuncles andprogrammeaunts)includedlessons plans,lessons plans,Kean age 44 yactivityFemale 41%worksheets,parents 74%;homeworkgrandparents,sasignments.26%Parents alsoreceivedreceivedmaterials vianewsletters.key orden thekey orden theincluded theharmfulincluded theharmfulincluded theharmfulincludes of salt,sources of salt,in diet andin diet and	member	reduce salt'.		Net Na difference:
female, inreduction inorder ofdaily saltorder ofdaily saltpreferenceinake.grandparents,parents,uncles andporgrammeaunts)includedlessons plans,Mean age 44 yactivityFemale 41%worksheets,grandparentsbomeworkgrandparentsasignments.26%Parents alsoecvievedecvievededucationalmaterials vianewsletters.key contentincluded theharmfuleffects of salt,sources of saltin diet andfor salt	-	-		
order of aily salt preference intake. grandparents, parents, The education uncles and programme aunts) Fine ducided aunts) Included aunts) Included aunts) Included activity Female 41% Vorksheets, Female 41% Vorksheets, Female 41% Vorksheets, Parents 74%; Nomework grandparents asignments. 26% Parents asignments. 26% P				P<0.001
preferenceintake.grandparents,The educationparents,The educationuncles andprogrammeaunts)includedlessons plans,Mean age 44 yactivityFemale 41%worksheets,Parents 74%;homeworkgrandparentsassignments.26%Parents alsoreceivededucationalmaterials vianewsletters.newsletters.Key contentincluded theharmfuleffects of salt,sources of saltinclude theharmfuleffects of salt,sources of saltin et andsources of saltin				
grandparents, The education parents, The education uncles and programme aunts) included lessons plans, lessons plans, Mean age 44 y activity Female 41% worksheets, Parents 74%; homework grandparents assignments. 26% Parents also received educational materials via newsletters. Key content included the harmful effects of salt sources of salt jources of salt		•		
parents, The education uncles and programme aunts) included lessons plans, Mean age 44 y activity Female 41% ovrksheets, Parents 74%; homework grandparents assignments. 26% Parents also received educational materials via newsletters. Key content included the harmful effects of salt, sources of salt in diet and	•	intake.		
uncles and programme aunts) included lessons plans, Mean age 44 y activity Female 41% worksheets, Parents 74%; homework grandparents assignments. 26% Parents also received educational materials via newsletters. Key content included the harmful effects of salt, sources of salt in diet and				
aunts) included lessons plans, Mean age 44 y activity activity Female 41% worksheets, Parents 74%; homework assignments. 26% Parents also received educational materials via newsletters. Key content included the harmful effects of salt, sources of salt in diet and	-	The education		
Iessons plans,Mean age 44 yactivityFemale 41%worksheets,Parents 74%;homeworkgrandparentsassignments.26%Parents alsoreceivededucationalmaterials vianewsletters.Key contentincluded theharmfuleffects of salt,sources of saltin diet and				
Mean age 44 yactivityFemale 41%worksheets,Parents 74%;homeworkgrandparentsassignments.26%Parents alsoreceivededucationalmaterials vianewsletters.Key contentincluded theharmfuleffects of salt,sources of saltin diet and	aunts)			
Female 41%worksheets,Parents 74%;homeworkgrandparentsassignments.26%Parents alsoreceivededucationaleducationalmaterials vianewsletters.Key contentincluded theharmfuleffects of salt,sources of saltin diet andin diet and		•		
Parents 74%;homeworkgrandparentsassignments.26%Parents alsoreceivededucationalmaterials vianewsletters.Key contentincluded theharmfuleffects of salt,sources of saltin diet and		•		
grandparentsassignments.26%Parents alsoreceivededucationalmaterials vianewsletters.key contentincluded theharmfuleffects of salt,sources of saltin diet and				
26% Parents also received educational materials via newsletters. Key content included the harmful effects of salt, sources of salt in diet and				
received educational materials via newsletters. Key content included the harmful effects of salt, sources of salt in diet and		-		
educational materials via newsletters. Key content included the harmful effects of salt, sources of salt in diet and	26%			
materials via newsletters. Key content included the harmful effects of salt, sources of salt in diet and				
newsletters. Key content included the harmful effects of salt, sources of salt in diet and				
Key content included the harmful effects of salt, sources of salt in diet and				
included the harmful effects of salt, sources of salt in diet and				
harmful effects of salt, sources of salt in diet and		•		
effects of salt, sources of salt in diet and				
sources of salt in diet and				
in diet and				
COOKINg.				
		COOKINg.		

	encouraged to replace usual salt with a mineral salt substitute high in K and low in Na. Discretionary salt use in the home was monitored and fortnightly feedback was provided to help the family reach a 50% reduction target.							
NouvenParallelPatients with10ne et al.2 groups:iodiopathic2010 ⁽⁴⁰⁾ ,controlcalciumItaly'usual diet'nephrolithiasis+ waterwere recruitedtherapy,from an out-	0/97 Self-selected reduced Na diet target 60 mmol/d. Participants were	Participants instruction to consume their usual diet with the exception of	3 m	1 x 24- hr urine	Proportion of participants with urinary calcium	No information on antihypertensive medication reported	Control Baseline 220 mmol/d, end 200 mmol/d change -20 mmol/d	Y
reduced Na patient diet + hospital clinic water therapy Mean age 40 y Female 39%	instructed to eliminate kitchen salt (cooking and at table) from	beverage consumption that amounted to 2 L/d in			normalizati on at follow-up.		Experimental Baseline 228 mmol/d, end 68 mmol/d change -160	

limit	months and	
consumption	3L/d in	Net Na difference:
of food with a	warmer	-140 mmol/d,
high salt	months.	P<0.001
content.	Water	
Counselling	consumed	
and	had a low Na	
instruction	content 7 mg	
sheets	Na/L	
provided by		
food scientist.		
In addition		
participants		
were		
instructed to		
consume daily		
intake of		
calcium of		
800-1000		
mg/d via milk,		
yoghurt and		
low salt		
cheese and		
meet		
beverage		
consumption		
that		
amounted to 2		
L/d in colder		
months and		
3L/d in		
warmer		
months.		

				Water consumed had a low Na content 7 mg Na/L							
Gilleran et al. 1996, UK	Parallel 2 groups: control, reduced Na	Participants were patients attending the diabetic clinics at a hospital, with hypertension and type 11 diabetes. Only patients that reported adding salt at the table or in cooking as assessed by dietary recall were included. Mean age 63 y Female 40%	8/11	Throughout the trial participants received a salt substitute (Seltin) containing 50% Na chloride, 40% potassium chloride, and 10% magnesium sulphate. They were instructed to use the salt substitute when using salt during cooking or at the table.	Throughout the trial participants received ordinary table salt to use during cooking and at the table	9 month s	1 x 24- hr urine	Blood pressure and metabolic parameters	None, patients were instructed to discontinue antihypertensive medication 1 month prior to the trial.	Control Baseline 169 mmol/d, end 159 mmol/d, change - 10 mmol/d, P=NS Experimental Baseline 146 mmol/d, end 1167 mmol/d, change 20 mmol/d, ns Net Na difference: + 30 mmol/d	Υ
Staesse n et al. 1988 ⁽¹⁰⁹⁾ , Belgium	Parallel community based RCT 2 groups: control town; low	Adults residing in two Belgian towns, population of 12 000 and 9000. Towns	Baseline 117/410 End 236/747	Community based intervention focused on consumer awareness	Any mention of salt as a possible health hazard was carefully	4 years	1 x 24- hr urine	Feasibility of reducing population Na intake, BP	About 10% of participants pre and post were on antihypertensive medication, no further	MALES Control Baseline n=57: 186 mmol/d; end n=120: 173 mmol/d	Y

Na	were 50 km	campaign to	avoided and	information	change -13
interventio	away from	raise	with the	provided on type.	mmol/d, P=NS
n in	one another in	awareness of	exception of		
another	distance. At	health	pre and post		Experimental
town	baseline a 10%	implications of	measuremen		Baseline n=215:
	random	high salt	ts there was		182 mmol/d; end
	sample of	intake and 3	no other		n=385: 170
	households in	key messages	contact with		mmol/d
	the	to reduce salt	the		change -12
	intervention	i) banning the	population.		mmol/d, P<0.05
	town and 5%	salt cellar from			
	random	the table ii)			Net Na difference:
	sample of	avoiding the			+1 mmol/d, P=0.98
	households in	use of salt			
	the control	during food			FEMALES
	area were	preparation at			Control
	identified and	home iii) only			Baseline n=60: 131
	those aged	purchasing			mmol/d; end
	≥10 years	food stuffs			n=116: 139
	were invited	without added			mmol/d
	to participate,	salt.			change +8 mmol/d,
	however	Messages			P=NS
	analysis only	were			
	includes ≥19	distributed via			Experimental
	years due to	the			Baseline n=195:
	wide	community via			149 mmol/d; end
	variability in	multiple			n=362: 132
	BP in younger	mediums e.g.			mmol/d
	years.	radio,			change -17
	Follow-up	newspaper			mmol/d, P<0.001
	sample size	adverts,			
	was doubled,	leaflets			Net Na difference:
	those	distributed to			

		completing baseline measures were excluded from follow-up participation.		all homes, support from GP in medical practices. Bakers and butchers encouraged to reduce Na content of bread or meat. Caterers/local food industry encouraged to prepare dishes with less added salt.						-25 mmol/d, P=0.01	
	n children ^c	Deuticiacato	22/10	12 m fomilu	No contrat	1	1 × 10	Feesibility		Na intake	N
Gillum et al. 1981 ⁽¹²⁷⁾ , USA	Parallel 2 groups: control; reduced Na diet	Participants were children (grades 1-3; 6- 9 y) enrolled in the Minneapolis Public School system, who had systolic BP over the 95th percentile for age and sex as assessed in a large survey of students in 1978. The	32/16	12-m family education program. Goal was for parents to obtain maximum 70 mmol/day Na intake for each family member. 4 x biweekly 90-minute lectures followed by bimonthly 90-	No contact with researchers for the full year.	1 year	1 x 10- hr overnig ht urine	Feasibility of family education program to reduce Na intake.	NA	Control n=32 Baseline Na intake: 31 (SD 20) mmol/10 hr End Na intake : 35 (20) mmol/10 hr 1 year change: +3.7 (20.9) mmol/10 hr Experimental attenders n=16 Baseline: 26 (SD 11) mmol/10 hr End: 29 (16) mmol/10 hr	Ν

families of	minute	1 year change: +2.9
children who	maintenance	(16.5) mmol/10hr
met these	sessions for	
criteria were	the rest of the	Net Na difference:
invited to	year.	-1 mmol/d, P=NS
participate in		
study and	Sessions	BW
randomised to	consisted of	Control n=35
either the	separate	Baseline BW: 26.8
control group	parent and	(SD 4.1) kg
(n=39 families)	children	End BW: 30.7 (4.7)
or family	groups	kg
education	followed by	1 year change: 3.9
program (n=41	joint	kg.
families).	discussion	
	period.	Experimental
Child		attenders n=15
characteristics	Topics	Baseline BW: 26.4
Mean age 8 y	delivered to	(SD 4.6) kg
Control group:	parents:	End BW: 28.9 (5.3)
female 31%	relationship	kg
Intervention	between Na	1 year change: +2.5
group: female	and BP,	kg.
61%	dietary	
	sources of Na,	Net between
	salt point	group BW
	counting,	difference:
	cooking	-1.4 kg, no
	without salt,	statistical tests
	avoiding salt	performed
	when eating	
	out, low Na	

				cookbooks provided. Topics delivered to children: low Na eating style presented via games, craft & tasting activities, food preparation.							
He et al. $201 r^{(39)}$	Parallel	Family based	135/139	Children	Children in	3.5 m	2 x	Na intake	NA	Na intake	Ν
2015 ⁽³⁹⁾ , China	2 groups: control,	intervention study, children	children	received education	the control		consecu tive 24-			Control Baseline 193	
Сппа	reduced Na	in grade 5		materials over	group carried on		hr urine			mmol/d, end 207	
		attending		one school	with their		(averag			mmol/d	
		primary		term to pass	usual health		e)			change +13	
		schools		onto their	education		-,			mmol/d (95%Cl	
		located in		family	lessons as in					3.8, 22.6)	
		urban		members to	the						
		Changzhi,		reduce salt in	curriculum,					Experimental	
		northern		the family diet	and these					Baseline 215	
		China were		i.e. study	lessons did					mmol/d, end 179	
		invited to		slogan 'small	not contain					mmol/d	
		participate		hands leading	information					change -37 mmol/d	
		along with two		big hands,	on salt					(95%Cl -46, -27)	
		family		together let's							
		member		reduce salt'.						Net Na difference:	
		adults (i.e. one		The target was						-50 mmol/d,	
		male & one		a 20%						<0.001	
		female, in		reduction in						D14/	
		order of		daily salt						BW	
		preference		intake.						Control	

grandparents,		Within group
parents,	The education	change in BW +3.8
uncles and	programme	(SD 1.8) kg
aunts)	included	
	lessons plans,	Experimental
Child	activity	Within group
characteristics	worksheets,	change in BW +4.1
Mean age 10 y	homework	(SD 2.1) kg
Female 52%	assignments.	
	Parents also	Net between
	received	group BW
	educational	difference: +0.29
	materials via	kg, no statistical
	newsletters.	tests performed.
	Key content	
	included the	
	harmful	
	effects of salt,	
	sources of salt	
	in diet and	
	cooking.	
	Participants	
	were	
	encouraged to	
	replace usual	
	salt with a	
	mineral salt	
	substitute high	
	in K and low in	
	Na.	
	Discretionary	
	salt use in the	

home was
monitored and
fortnightly
feedback was
provided to
help the
family reach a
50% reduction
target.

Abbreviations. C control, E experimental USA United States of America, UK United Kingdom, Na sodium, BP blood pressure, SBP systolic blood pressure, DBP diastolic blood pressure, wk week, mo month

^a When more than two groups are listed, data was extracted for those groups bolded.

^b-Overnight urinary Na was extrapolated to 24-hr excretion using means of multipliers derived from an ancillary study within the Hypertension Prevention Trial i.e. 3.8 for Na

^c-For studies not included in meta-analyses main findings for the outcome of body weight are also reported. For the other studies included in meta-analysis information on net difference in body weight is displayed in the corresponding forest plot.

Study	Selectio	n Bias	Performance Bias	Detection Bias	Attrition Bias	Selective Reporting
			Blinding of	Blinding of		
	Random Sequence	Allocation	participants and	outcome	Incomplete	Selective outcome
	Generation	concealment	personnel	assessment ^a	outcome data	reporting ^b
Beard 1992	Unclear	Unclear	High	Low	Low	NA
HPT 1990	Low	Low	High	Low	Low	NA
Appel 2001	Unclear	Unclear	High	Low	Low	NA
Kumanyika 1993	Unclear	Low	High	Low	Low	NA
Cutler 1997	Unclear	Low	High	Low	Low	NA
Bulpitt 1984	Unclear	Unclear	High	Low	Unclear	NA
Dodson 1989	Low	Unclear	High	Low	Unclear	NA
Gilleran 1996	Unclear	Unclear	Low	Low	High	NA
Gelejinse 1994	Low	Unclear	Low	Low	Low	NA
Nowson 2009	Unclear	Unclear	High	Low	Low	NA
Takahashi 2006	Low	Low	Low	Low	Low	NA
Staessen 1988	Unclear	Unclear	High	Low	Unclear	NA
Petersen 2013	Low	Unclear	High	Low	Low	NA
۲He 2015	Low	Low	High	Low	Low	NA
Nouvenne 2010	Low	Low	High	Low	Low	NA
Gillum 1981	Unclear	Unclear	High	Low	Low	NA
°He 2015	Low	Low	High	Low	Low	NA

Supplemental Table 12. Risk of bias assessment of individual randomised controlled trials conducted in adults (n=	15) and children (n=2)
---	--------------------	------

^a Blinding of outcome assessment (BW) was not completed in most studies but the authors judge that the outcome measurement is unlikely to be influenced by lack of blinding as BW was not a primary outcome being assessed in trials

^b Selective outcome reporting was omitted as it was deemed inapplicable as our primary outcome BW was not listed as an outcome in assessed trials. ^c This study provided data for adults and children

Study	Coun try	Study population /Study Name	N, sample characteris tics	Exposure			Ad	iposity (outcome			Included in meta- analyses
					BMI	Weight categor y	BW	WC	Abdomin al obesity	WtHR	Body compo sition	-
Ellison et al. 1980 ⁽¹¹⁵⁾	USA	Adolescents aged 16-17 y recruited from existing longitudinal study National High Blood Pressure in the Young Program	248 Boys 52%	3 x overnight urine collections (not extrapolated to daily intake)			Х				x	N: correlation only
Campino et al. 2016 ⁽⁵⁵⁾	Chile	Convenience sample of children aged 9-18 years	59	1 x 24-hr urine			Х					N: correlation only
Maldonad o-Martin et al. 2002 ⁽¹²¹⁾	Spain	Random sample of children aged 6-14 y who were attending public primary schools in Almeria Province in Southern Spain	553 Boys 50%; mean age 10 y	1 x 24-hr urine			Х					N: correlation only
Lurbe et al 2000 ⁽¹²⁰⁾	Spain	Convenience sample of children aged 4-19 y recruited from paediatric outpatient clinic for which they attended for routine health maintenance (none were taking medications or had medical illness)	173 Boys 43%; 49% obese	1 x 24-hr urine			X					N: correlation only

Supplemental Table 13. Study characteristics of cross-sectional studies assessing the association between sodium intake and adiposity outcomes among children and adolescents

Yamauchi et al. 1994 ⁽¹²⁵⁾	Japa n	Convenience sample of children aged 6-11 y recruited from an after- school nursery centre located in Kita ward, Nagoya city	322 Boys 53%	1 x overnight urine (not extrapolated to daily intake, mean collection time 9.8 (1.4) hr	X	X		N: correlation only
De Santo et al. 1987 ⁽¹¹⁴⁾	Italy	Children aged 3-16 y residing in small town 20 km from Naples, Cimitile Sampling procedures not specified.	220 Boys 56%	1 x 24-hr urine	X	X		N: correlation only
Lakatos et al. 2015 ⁽¹¹⁷⁾	Hung ary	Convenience sample of children aged 1-18 years recruited via a hospital admitted for elective survey or routine clinical examination (i.e. no serious health conditions present)	200 50% Male	1 x 24-hr urine	X			N: correlation only
Campano zzi et al. 2015 ⁽¹¹³⁾	Italy	Healthy children aged 6- 18 y recruited via paediatricians and GPs across 10 regions in Italy MINISAL Study	1424 Boys 54%; mean age 10 y	1 x 24-hr urine	Xp			N: correlation only
Okuda et al. 2016 ⁽¹²²⁾	Japa n	Convenience sample of secondary school students aged 12-15 y	68 Boys 35%' 14 y	1 x 24-hr urine		Х		N: could not be pooled
Gilardini et al 2015 ⁽¹¹⁶⁾	Italy	Convenience sample of obese children aged 7-18 y recruited via a referral for a weight loss intervention at the	360 Boys 36%	7 x day diet history (dietitian administrated,			X	N: could not be pooled

		obesity centre of the Instiuto Auxologico Italiano in Milan		mother present)							
Zhu et al. 2014 ⁽⁷⁾	USA	Adolescents aged 14-18 years attending public high schools located in Augusta, Georgia. Schools were sampled to include those with enrolments of both African American and Caucasian students.	766 Boys 50%; mean age 16 y; 49% African American, 51% Caucasian; 25% overweight or obese	24-hr diet recall, minimum 3 x non- consecutive (max of 7), average sodium mg/d	x		X	X		Х	N: could not be pooled
Woodruff et al 2013 ⁽¹²⁴⁾	Cana da	Children in grades 6-8 recruited from 26 schools located in Ontario. Schools of varying socioeconomic backgrounds	1088 Boys 52%; age range 10-14 y; 1% underweig ht, 56% healthy weight, 23% overweight , 20% obese	1 x 24-hr diet recall (web- based, self- administered)		X					γ
Rafie et al. 2017 ⁽¹²³⁾	Iran	Random cluster sample of children aged 11-18 y recruited from 13 schools in 4 districts of Isfahan	374 41% boys; mean age 14 (2) γ; 18% overweight , 9% obese;	1 x 24-hr urine (all completed Fri-Sun)		Х			X		Ŷ

			27% centrally obese							
Lee et al. 2015 ⁽¹¹⁸⁾	Sout h Kore a	Children aged 8-9 y recruited from 7 x elementary schools located in Seoul Sampling procedures not specified.	2163 Boys 51%; 14% overweight , 4% obese	3 x24-hr diet recall (2 weekdays, 1 weekend day)		X				Y
Ma et al. 2015 ⁽⁹⁾	UK	Nationally representative sample of children aged 4-17 y National Diet and Nutrition Survey Rolling Programme	458 Boys 52%; mean age 10 y	1 x 24-hr urine	Х	Х	Х		Х	N: could not be pooled
Grimes et al. 2016 ⁽⁵⁾	Austr alia	Convenience sample of children aged 4-12 years recruited via schools located in state of Victoria	666 Boys 55%; mean age 9.3 (1.8) y; 14% overweight , 3% obese	1 x 24-hr urine	Х	X	Х			N: could not be pooled
Lee et al. 2016 ⁽¹¹⁹⁾	Kore a	Nationally representative sample of children and adolescents aged 10-18 y KHANES 2010-11	1467 Boys 64%; mean age 13 y; 7% overweight , 12% obese	1 x 24-hr diet recall (sodium density mg/1000 kcal)		Х		X	Х	N: exposure sodium density
Yoon et al. 2013 ⁽¹²⁾	Sout h Kore a	Nationally representative sample of children and adolescents aged 7-18 y	5025 Boys 53%; 4.5% obese	1 x 24-hr diet recall (sodium density mg/gram of		Х		Х		N: exposure sodium density

KHANES 2007-10	food
	consumed/d)
Abbreviations: BMI body mass index; BW body weight; W0	C waist circumference; WtHR waist-to-height ratio, UK United Kingdom, USA United States of America

Supplemental Table 14. Newcastle Ottawa Scale quality assessment of cross-sectional studies assessing the association between sodium intake and adiposity outcomes among children and adolescents

Study	Country	Selecti	on <i>(0-3*)</i>	Comparability (0-2*)	Outcon	ne (0-2*)	Total NOS Score	Included in meta- analysis
		Representativeness of cohort (0-1*)	Assessment of the exposure (sodium/salt intake) <i>(0-2*)</i>	Methods to control confounding (0-2*) ^a	Assessment of outcome (0-1*)	Non-response rate (0- 1*)	(0-7*) ^b	
		 a) truly representative of the source population (1*) b) somewhat representative of the source population (1*) c) selected group of users e.g. nurses, volunteers (0) d) no description of the derivation of the cohort (0) 	 a) 24-hr urine collection (1 or more) (2*) b) 24-hr dietary recall method (1*) c) Weighed dietary record (1 or more days) (1*) d) Urine sample: spot, timed or overnight (0) e) Food frequency questionnaire (0) 	a) study controls for age and sex (1*) b) study controls for energy intake (1*)	a) objectively measured adiposity outcome (e.g. BW and height for BMI) (1*) b) self-report BW and height (0) c) no description (0)	a) Non-response rate =<20% (1*) b) Non-response rate >20% (0) c) no description (0)		
Ellison et al. 1980 ⁽¹¹⁵⁾	USA	1	0	0	1	0	2	Ν
⁸ Campino et al. 2016 ⁽⁵⁵⁾	Chile	0	2	0	1	0	3	Ν
Maldonad o-Martin et al. 2002 ⁽¹²¹⁾	Spain	1	2	0	1	0	4	Ν
Lurbe et al 2000 ⁽¹²⁰⁾	Spain	0	2	0	1	0	3	Ν

Yamauchi	Japan	0	0	0	1	0	1	N
et al. 1994 ⁽¹²⁵⁾		0	0	0	1	0	1	N
De Santo	Italy							
et al. 1987 ⁽¹¹⁴⁾		0	2	0	1	0	3	Ν
Lakatos et	Hungary							
al.	Hungary	0	2	0	1	0	r	N
aı. 2015 ⁽¹¹⁷⁾		0	2	U	1	0	3	Ν
Campano	Italy							
zzi et al.		1	2	0	1	1	5	Ν
2015(113)								
Okuda et	Japan							
al.		0	2	0	1	0	3	N
2016 ⁽¹²²⁾								
Gilardini	Northern							
et al	Italy	0	1	2	1	0	4	Ν
2015 ⁽¹¹⁶⁾								
Zhu et al.	USA	1	1	2	1	0	5	Ν
2014 ⁽⁷⁾		I	I	Z	I	0	J	
Woodruff	Canada							
et al		1	1	0	1	1	4	Y
2013 ⁽¹²⁴⁾								
Rafie et	Iran							
al.		1	2	2	1	1	7	Y
2017 ⁽¹²³⁾								
Lee et al.	South	1	1	2	1	0	5	Y
2015 ⁽¹¹⁸⁾	Korea	I	I	Z	I	0	J	T
Ma et al.	UK	1	2	2	1	0	6	Ν
2015 ⁽⁹⁾		T	۷.	۷.	T	U	0	IN
Grimes et	Australia	0	2	2	1	0	5	Ν
al. 2016 ⁽⁵⁾		v	۷	۷.	T	0	J	

Lee et al. 2016 ⁽¹¹⁹⁾	Korea	1	2	2	1	0	6	Ν
Yoon et	South							
al.	Korea	1	1	2	1	1	6	Ν
2013 ⁽¹²⁾								

Abbreviations: NOS Newcastle-Ottawa Scale Score; USA United States of America; UK United Kingdom

^a Scoring for adjustment for confounders is based on the primary outcome model (i.e. BMI or weight category)

^b Studies with total scores of \geq 5^{*}, 3-4^{*} and \leq 2^{*} were assessed as high, moderate and low-quality studies, respectively.

Study	Country	N, sample characteristi cs	Adiposity outcome	Sodium/salt intake ^a	Covariates, stratification	Findings ^b	Summary ^c	Included in meta- analyses related to this outcome
Yamauc hi et al. 1994 ⁽¹²⁵⁾	Japan	322 Boys 53%	BMI kg/m ²	Mean overnight salt excretion 1.5 (0.8) g/d	None	No correlation between overnight salt (g) and BMI (<i>r</i> =0.081, P=NS)	Null BMI (unadjusted)	Ν
De Santo et al. 1987 ⁽¹¹⁴⁾	Italy	220 Boys 56%	BMI kg/m ²	Mean Na 3 y: 79 (22) mmol/d; 16 y: 183 (55) mmo/d	None	Significant positive correlation between sodium intake (mmol/d) and BMI (kg/m ²) (<i>r</i> =0.44, P<0.001)	+ BMI (unadjusted)	Ν
Lakatos et al. 2015 ⁽¹¹⁷⁾	Hungary	200 50% Male	BMI kg/m ²	Mean Na 1-3 y: 54 (28) mmol/d; 14-18 y 165 (84) mmol/d	None	Sodium intake (mmol/d) was positively associated with BMI (kg/m ²) <i>r</i> =0.49, P<0.001, R ² =0.236, P<0.001)	+ BMI (unadjusted)	Ν
Campan ozzi et al. 2015 ⁽¹¹³⁾	Italy	1424 Boys 54%; mean age 10 Y	BMI z-score based on CDC growth charts	Median Na boys: 120 (IQR 84, 162) mmol/d; girls: 107 (IQR 77, 146) mmol/d	None, sex stratified	Significant positive correlation between sodium intake and BMI z-score (boys Spearman's <i>r</i> =0.09, P<0.001; girls Spearman's <i>r</i> =0.09, P<0.05)	+ weak BMI z-score (unadjusted)	Ν
Zhu et al. 2014 ⁽⁷⁾	USA	766 Boys 50%; mean age 16 y; 49% African American,	BMI kg/m ²	Mean Na 3281 (1150) mg/d	Adjusted for age, sex, race, Tanner stage, birth weight, PA, energy	Difference in BMI (kg/m ²) associated with sodium intake (mg/d) BMI: β (standardised)=0.23, P=0.01 *adjusted for age, sex, race, Tanner stage, birth weight, physical activity, energy intake, potassium intake, SSB intake	+ BMI (adjusted, including energy intake)	Ν

Supplemental Table 15. Summary of findings from cross-sectional studies among children, outcome: BMI or weight category

		51%			intake,			
		Caucasian;			potassium			
		25%			intake, <mark>SSB</mark>			
		overweight			intake			
		or obese						
Woodru	Canada	1088	Weight	Mean Na 2799	Adjusted for	Odds (OR 95% CI) of overweight/obesity by quartile of	+ weight	Y
ff et al		Boys 52%;	category	(1539) mg/d	sex,	sodium intake (mg/d)	category	
2013 ⁽¹²⁴⁾		age range	based on WHO		ethnicity,	Q1 sodium <1679 mg/d: OR 1.00 (reference group)	only for	
		10-14 y; 1%	Growth		SBP, DBP and	Q2 sodium 1697, 2539 mg/d: OR 1.26 (95%CI 0.86,	sodium	
		underweight,	Reference		under-	1.83), P-value=0.238	intake Q4 vs.	
		56% healthy	Charts		reporting	Q3 sodium 2540, 3632 mg/d: OR 1.72 (95%Cl 1.14,	Q1 and Q3	
		weight, 23%			ratio (i.e.	2.59), P-value=0.009	vs. Q1	
		overweight,			El:estBMR	Q4 sodium ≥3633 mg/d: OR 2.88 (95%Cl 1.76, 4.73), P-	(adjusted)	
		20% obese			variable)	value=<0.001		
					,	*note excluded n=44 (4%) for implausible EI intake		
						<200kcal/d or > 6000kcal/d		
Rafie et	Iran	374	Weight	Not reported	Adjusted for	Odds (OR 95% CI) of overweight/obesity by tertile of	+ weight	Y
al.	-	41% boys;	category		age, sex	sodium intake (mg/d)	category	
2017 ⁽¹²³⁾		mean age 14	based on IOTF		,parents'	T1 Na intake <1750 mg/d: reference category	(adjusted,	
2017		(2) y; 18%	BMI reference		education	T2 Na intake 1750, 3420 mg/d: OR 1.47 (95% CI 0.69,	including	
		overweight,	cut-offs		level,	3.14)	energy	
		9% obese;			household	T3 Na intake >3420 mg/d: OR 8.33 (95% CI 4.14, 16.80)	intake)	
		27%			income, PA +	P-value <0.001	intakej	
		centrally			SSB intake	*base model adjusted for age, sex, parents education		
		obese			and energy	level, household income, PA		
		ODESE			• • • •	level, householu mcome, PA		
					intake	Additional adjustment with an annu intaka		
						Additional adjustment with energy intake		
						T1 Na intake <1750 mg/d: reference category		
						T2 Na intake 1750, 3420 mg/d: OR 1.12 (95%Cl 0.50,		
						2.51)		
						T3 Na intake >3420 mg/d: OR 4.97 (95%Cl 2.34, 10.6)		
						P-value <0.010		
						*adjusted for base model + energy intake (kcal/d)		

						Additional adjustment with SSB intake T1 Na intake <1750 mg/d: reference category T2 Na intake 1750, 3420 mg/d: OR 1.43 (95%CI 0.67, 3.08) T3 Na intake >3420 mg/d: OR 7.80 (95%CI 3.86, 15.8) P-value <0.001 * adjusted for base model + SSB (g/d)		
Lee et al. 2015 ⁽¹¹⁸⁾	South Korea	2163 Boys 51%; 14% overweight, 4% obese	Weight category based on age and sex BMI percentiles using Korean National Growth Charts. Healthy weight <85 th p, overweight ≥85 th p to 9=<95 th p, obese ≥95th p	Mean Na healthy weight: 3357 (995) mg/d; overweight/ob ese 3806 (1064) mg/d	Adjusted for age, sex, mother's BMI, father's BMI, mother and father's education level, dietary fat, SBP, PA and energy intake using residual method	Odds (OR 95% Cl) of obesity by quintile of energy- adjusted (residual method) sodium intake (mg/d) Q1 mean residual Na intake 2288 mg/d: reference group Q5 mean residual Na intake 5059 mg/d: OR 2.80±0.47 P-value for trend=0.03 *adjusted for age, sex, mother's BMI, father's BMI, mother and father's education level, dietary fat, systolic blood pressure, physical activity and energy intake using residual method **note data not reported for Q2, Q3 or Q4 Odds (OR 95% Cl) of obesity by quintile of energy- adjusted (residual method) sodium intake (mg/d), comparing Q1 vs. Q2-Q5 Q1 mean residual Na intake 2288 mg/d: reference group Q2 to Q5: OR 5.27±SE not reported P-value for trend <0.05 *adjusted for age, sex, mother's BMI, father's BMI, mother and father's education level, dietary fat, systolic blood pressure, physical activity and energy intake using residual method	+ weight category (adjusted, including energy intake)	Y

Ma et al. 2015 ⁽⁹⁾	UK	458 Boys 52%; mean age 10 γ	BMI kg/m ² , weight category defined as overweight BMI ≥85th p, obese BMI ≥95 th p according to UK reference data	Mean salt 5.5 (2.7) g/d	Adjusted for age sex, ethnic group, household income, physical activity, energy intake or SSB intake and energy misreporting	Mean±SE BMI (kg/m2) by tertile of salt intake (g/d) T1 mean salt 3.1 (0.8) g/d n=152: 18.5±0.5 kg/m ² T2 mean salt 5.1 (0.6) g/d n=155: 19.0±0.4 kg/m ² T3 mean salt intake 8.5 (2.2) g/d n=151: 20.2±0.5 kg/m ² P-value for trend <0.001 *adjusted for age, sex, ethnic group, household income. PA, energy intake, energy mis-reporting Odds (OR 95% Cl) of overweight/obesity associated with 1g/d of salt Healthy weight n=318, salt intake 5.2±0.1 g/d: reference group Overweight/obese n=140, salt intake 6.4±0.3: OR 1.28 (95% Cl 1.12, 1.45), P-value<0.001 *adjusted for age, sex, ethnic group, household income, physical activity level, energy intake, misreporting of energy intake Healthy weight n=318, salt intake 5.2±0.1 g/d: reference group Overweight/obese n=140, salt intake 6.4±0.3: OR 1.28 (95% Cl 1.12, 1.45), P-value<0.001 *adjusted for age, sex, ethnic group, household income, physical activity level, energy intake, misreporting of energy intake Healthy weight n=318, salt intake 6.4±0.3: OR 1.28 (95% Cl 1.12, 1.47), P-value<0.001 *adjusted for age, sex, ethnic group, household income, physical activity level, SSB intake, misreporting of energy intake *Note no base models without inclusion of energy intake	+ BMI (adjusted) + weight category (adjusted, including energy intake)	Ν
Grimes	Australi	666	BMI z-score	Mean salt	Adjusted for	provided Difference in BMI z-score associated with 1 g/d salt	+ BMI z-	N
et al.	a	Boys 55%;	based on CDC	intake 6.1 g/d	age, sex, SES.	All children 4-12 years n=666	score	
2016 ⁽⁵⁾		mean age	Growth		Additional	β=0.10 (95% Cl 0.07, 0.13), P<0.001	(adjusted,	
		9.3 (1.8) y;	Charts, weight		models in 8-	*adjusted for age, sex, SES	including	
		14%	category		12 y with	Additional adjustment with energy intake	energy	
			based on IOTF		, 1x24-hr	8-12 years n=498	intake)	
-						-		

		overweight, 3% obese	BMI reference cut-offs		dietary recall data used to adjust for energy and SSB intake	 β=0.08 (95% CI 0.05, 0.11), P<0.001 *adjusted for age, sex, SES + energy intake (kg/d) Alternative adjustment with SSB intake 8-12 years n=498 B=0.08 (95% CI 0.05, 0.11), P<0.001 *adjusted for age, sex, SES + SSB intake (g/d) 	+ weight category (adjusted, including energy intake)	
						Odds (OR 95% CI) of overweight/obesity associated with 1g/d of salt All children 4-12 years n=666 Underweight/healthy weight: reference group Overweight/obese: OR 1.23 (95%CI 1.16, 1.31), P<0.001 *adjusted for age, sex, SES Additional adjustment with energy intake 8-12 years n=498 Underweight/healthy weight: reference group Overweight/obese: OR 1.20 (95%CI 1.13, 1.27), P<0.001 *adjusted for age, sex, SES + energy intake (kg/d) Alternative adjustment with SSB intake 8-12 years n=498 Underweight/healthy weight: reference group Overweight/obese: OR 1.20 (95%CI 1.13, 1.28), P<0.001 *adjusted for age, sex, SES + SSB intake (g/d)		
Lee et al. 2016 ⁽¹¹⁹⁾	Korea	1467 Boys 64%; mean age 13 y; 7% overweight, 12% obese	Weight category (overweight defined as BMI ≥85 th to <95 th p for age and sex, obese defined as BMI ≥95th p for	Mean Na intake 4305 mg/d	Adjusted for age, sex, household income, PA, energy intake or SSB intake	Odds (OR 95%Cl) of overweight by tertile of sodium density (mg/1000 kcal) T1 154, 1589 mg/1000 kcal: reference category T2 1446, 2304 mg/1000 kcal: OR 1.35 (95%Cl 0.79, 2.32) T3 2046, 12039 mg/1000 kcal: OR 2.11 (95%Cl 1.14, 3.90) P for trend=0.0207 * adjusted for age, sex, household income, PA, energy intake (kcal/d)	 + overweight (adjusted, including energy intake) + obese (adjusted, including 	Ν

			age and sex or			Additional adjustment with SSB intake	energy	
			≥25 kg/m²)			T1 154, 1589 mg/1000 kcal: reference category	intake)	
						T2 1446, 2304 mg/1000 kcal: OR 1.41 (95%Cl 0.82, 2.41)		
						T3 2046, 12039 mg/1000 kcal: OR 2.23 (95%Cl 1.22,		
						4.08)		
						P for trend=0.0116		
						*adjusted for base model above + SSB intake (g/d)		
						Odds (OR 95% CI) of obesity by tertile of sodium		
						density (mg/1000 kcal/d)		
						T1 154, 1589 mg/1000 kcal: reference category		
						T2 1446, 2304 mg/1000 kcal: OR 1.41 (95%CI 0.82,		
						2.43))		
						T3 2046, 12039 mg/1000 kcal: OR 2.73 (95%Cl 1.65,		
						4.51)		
						P for trend<0.0001		
						* adjusted for age, sex, household income, PA, energy		
						intake (kcal/d)		
						Additional adjustment with SSB intake		
						T1 154, 1589 mg/1000 kcal: reference category		
						T2 1446, 2304 mg/1000 kcal: OR 1.44 (95%CI 0.83, 2.49)		
						T3 2046, 12039 mg/1000 kcal: OR 2.79 (95%Cl 1.66,		
						4.68)		
						P for trend<0.0001		
						*adjusted for base model above + SSB intake (g/d)		
Yoon et	South	5025	Weight	Mean sodium	Adjusted for	Odds (OR 95% CI) of obesity by quintile of sodium	+ weight	Ν
al.	Korea		category	3880 mg/d	age, sex,	density (mg/g/d)	category	
2013 ⁽¹²⁾		Boys 53%;	defined as BMI		household	Q1 sodium density 0.1, 2.0 mg/g/d: reference category	(adjusted,	
		4.5% obese	≥95th p for		income, total	Q2 sodium density 2.0, 2.7 mg/g/d: OR 1.24 (95%CI	including	
			age and sex or		weekly PA	0.78, 1.97)	energy	
			≥25 kg/m²		(MET/week)	Q3 sodium density 2.7, 3.3 mg/g/d: OR 1.21 (95%Cl	intake)	
					and energy	0.76, 1.93)		
					intake			

Q4 sodium density 3.3, 4.4 mg/g/d: OR 1.79 (95%Cl
1.12, 2.85)
Q5 sodium density 4.4, 22.6 mg/g/d: OR 1.58 (95%CI
1.01, 2.45)
P-value for trend <0.001
*Adjusted for age, sex, household income, total weekly
PA (MET/week) and energy intake

Abbreviations: BMI body mass index; BW body weight; WC waist circumference; WtHR waist-to-height ratio; Na sodium; SES socio-economic status; UK United Kingdom; USA United States of America; ITOF International Obesity Taskforce; WHO World Health Organization; CDC Centres for Disease Control and Prevention; SBP

Systolic blood pressure; DBP Diastolic blood pressure; SSB sugar sweetened beverage; PA physical activity

Red text is used to highlight those studies which have considered adjustment with energy or SSB intake

^a Measures of variance represent (SD) or ±SE unless otherwise specified

^br correlation coefficient, β represents unstandardized regression beta-coefficient unless otherwise stated

^c Where possible summary based on most adjusted model

Study	Country	N, sample characteristi cs	Adiposity outcome	Sodium/salt intake ^a	Covariates, stratification	Findings ^b	Summary ^c	Included in meta- analyses related to this outcome
Ellison et al. 1980 ⁽¹¹⁵⁾	USA	248 Boys 52%	BW (kg)	Boys overnight mean Na 43 mmol; Girls overnight mean Na 31 mmol	None	Significant positive correlation between overnight sodium (mmol) and BW (kg) (<i>r</i> =0.23, P=0.01)	+ weak BW (unadjusted)	Ν
⁸ Campin o et al. 2016 ⁽⁵⁵⁾	Chile	59	BW (kg)	Mean Na 3114 (1353) mg/d	None	Significant positive correlation between sodium intake (mmol/d) and BW (kg) (<i>r</i> =0.35, P<0.006)	+ BW (unadjusted)	Ν
Maldon ado- Martin et al. 2002 ⁽¹²¹⁾	Spain	553 Boys 50%; mean age 10 У	BW (kg)	Mean Na 137 (63) mmol/d	None	Significant positive correlation between sodium intake (mmol/d) and BW (kg) (<i>r</i> =0.48, 95% CI 0.43, 0.55).	+ BW (unadjusted)	Ν
Lurbe et al 2000 ⁽¹²⁰⁾	Spain	173 Boys 43%; 49% obese	BW (kg)	Not reported	Adjusted for age	Significant positive correlation between sodium intake and BW (kg) among non-obese and obese children (<i>r</i> =0.41 to 0.55, both P-value <0.05)	+ BW (age adjusted)	Ν
Yamauc hi et al. 1994 ⁽¹²⁵⁾	Japan	322 Boys 53%	BW (kg)	Mean overnight salt excretion 1.5 (0.8) g/d	None	Weak significant positive correlation between overnight salt excretion (g) and BW (kg) (<i>r=0.18</i> , P<0.01)	weak + BW (unadjusted)	Ν
De Santo et al. 1987 ⁽¹¹⁴⁾	Italy	220 Boys 56%	BW (kg)	Mean Na 3 y: 79 (22) mmol/d; 16 y: 183 (55) mmo/d	None	Significant positive correlation between sodium intake (mmol/d) and BW (kg) (<i>r</i> =0.63, P<0.001)	+ BW (unadjusted)	Ν

Supplemental Table 16. Summary of findings from cross-sectional studies among children, outcome: BW

Okuda et al. 2016 ⁽¹²²⁾	Japan	68 Boys 35%' 14 У	BW (kg)	Boys Na 163 (37) mmol/d; girls Na 150 (45) mmol/d	None	Mean (SD) BW (kg) by tertile of sodium intake T1 median Na intake 104 mmol/d, n=22: 53.4 (13.7) kg) T2 median Na intake 151 mmol/d, n=23): 46.5 (7.1) kg T3 median Na intake 206 mmol/d, n=23): 52.2 (9.8) kg P-value for trend=0.726	Null BW (unadjusted)	Ν
Zhu et al. 2014 ⁽⁷⁾	USA	766 Boys 50%; mean age 16 y; 49% African American, 51% Caucasian; 25% overweight or obese	BW (kg)	Mean Na 3281 (1150) mg/d	Adjusted for age, sex, race, Tanner stage, birth weight, PA, energy intake, potassium intake, SSB intake	Difference in BW (kg) associated with sodium intake (mg/d) BW: β (standardised)=0.23, P=0.01 * Adjusted for age, sex, race, Tanner stage, birth weight, physical activity, energy intake, potassium intake, SSB intake	+ BW (adjusted, including energy intake)	Ν

Abbreviations: BW body weight; Na sodium; USA United States of America; SSB sugar sweetened beverage; PA physical activity

Red text is used to highlight those studies which have considered adjustment with energy or SSB intake

^a Measures of variance represent (SD) or ±SE unless otherwise specified

^br correlation coefficient, *θ* represents unstandardized regression beta-coefficient unless otherwise stated

^c Where possible summary based on most adjusted model

Study	Country	N, sample characteristi cs	Adiposity outcome	Sodium/salt intake ^a	Covariates, stratification	Findings ^b	Summary ^c	Included in meta- analyses related to this outcome
Gilardini et al 2015 ⁽¹¹⁶⁾	Italy	360 Boys 36%	WtHR	Mean Na boys: 1420 (490) mg/d; girls: 1780 (740) mg/d	Age, sex, energy intake	Significant positive partial correlation between sodium intake (mg/d) and waist-to-height ratio (r=0.15, P <0.05) *Adjusted age, sex, energy intake *Excludes n=88 low energy intake reporters (EI:estBMR as <0.93 for age 6-10 y and <1.1 for >10 y)	+ WtHR among obese children (adjusted, including energy intake)	Ν
Zhu et al. 2014	USA	766 Boys 50%; mean age 16 y; 49% African American, 51% Caucasian; 25% overweight or obese	WC (cm)	Mean Na 3281 (1150) mg/d	Adjusted for age, sex, race, Tanner stage, birth weight, PA, energy intake, potassium intake, SSB intake	Difference in waist circumference associated with sodium intake (mg/d) (indep variable) β (standardised)=0.23, P=0.01 *Adjusted for age, sex, race, Tanner stage, birth weight, PA, energy intake, potassium intake, SSB intake	+ WC (adjusted, including energy intake)	Ν
Rafie et al. 2017 ⁽¹²³⁾	Iran	374 41% boys; mean age 14 (2) y; 18% overweight, 9% obese; 27%	Abdominal obesity defined as WtHR ≥0.5	Not reported	Adjusted for age, sex, parents' education level, household income, PA + SSB intake or	Odds (OR 95% CI) of abdominal obesity by tertile of sodium intake (mg/d) T1 Na intake <1750 mg/d: reference category T2 Na intake 1750, 3420 mg/d: OR 2.33 (95%CI 1.13, 4.78) T3 Na intake >3420 mg/d: OR 9.75 (95%CI 4.88, 19.5) P-value <0.001	+ abdominal obesity (adjusted, including energy intake)	Ν

Supplemental Table 17. Summary of findings from cross-sectional studies among children, outcome: waist circumference or abdominal obesity

obsse intake education level, household income, PA Additional adjustment with energy intake T1 Na intake <1750 mg/d: reference category T2 Na intake <1750 mg/d: reference category T2 Na intake <1750, 3420 mg/d: OR 6.65 (95%CI 3.24,	
 *Ma et UK 458 WC (cm) Mean salt 5.5 Adjusted for base model + SSB (g/d) ** adjusted for base model + SSE (g/d) ** adjusted for base model + SSE (g/d) ** adjusted for age sex, ethnic group, household income, physical activity, energy intake and energy 	
* Provide < 0.00 (95%Cl) (0.6, 4.20) 73 Na intake 1750, 3420 mg/d: OR 2.00 (95%Cl) 3.24, 13.7) P-value < 0.010 * adjusted for base model + energy intake (kcal/d) Additional adjustment with SSB intake 71 Na intake 1750 mg/d: OR 9.55 (95%Cl 3.24, 13.7) P-value < 0.010 * adjusted for base model + energy intake (kcal/d) Additional adjustment with SSB intake 11 Na intake < 1750 mg/d: OR 9.75 (95%Cl 4.88, 19.5) P-value < 0.001 * adjusted for base model + SSB (g/d) * Na intake 1750, 3420 mg/d: OR 9.75 (95%Cl 4.88, 19.5) P-value < 0.001 * adjusted for base model + SSB (g/d) * adjusted fo	
 ⁸Ma et UK 458 WC (cm) Mean salt 5.5 al. (2.7) g/d ⁸Ma et UK 458 WC (cm) Mean salt 5.5 al. (2.7) g/d ⁸Ma et UK 458 WC (cm) Mean salt 5.5 al. (2.7) g/d ⁸Ma et UK 458 WC (cm) Mean salt 5.5 al. (2.7) g/d ⁸Ma et UK 458 WC (cm) Mean salt 5.5 al. (2.7) g/d ⁸Ma et UK 458 WC (cm) Mean salt 5.5 al. (2.7) g/d ⁸Ma et UK 458 WC (cm) Mean salt 5.5 al. (2.7) g/d ⁸Ma et UK 458 WC (cm) Mean salt 5.5 al. (2.7) g/d ⁸Ma et UK 458 WC (cm) Mean salt 5.5 al. (2.7) g/d ⁹ P-value <0.001 ⁹ Household T3 mean salt 3.1 (0.8) g/d n=152: 69.6±2.5 cm (al. (2.7) g/d) ⁹ P-value for trend <0.001 ⁹ Household T3 mean salt 1.1 (0.6) g/d n=151: 75.7±2.0 ⁹ P-value for trend <0.001 <	
⁸ Ma et UK 458 WC (cm) Mean salt 5.5 Adjusted for base model + SSB (g/d) ⁸ Ma et UK 458 WC (cm) Mean salt 5.5 Adjusted for base model + SSB (g/d) ⁸ Ma et UK 458 WC (cm) Mean salt 5.5 Adjusted for base model + SSB (g/d) ⁸ Ma et UK 458 WC (cm) Mean salt 5.5 Adjusted for base model + SSB (g/d) ⁸ Ma et UK 458 WC (cm) Mean salt 5.5 Adjusted for base model + SSB (g/d) ⁸ Ma et UK 458 WC (cm) Mean salt 5.5 Adjusted for base model + SSB (g/d) ⁹ Value <0.001 * adjusted for base model + SSB (g/d) ⁹ Value <0.001 * adjusted for base model + SSB (g/d) ⁹ Value <0.001 * adjusted for base model + SSB (g/d) ⁹ Value <0.001 * adjusted for base model + SSB (g/d) ⁹ Value <0.001 * adjusted for base model + SSB (g/d) ⁹ Value <0.001 * adjusted for base model + SSB (g/d) ⁹ Value <0.001 * adjusted for base model + SSB (g/d) ⁹ Value <0.001 * adjusted for base model + SSB (g/d) ⁹ Value <0.001 * adjusted for base model + SSB (g/d) ⁹ Value <0.001 * adjusted for base model + SSB (g/d) ⁹ Value <0.001 * adjusted for base model + SSB (g/d) ⁹ Value <0.001 * adjusted for base model + SSB (g/d) ⁹ Value <0.001 * adjusted for base model + SSB (g/d) ⁹ Value <0.001 * adjusted for base model + SSB (g/d) ⁹ Value <0.001 * adjusted for base model + SSB (g/d) ⁹ Value <0.001 * adjusted for base	
 ^{13.7}) ^{13.7}) ^{13.7}) ^{13.7}) ^{13.7}) ^{13.7}) ^{11.11, 4.75}) ^{13.1, 11, 4.75}) ^{13.1, 11, 4.75}) ^{13.2}) ^{11.11, 4.75}) ^{13.2}) ^{13.2}) ^{13.2}) ^{13.2}) ^{11.11, 4.75}) ^{13.2}) ^{13.2}) ^{13.2}) ^{13.2}) ^{11.11, 4.75}) ^{13.2}) ^{11.11, 4.75}) ^{13.2}) ^{11.11, 4.75}) ^{13.2}) ^{13.2}) ^{13.2}) ^{13.2}) ^{13.2}) ^{13.2}) ^{14.2})	
 P-value <0.010 * adjusted for base model + energy intake (kcal/d) Additional adjustment with SSB intake Additional adjustment with SSB intake T1 Na intake <1750 mg/d: reference category T2 Na intake <1750, 3420 mg/d: OR 2.30 (95%CI 11.11, 4.75) T3 Na intake >3420 mg/d: OR 9.75 (95%CI 4.88, 19.5) P-value <0.001 * adjusted for base model + SSB (g/d) * adjusted for base model + SSB (g/d) * Ma et UK 458 WC (cm) Mean salt 5.5 (2.7) g/d Boys 52%; (2.7) g/d age sex, T1 mean salt 3.1 (0.8) g/d n=152: 69.6±2.5 cm (adjusted, ethnic group, fousehold ethnic group, fousehold ethnic group, household y Y Y Nousehold T3 mean salt 5.1 (0.6) g/d n=155: 70.6±2.2 cm including household T3 mean salt intake 8.5 (2.2) g/d n=151: 75.7±2.0 energy income, physical activity, energy intake and energy mean energy	
 * adjusted for base model + energy intake (kcal/d) Additional adjustment with SSB intake T1 Na intake <1750 mg/d: reference category T2 Na intake 1750, 3420 mg/d: OR 2.30 (95%CI 11.11, 4.75) T3 Na intake >3420 mg/d: OR 9.75 (95%CI 4.88, 19.5) P-value <0.001 * adjusted for base model + SSB (g/d) * Mean salt 5.5 al. Boys 52%; C1 WC (cm) Mean salt 5.5 Adjusted for (2.7) g/d Mean salt 3.1 (0.8) g/d n=152: 69.6±2.5 cm mean age 10 y * WC Mean salt 5.1 (0.6) g/d n=155: 70.6±2.2 cm including household T3 mean salt 1.1 (0.8) g/d n=151: 70.5±2.0 P-value <0.001 * adjusted for age sex, ethnic group, household activity, * adjusted for age sex, ethnic group, household activity, * adjusted for age sex, ethnic group, household activity, * adjusted for age sex, ethnic group, household energy 	
⁸ Ma et UK 458 WC (cm) Mean salt 5.5 Adjusted for base model + SSB (g/d) ⁸ Ma et UK 458 WC (cm) Mean salt 5.5 Adjusted for base model + SSB (g/d) ⁸ Ma et UK 458 WC (cm) Mean salt 5.5 Adjusted for base model + SSB (g/d) ⁸ Ma et UK 458 WC (cm) Mean salt 5.5 Adjusted for base model + SSB (g/d) ⁹ Ma et UK 458 WC (cm) Mean salt 5.5 Adjusted for base model + SSB (g/d) ⁹ Ma et UK 458 WC (cm) Mean salt 5.5 Adjusted for base model + SSB (g/d) ⁹ Ma et UK 458 WC (cm) Mean salt 5.5 Adjusted for base model + SSB (g/d) ⁹ Ma et UK 458 WC (cm) Mean salt 5.5 Adjusted for base model + SSB (g/d) ⁹ Ma et UK 458 WC (cm) Mean salt 5.5 Adjusted for base model + SSB (g/d) ⁹ Ma et UK 458 WC (cm) Mean salt 5.5 Adjusted for base model + SSB (g/d) ⁹ Ma et UK 458 WC (cm) Mean salt 5.5 Adjusted for base model + SSB (g/d) ⁹ Value < 0.001 ⁹ Value < 0.01 ⁹ Value < 0.001 ⁹ Value ⁹ Value ⁹ Value	
¹ Na intake <1750 mg/d: reference category T2 Na intake 1750, 3420 mg/d: OR 2.30 (95%Cl 11.11, 4.75) T3 Na intake >3420 mg/d: OR 9.75 (95%Cl 4.88, 19.5) P-value <0.001 * adjusted for base model + SSB (g/d) * adjusted for base model + SSB (g/d) * adjusted for base model + SSB (g/d) * WC (cm) Mean salt 5.5 Adjusted for al. Boys 52%; (2.7) g/d al. Boys 52%; (2.7) g/d al. Boys 52%; (2.7) g/d age sex, T1 mean salt 3.1 (0.8) g/d n=152: 69.6±2.5 cm y Mean age 10 y Mean age 10 y P-value for trend <0.001 activity, *adjusted for age sex, ethnic group, household income, physical P-value for trend <0.001 activity, *adjusted for age sex, ethnic group, household activity, *adjusted for age sex, ethnic group, household energy	
⁸ Ma et UK 458 WC (cm) Mean salt 5.5 Adjusted for base model + SSB (g/d) ⁸ Ma et UK 458 WC (cm) Mean salt 5.5 algusted for base model + SSB (g/d) ⁸ Ma et UK 458 WC (cm) Mean salt 5.5 Adjusted for base model + SSB (g/d) ⁹ UR et algusted for age sex, ethnic group, household energy ⁹ UR et algusted for age sex, ethnic group, household energy ⁹ UR et algusted for age sex, ethnic group, household energy	
 ^{11.11, 4.75)} T3 Na intake >3420 mg/d: OR 9.75 (95%Cl 4.88, 19.5) P-value <0.001 * adjusted for base model + SSB (g/d) ⁸Ma et UK al. 2015⁽⁹⁾ ⁸Ma et UK al. 2015⁽⁹⁾ ⁹Mean age 10 y ⁹Ka et UK al. 2015⁽⁹⁾ ⁹Ka et UK Afs8 ^{11.11, 4.75)} T3 Na intake >3420 mg/d: OR 9.75 (95%Cl 4.88, 19.5) P-value <0.001 * adjusted for base model + SSB (g/d) ^{11.11, 4.75)} T3 Na intake >3420 mg/d: OR 9.75 (95%Cl 4.88, 19.5) P-value <0.001 * adjusted for base model + SSB (g/d) ^{11.11, 4.75)} T3 Na intake >3420 mg/d: OR 9.75 (95%Cl 4.88, 19.5) P-value <0.001 * adjusted for base model + SSB (g/d) ^{11.11, 4.75)} T3 Na intake >3420 mg/d: OR 9.75 (95%Cl 4.88, 19.5) P-value <0.001 * adjusted for base model + SSB (g/d) ^{11.11, 4.75)} T3 Na intake >3420 mg/d: OR 9.75 (95%Cl 4.88, 19.5) P-value <0.001 * adjusted for base model + SSB (g/d) ^{11.11, 4.75)} T3 Na intake >3420 mg/d: OR 9.75 (95%Cl 4.88, 19.5) P-value <0.001 * adjusted for base model + SSB (g/d) ^{11.11, 4.75} ^{11.11, 4.75} ^{11.11, 4.75} ^{11.11} ¹¹	
⁸ Ma et UK 458 WC (cm) Mean salt 5.5 Adjusted for Maet of the salt intake (g/d) + WC al. Boys 52%; (2.7) g/d age sex, T1 mean salt 3.1 (0.8) g/d n=152: 69.6±2.5 cm (adjusted, y Y Y Y Y Y Y Y Y Y y Y Y Y Y Y Y Y Y Y y Y <td></td>	
*Ma et UK 458 WC (cm) Mean salt 5.5 Adjusted for Mean±SE WC (cm) by tertile of salt intake (g/d) + WC al. Boys 52%; (2.7) g/d age sex, T1 mean salt 3.1 (0.8) g/d n=152: 69.6±2.5 cm (adjusted, 2015 ⁽⁹⁾ mean age 10 (2.7) g/d age sex, T1 mean salt 5.1 (0.6) g/d n=155: 70.6±2.2 cm including y V Household T3 mean salt intake 8.5 (2.2) g/d n=151: 75.7±2.0 energy intake) income, cm physical P-value for trend <0.001	
⁸ Ma et UK 458 WC (cm) Mean salt 5.5 Adjusted for Mean±SE WC (cm) by tertile of salt intake (g/d) + WC al. Boys 52%; (2.7) g/d age sex, 11 mean salt 3.1 (0.8) g/d n=152: 69.6±2.5 cm (adjusted, 2015 ⁽⁹⁾ mean age 10 (2.7) g/d ethnic group, T2 mean salt 5.1 (0.6) g/d n=155: 70.6±2.2 cm including y v v physical T3 mean salt intake 8.5 (2.2) g/d n=151: 75.7±2.0 energy physical physical physical physical for age sex, ethnic group, household v energy income, physical activity, energy intake and energy income, income, physical activity, energy intake and energy v	
* adjusted for base model + SSB (g/d) * Ma et UK 458 WC (cm) Mean salt 5.5 Adjusted for age sex, Mean±SE WC (cm) by tertile of salt intake (g/d) + WC al. Boys 52%; (2.7) g/d age sex, T1 mean salt 3.1 (0.8) g/d n=152: 69.6±2.5 cm (adjusted, 2015 ⁽⁹⁾ mean age 10 v Ethnic group, T2 mean salt 5.1 (0.6) g/d n=155: 70.6±2.2 cm including y v v v Nousehold T3 mean salt intake 8.5 (2.2) g/d n=151: 75.7±2.0 energy income, cm physical P-value for trend <0.001	
⁸ Ma et UK 458 WC (cm) Mean salt 5.5 Adjusted for age sex, Mean±SE WC (cm) by tertile of salt intake (g/d) + WC al. Boys 52%; (2.7) g/d age sex, T1 mean salt 3.1 (0.8) g/d n=152: 69.6±2.5 cm (adjusted, 2015 ⁽⁹⁾ mean age 10 v household T2 mean salt 5.1 (0.6) g/d n=155: 70.6±2.2 cm including y nousehold T3 mean salt intake 8.5 (2.2) g/d n=151: 75.7±2.0 energy intake) energy intake income, cm physical P-value for trend <0.001	
al. Boys 52%; (2.7) g/d age sex, T1 mean salt 3.1 (0.8) g/d n=152: 69.6±2.5 cm (adjusted, 2015 ⁽⁹⁾ mean age 10 y household r3 mean salt 5.1 (0.6) g/d n=155: 70.6±2.2 cm including y household r3 mean salt intake 8.5 (2.2) g/d n=151: 75.7±2.0 energy intake) income, cm physical physical P-value for trend <0.001 activity, *adjusted for age sex, ethnic group, household energy income, physical activity, energy intake and energy	
2015 ⁽⁹⁾ mean age 10ethnic group, householdT2 mean salt 5.1 (0.6) g/d n=155: 70.6±2.2 cmincluding energy intake)yhouseholdT3 mean salt intake 8.5 (2.2) g/d n=151: 75.7±2.0energy intake)income,cmphysicalP-value for trend <0.001	Ν
y household T3 mean salt intake 8.5 (2.2) g/d n=151: 75.7±2.0 energy intake) income, cm physical P-value for trend <0.001 activity, *adjusted for age sex, ethnic group, household energy income, physical activity, energy intake and energy	
income, cm physical P-value for trend <0.001 activity, *adjusted for age sex, ethnic group, household energy income, physical activity, energy intake and energy	
physical P-value for trend <0.001 activity, *adjusted for age sex, ethnic group, household energy income, physical activity, energy intake and energy	
activity, *adjusted for age sex, ethnic group, household energy income, physical activity, energy intake and energy	
energy income, physical activity, energy intake and energy	
intelle and a microparting	
intake and misreporting	
energy	
misreporting	
Grimes Australi 666 Abdominal Mean salt Adjusted for Odds (O 95%CI) of abdominal obesity (WHtR ≥0.5) + abdominal	Ν
et al. a Boys 55%; obesity as intake 6.1 g/d age, sex, SES, associated with 1 g/d of salt adiposity	
2016 ⁽⁵⁾ mean age and BMI z- All children 4-12 years n=665 (adjusted,	

	9.3 (1.8) γ; 14% overweight, 3% obese	defined by a WtHR ≥0.5		score. Additional models in 8- 12 y with 1x24-hr dietary recall data used to adjust for energy and SSB intake	Not centrally obese: reference group Centrally obese: OR 1.15 (95%CI 1.09, 1.23), P<0.001 *adjusted for age, sex, SES All children 4-12 years n=665 Not centrally obese: reference group Centrally obese: OR 1.00 (95%CI 0.90, 1.10), P=0.93 *adjusted for age, sex, SES + BMI z-score Additional adjustment with energy intake 8-12 years n=497 Not centrally obese: reference group Centrally obese: OR 1.11 (95%CI 1.02, 1.20), P=0.011 *adjusted for age, sex, SES + energy intake (kg/d) Additional adjustment with SSB intake 8-12 years n=497 Not centrally obese: reference group Centrally obese: OR 1.11 (95%CI 1.03, 1.96), P=0.010 *adjusted for age, sex, SES + SSB intake (g/d)	including energy intake) but not independent of BMI z-score	
Lee et Kore al. 2016 ⁽¹¹⁹⁾	a 1467 Boys 64%; mean age 13 y; 7% overweight, 12% obese	WC (cm), abdominal obesity defined as WC ≥90th p for age and sex	Mean Na intake 4305 mg/d	Adjusted for age, sex, household income, PA, energy intake or SSB intake	Odds (OR 95% Cl) of abdominal obesity by tertile of sodium density (mg/1000 kcal/d) T1 154, 1589 mg/1000 kcal: reference category T2 1446, 2304 mg/1000 kcal: OR 1.04 (95%Cl 0.58, 1.86) T3 2046, 12039 mg/1000 kcal: OR 1.95 (95%Cl 1.17, 3.26) P for trend=0.0086 * adjusted for age, sex, household income, PA, energy intake (kcal/d)	+ WC (adjusted, including energy intake)	N
					Additional adjustment with SSB intake		

						T1 154, 1589 mg/1000 kcal: reference category T2 1446, 2304 mg/1000 kcal: OR 1.12 (95%Cl 0.62, 2.03) T3 2046, 12039 mg/1000 kcal: OR 2.14 (95%Cl 1.25, 3.67) P for trend=0.0044 *adjusted for base model above + SSB intake (g/d)		
Yoon et al. 2013 ⁽¹²⁾	South Korea	5025 Boys 53%; 4.5% obese	WC (cm), abdominal obesity defined as WC ≥90th p for age and sex	Mean Na 3880 mg/d	Adjusted for age, sex, household income, total weekly PA (MET/week) and energy intake	Odds (OR 95% CI) of abdominal obesity by quintile of sodium density (mg/g/d) Q1 sodium density 0.1, 2.0 mg/g/d: reference category Q2 sodium density 2.0, 2.7 mg/g/d: OR 1.21 (95%CI 0.68, 2.15) Q3 sodium density 2.7, 3.3 mg/g/d: OR 1.64 (95%CI 0.84, 3.20) Q4 sodium density 3.3, 4.4 mg/g/d: OR 2.45 (95%CI 1.24, 4.86) Q5 sodium density 4.4, 22.6 mg/g/d: OR 2.13 (95%CI 1.16, 3.91) P-value for trend <0.001 * Adjusted for age, sex, household income, total weekly PA (MET/week) and energy intake	+ abdominal obesity (adjusted, including energy intake)	Ν

Abbreviations: BMI body mass index; BW body weight; WC waist circumference; WtHR waist-to-height ratio; Na sodium; SES socio-economic status; UK United

Kingdom; USA United States of America; SSB sugar sweetened beverage; PA physical activity

Red text is used to highlight those studies which have considered adjustment with energy or SSB intake

^a Measures of variance represent (SD) or ±SE unless otherwise specified

^br correlation coefficient, *β* represents unstandardized regression beta-coefficient unless otherwise stated

^c Where possible summary based on most adjusted model

Study	Country	N, sample characteristi cs	Adiposity outcome	Sodium/salt intake ^ª	Covariates, stratification	Findings ^b	Summary ^c	Included in meta- analyses related to this outcome
Ellison et al. 1980 ⁽¹¹⁵⁾	USA	248 Boys 52%	Body fat % (calculated from predictive equations)	Boys overnight mean Na 43 mmol; Girls overnight mean Na 31 mmol	None	No correlation between overnight sodium (mmol) and body fat % (<i>r</i> =0.14, P=0.10)	Null % body fat (unadjusted)	Ν
Zhu et al. 2014 ⁽⁷⁾	USA	766 Boys 50%; mean age 16 y; 49% African American, 51% Caucasian; 25% overweight or obese	5 x skinfolds (biceps, triceps, sub- scapular, medial calf), body fat % and fat mass (DXA), subcutaneous abdominal adipose tissue (SAAT) and visceral adipose tissue (VAT) (measured using magnetic resonance imaging)	Mean Na 3281 (1150) mg/d	Adjusted for age, sex, race, Tanner stage, birth weight, physical activity, energy intake, potassium intake, SSB intake	Difference in body composition outcomes associated with sodium intake (mg/d) Sum of skinfolds: β (standardised)=0.12, P=0.08 Body fat %: β (standardised)=0.31, P=0.03 Fat mass: β (standardised)=0.23, P=0.01 SAAT: β (standardised)=0.25, P=0.02 VAT: β (standardised)=0.16, P=0.12 *adjusted for age, sex, race, Tanner stage, birth weight, physical activity, energy intake, potassium intake, SSB intake	+ % body fat (adjusted, including energy intake)	Ν

Supplemental Table 18. Summary of findings from cross-sectional studies among children, outcome: body composition

Ma et al. 2015 ⁽⁹⁾	UK	458 Boys 52%; mean age 10 y	Body composition (fat mass kg & lean mass kg) derived from doubly labelled water study in representative sub-sample n=67	Mean salt 5.5 (2.7) g/d	Adjusted for age sex, ethnic group, household income, physical activity, energy intake and energy misreporting	Sub-sample n=67 with body composition data Difference in body fat mass (kg) associated with salt intake (g/d) β = 0.73 kg, P-value=0.001 *adjusted for age, sex, ethnic group, energy intake Difference in body lean mass (kg) associated with salt intake (g/d) β =0.44 kg, P-value=0.033 *adjusted for age, sex, ethnic group, energy intake	+ fat mass (adjusted, including energy intake) Mixed findings lean mass	Ν
						Difference in lean fat mass (kg) associated with salt intake (g/d) β=0.0.44 kg, P-value=0.003 *adjusted for age, sex, ethnic group, energy intake		
						Difference in body fat mass (kg) associated with salt density (g/2000kcal) β=0.09, P-value=0.767 *adjusted for age, sex, ethnic group		
Lee et al. 2016 ⁽¹¹⁹⁾	Korea	1467 Boys 64%; mean age 13 y; 7% overweight, 12% obese	Total body per cent fat (TBPF) via DXA (adiposity defined as TPBF >25% for boys, >30% for girls <11 y and >25% for girls ≥11 y	Mean Na intake 4305 mg/d	Adjusted for age, sex, household income, PA, energy and SSB intake	Odds (OR 95% CI) of TBPF by tertile of sodium density (mg/1000 kcal/d) T1 154, 1589 mg/1000 kcal: reference category T2 1446, 2304 mg/1000 kcal: OR 1.04 (95%CI 0.70, 1.56) T3 2046, 12039 mg/1000 kcal: OR 1.31 (95%CI 0.89, 1.92) P for trend=0.1735 * adjusted for age, sex, household income, PA, energy intake (kcal/d)	Null % body fat (adjusted, including energy intake)	Ν

Additional adjustment with SSB intake T1 154, 1589 mg/1000 kcal: reference category T2 1446, 2304 mg/1000 kcal: OR 1.06 (0.70, 1.61) T3 2046, 12039 mg/1000 kcal: OR 1.33 (0.89, 1.99) P for trend=0.1577 *adjusted for base model above + SSB intake (g/d)

Abbreviations: BMI body mass index; BW body weight; WC waist circumference; WtHR waist-to-height ratio; Total body per cent fat (TBPF); DXA Dual energy x-ray absorptiometry; Na sodium; SES socio-economic status; UK United Kingdom; USA United States of America; SSB sugar sweetened beverage; PA physical activity Red text is used to highlight those studies which have considered adjustment with energy or SSB intake

^a Measures of variance represent (SD) or ±SE unless otherwise specified

^br correlation coefficient, *B* represents unstandardized regression beta-coefficient unless otherwise stated

^c Where possible summary based on most adjusted model

Supplemental Table 19. Characteristics of observational studies examining the association between sodium intake and sugar-sweetened beverage (SSB) consumption among children

Study	Design	Country	Study population / Study Name	N, sample characteristic s	Exposure	Outcome	Sodium /salt intake ^a	Covariates, stratificatio n	Findings ^b	Summary	Included in meta- analysis related to this outcome
He et al. 2008 (16)	Cross- sectiona I	UK	Nationally representative sample of children and adolescents aged 4-18 y 1997 National Diet and Nutrition Survey	1688 Boys 50%	7-day weighed diet record (average salt g/d)	7-day weighed diet record SSB (g/d): all types of non-low calorie concentrat ed, carbonated and ready to drink soft drinks	Salt 4 y: 4.6 (1.5) g/d; 18 y: 6.8 (2.1) g/d	Adjusted for age, sex, BW and in ≥7 y hours spent on moderate and vigorous PA	Difference in SSB intake (g/d) associated with 1 g/d salt (n=1688) Partial $r=0.12$, $\beta=27\pm5$ g/d, P<0.001 *adjusted for age, sex, BW Additional adjustment PA, sub-sample ≥ 7 y Partial $r=0.13$, $\beta=29\pm6$ g/d, P<0.001	+ SSB consumptio n	Y
Grime s et al. 2013 ⁽¹⁵)	Cross- sectiona I	USA	Nationally representative sample of children and adolescents aged 2-18 y 2005-2008 National Health and Nutrition	6400 Boys 50% *salt intake & SSB analysis restricted to consumers of SSB n=4443	1 x 24-hr diet recall (salt g/d)	1 x 24-hr diet recall. SSB (g/d): sugar- sweetened soda, vitamin waters, fruit ades, fruit drinks, flavoured mineral	Overall salt 7.8±0.1 g/d	Adjusted for age, sex, race-ethnic group, SES, energy intake derived from sources other than SSB	Difference in SSB intake (g/d) associated with 1 g/d salt (n=4443) β =32, 95% CI 13, 50 g/d, P<0.001 *adjusted for age, sex, race- ethnic group, SES and energy (kJ/d) derived from sources other than SSB Stratified by sex & age group	+ SSB consumptio n (overall) + SSB consumptio n all groups, except null 12-18 y girls	Y

			Examination Survey			waters, and sports and energy drinks that contained ≥20kcal/10 OmL		Stratified by sex and age group (2-5 y, 6-11 y, 12-18 y)	Positive association between salt intake (g/d) and SSB consumption (g/d) remained significant in all age and sex groups, except in 12-18-y-old girls. *adjusted for race-ethnic group, SES and energy (kJ/d) derived from sources other than SSB		
Grime s et al. 2013 (14)	Cross- sectiona I	Australi a	Nationally representative sample of children and adolescents aged 2-16 y 2007 Children's National Nutrition and Physical Activity Survey	4282 Boys 52% *salt intake & SSB analysis restricted to consumers of SSB n=2571	2 x 24-hr diet recall (average salt g/d)	2 x 24-hr diet recall Sugar- sweetened beverage (SSB): sweetened soda, vitamin waters, fruit ades, fruit drinks, flavoured mineral waters, and sports and energy drinks that contained ≥20kcal/10 OmL	Overall salt among SSB consum ers 6.5 (2.6) g/d	Adjusted for age, sex, SES and energy derived from sources other than SSB, additional adjustment for PA in subsample of 5-16 y with available data	Difference in SSB intake (g/d) associated with 1 g/d salt (n=2571) β =17.4, 95% CI 9.8, 25.0, P<0.001 *adjusted for age, sex, SES and energy derived from sources other than SSB Additional adjustment physical activity in 5-16 y (n=1511) β =21.1, 95%CI 10.8, 31.5, P<0.001	+ SSB consumptio n	Υ

Marve ntano et al. 2017 ⁽¹² ⁸⁾	Cross- sectiona I	Italy	Adolescents attending final year of school recruited from 15 secondary schools across 10 districts of Catania, Southern Italy	1643 Male 54%, mean age 12 y	1 x 62- item FFQ	FFQ SSB: drinks with added sugar including: non-diet soft drinks/sod as, flavoured juice drinks, sweetened tea, sports drinks, and energy drinks.	Salt intake 5.1 – 6.4 g/d across quartile s of SSB intake.	Adjusted for energy intake and PA, sex stratified	Difference in SSB intake (g/d) associated with 1 g/d salt Boys n=875, β=18 g/d, P- value<0.05 Girls n=751, β=16 g/d, P-value <0.05 *adjusted for energy intake and PA	+ SSB boys and girls	Υ
Libuda et al. 2010 ⁽⁶⁾	Longitu dinal, 5- y follow- up	German Y	Children aged 3-18 years, a sub-sample of participants from the Dortmund Nutritional and Anthropometri c Longitudinally Designed (DONALD) Study	364	At least 2 x 24-hr urine (range 2, 7)	2 x 3-day weighed dietary records SSB (g/d): soft drinks and fruit juice containing sugar	Median salt intake 7-10 y 5.3 g/d	Adjusted for baseline Na excretion, baseline Na excretion X time interaction, time, age X age interaction, maternal BMI, maternal education	Change in salt intake (g/d) was significantly associated with a concurrent change in SSB (β=12.0, P=0.027)	+ SSB	Ν

Abbreviations: NOS Newcastle-Ottawa Scale Score; SES Socio-economic status; FFQ Food Frequency Questionnaire; BMI Body Mass Index; PA Physical Activity; Na sodium; SSB sugar sweetened beverage; USA United States of America, UK United Kingdom

^a Measures of variance represent (SD) or \pm SE unless otherwise specified ^b r correlation coefficient, θ unstandardized regression beta-coefficient

Supplemental Table 20. Newcastle Ottawa Scale quality assessment of observational studies examining the association between sodium intake and sugar-sweetened beverage (SSB) consumption among children

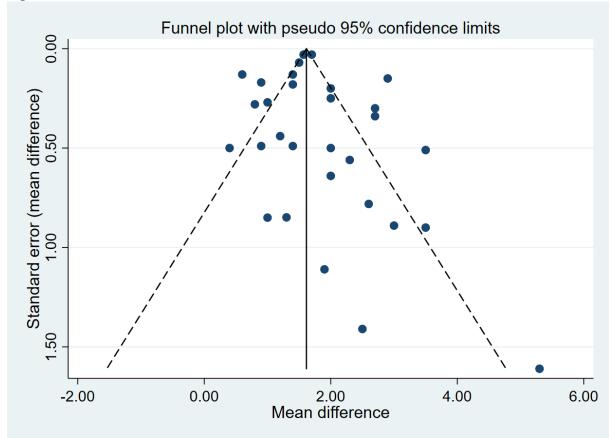
Cross-sectional studies	Country	Sele	ction <i>(0-3*)</i>	Comparability (0- 1*)	Outcome	(0-2*)	Total OS Score
		Representativeness of cohort (0-1*)	Assessment of the exposure (sodium/salt intake) (0-2*)	Methods to control confounding <i>(0-1*)</i>	Assessment of outcome (0-1*)	Non- response rate (0-1*)	(0-6*) ¹
		 a) truly representative of the source population (1*) b) somewhat representative of the source population (1*) c) selected group of users e.g. nurses, volunteers (0) d) no description of the derivation of the cohort (0) 	 a) 24-hr urine collection (1 or more) (2*) b) 24-hr dietary recall method (1*) c) Weighed dietary record (1 or more days) (1*) d) Urine sample: spot, timed or overnight (0) e) Food frequency questionnaire (0) 	a) study controls for age and sex (1)	a) validated dietary assessment tool to quantify SSB intake (1*) b) unvalidated dietary assessment tool to quantify SSB intake (0) c) no description (0)	a) Non- response rate =<20% (1*) b) Non- response rate >20% (0) c) no description (0)	
He et al. 2008 ⁽¹⁶⁾	UK	1	1	1	1	0	4
Grimes et al. 2013 ⁽¹⁵⁾	USA	1	1	1	1	0	4
Grimes et al. 2013 ⁽¹⁴⁾	Australia	1	1	1	1	0	4
Marventano et al. 2017 ⁽¹²⁸⁾	Italy	1	0	1	1	1	4
Longitudinal studies		Sele	ction (0-3*)	Comparability (0- 1*)	Outcome	(0-2*)	Total NOS
		Representativeness of cohort <i>(0-1*)</i>	Assessment of the exposure (sodium/salt intake) (0-2*)	Methods to control confounding (0-1*)	Assessment of outcome (0-1*)	Non- response Adequacy of follow up of	Score (0-6*) ¹

					cohorts <i>(0-</i> 1*)	
	a) truly representative of the source population (1*) b) somewhat representative of the source population (1*) c) selected group of users e.g. nurses, volunteers (0) d) no description of the derivation of the cohort (0)	 a) 24-hr urine collection (1 or more) (2*) b) 24-hr dietary recall method (1*) c) Weighed dietary record (1 or more days) (1*) d) Urine sample: spot, timed or overnight (0) e) Food frequency questionnaire (0) 	a) study controls for age and sex (1)	a) validated dietary assessment tool to quantify SSB intake (1*) b) unvalidated dietary assessment tool to quantify SSB intake (0) c) no description (0)	a) Complete follow up – all subjects accounted for (1*) b) Subjects lost to follow up unlikely to introduce bias (>75% follow up, or description provided of those lost) (1*) c) follow up rate <75% and no description of those lost (0) d) no statement (0)	
Germany	1	2	0	1	0	4

Abbreviations: NOS Newcastle-Ottawa Scale Score; USA United States of America; UK United Kingdom

Libuda et al. 2010⁽⁶⁾

¹Studies with total scores of \geq 5^{*}, 3-4^{*} and \leq 2^{*} were assessed as high, moderate and low-quality studies, respectively.


Supplemental Figure 1. Pooled mean difference in BMI (kg/m²) between the highest and lowest ntile of salt intake in cross-sectional studies of adults ^{a, b, c}

Study	Country	N	Quality		ES (95% CI)	Weigh
Baudrand 2014	Chile	370	Moderate		0.40 (-0.58, 1.38)	2.27
Eufinger 2012	USA	286	Low		1.00 (-0.67, 2.67)	0.99
Han 2017 - Female	China	733	Moderate	• • ·	0.90 (-0.08, 1.88)	2.33
Han 2017 - Male	China	712	Moderate		1.20 (0.34, 2.06)	2.68
Hoffman 2009 - Female	Venzuela	515	Moderate		2.00 (0.75, 3.25)	1.58
Hoffman 2009 - Male	Venzuela	249	Moderate	•	2.50 (-0.26, 5.26)	0.40
Huh 2015 - Female	Korea	3618	Low	I → 1	1.40 (1.15, 1.65)	6.15
Huh 2015 - Male	Korea	3544	Low	· •	0.60 (0.35, 0.85)	6.15
Hulthen 2010	Sweden	79	Moderate	· · · ·	3.00 (1.26, 4.74)	0.92
Lee 2015	Korea	1586	Low	→	0.90 (0.57, 1.23)	5.65
**Ma 2015	UK	785	High	++	1.30 (-0.36, 2.96)	1.00
Madhavan 1994 - Black female	USA	138	Moderate	•	1.90 (-0.28, 4.08)	0.62
Madhavan 1994 - Black male	USA	217	Moderate		2.30 (1.20, 3.40)	1.93
Madhavan 1994 - Causcasian female	USA	124	Moderate		3.50 (1.74, 5.26)	0.90
Madhavan 1994 - Causcasian male	USA	329	Moderate		1.40 (0.44, 2.36)	2.33
**Nam 2017 - Female	Korea	320	High		2.60 (1.07, 4.13)	1.15
**Nam 2017 - Male	Korea	320	High		2.00 (1.02, 2.98)	2.27
Dh 2015	Korea	18146	Low	•	1.50 (1.36, 1.64)	6.75
Perin 2013	Brazil	108	Moderate		5.30 (2.14, 8.46)	0.31
Radhika 2007	India	1902	Moderate		2.70 (2.11, 3.29)	4.00
Rhee 2014	Korea	463	Moderate	· · · · · · · · · · · · · · · · · · ·	2.70 (2.03, 3.37)	3.57
Sharma 2014	USA	6985	Moderate		0.80 (0.25, 1.35)	4.24
Verhave 2004	China	7850	Moderate	· · ·	2.90 (2.61, 3.19)	5.91
Yan 2016	China	1975	Moderate		2.00 (1.51, 2.49)	4.61
Yokokawa 2016	Thailand	793	Low	—	1.00 (0.47, 1.53)	4.36
Petermann-Rocha 2019	Chile	2913	Low	-	2.00 (1.61, 2.39)	5.26
Vega-Vega 2018	Mexico	727	Moderate		3.50 (2.50, 4.50)	2.21
Watanabe 2019	Japan	2297	Low	+	1.40 (1.05, 1.75)	5.52
Welsh 2019 - Male	UK	190964	Low	•	1.70 (1.64, 1.76)	6.97
Welsh 2019 - Female	UK	239146	Low	•	1.57 (1.51, 1.63)	6.97
Overall (I-squared = 88.5%, p = 0.000)					1.67 (1.50, 1.85)	100.0
NOTE: Weights are from random effects anal	ysis					

^a Inverse-variance weighted random effects model. Heterogeneity: τ^2 =0.12, χ^2 =252.2, df=29, P<0.001. Test for overall effect size=0: z=18.31, P<0.001. I² = 88% (95% CI: 85, 91%)

^b Black dots with horizontal lines represent individual study effect estimates and corresponding 95% CI. Grey box areas surrounding individual study effect estimates are proportional to the weight for the individual study. The diamond and broken vertical line represent the overall pooled estimate, the width of the diamond indicates its corresponding 95% CI. The unbroken vertical line represents the null value.

^c Quality refers to assessment made using Newcastle-Ottawa Scale Score. Studies with total scores of \geq 5*, 3-4* and \leq 2* were assessed as high, moderate and low-quality studies, respectively. ** adjusted for covariates, including energy intake **Supplemental Figure 2**. Funnel plots with pseudo 95% confidence limits for meta-analyses: cross-sectional studies in adults assessing mean difference in BMI between lowest and highest ntile of salt intake^a

^a Egger's regression asymmetry test P=0.637 indicates no publication bias.

Supplemental Figure 3. Sub-group analysis by salt intake assessment method: pooled mean difference in BMI (kg/m²) between the highest and lowest ntile of salt intake in cross-sectional studies of adults ^{a, b, c}

Study	Country		ES (95% CI)	% Weight
24-hr urine			- 1	
Baudrand 2014	Chile)	0.40 (-0.58, 1.38)	2.27
Hoffman 2009 - Female	Venzuela		2.00 (0.75, 3.25)	
Hoffman 2009 - Male	Venzuela		2.50 (-0.26, 5.26)	
Hulthen 2010	Sweden		3.00 (1.26, 4.74)	
**Ma 2015	UK	5	1.30 (-0.36, 2.96)	
Madhavan 1994 - Black female	USA	- 	1.90 (-0.28, 4.08)	
Vadhavan 1994 - Black male	USA	7	2.30 (1.20, 3.40)	
Vadhavan 1994 - Causcasian female		4	3.50 (1.74, 5.26)	
Vadhavan 1994 - Causcasian male	USA	- -	1.40 (0.44, 2.36)	
*Nam 2017 - Female	Korea		2.60 (1.07, 4.13)	
**Nam 2017 - Male	Korea	0	2.00 (1.02, 2.98)	
Perin 2013	Brazil	3	5.30 (2.14, 8.46)	
Rhee 2014	Korea	3	2.70 (2.03, 3.37)	
Verhave 2004	China	50	2.90 (2.61, 3.19)	
Yan 2016	China	75	2.00 (1.51, 2.49)	
Vega-Vega 2018	Mexico	7	3.50 (2.50, 4.50)	
Subtotal (I-squared = 67.8%, p = 0.01			2.30 (1.86, 2.75)	
Dietary methods Eufinger 2012 Radhika 2007 Sharma 2014	USA India USA		1.00 (-0.67, 2.67) 2.70 (2.11, 3.29) 0.80 (0.25, 1.35)	4.00 4.24
Subtotal (I-squared = 90.9%, p = 0.00	00)		1.55 (0.08, 3.03)	9.23
Spot or overnight urine		-		
Han 2017 - Female	China	3	0.90 (-0.06, 1.86)	
Han 2017 - Male	China	2 –	▲ 1.20 (0.34, 2.06)	
Huh 2015 - Female	Korea	18	 ◆ 1.40 (1.15, 1.65) 	
Huh 2015 - Male	Korea	44 🔸	• 0.60 (0.35, 0.85)	
Lee 2015	Korea	86	• 0.90 (0.57, 1.23)	5.65
Oh 2015	Korea	146	 1.50 (1.36, 1.64) 	6.75
Yokokawa 2016	Thailand	3 –	★ 1.00 (0.47, 1.53)	4.36
Petermann-Rocha 2019	Chile	13	✤ 2.00 (1.61, 2.39)	
Natanabe 2019	Japan	97	➡ 1.40 (1.05, 1.75)	
Welsh 2019 - Male	UK	0964	 1.70 (1.64, 1.76) 	
Welsh 2019 - Female	UK	9146	♦ 1.57 (1.51, 1.63)	6.97
Subtotal (I-squared = 90.5%, p = 0.0)	00)		1.35 (1.18, 1.52)	58.81
Overall (I-squared = 88.5%, p = 0.00	0)		b 1.67 (1.50, 1.85)	100.00
NOTE: Weights are from random effe	cts analysis			

^a All models are inverse-variance weighted random effects

^b **24-hour urine:** Heterogeneity: τ^2 =0.43, χ^2 =46.6, df=15, P<0.001. Test for overall effect size=0: z=10.11, P<0.001. I² =68% (95% CI: 46, 81%)

Spot/overnight urine: Heterogeneity: τ^2 =0.06, χ^2 =104.9, df=10, P<0.001. Test for overall effect size=0: z=15.32, P<0.001. I² =90% (95% CI: 85, 94%)

Dietary methods: Heterogeneity: τ^2 =1.45, χ^2 =22.05, df=2, P<0.001. Test for overall effect size=0: z=2.06, P=0.039. I² =91% (95% CI: 76, 97%)

^c Black dots with horizontal lines represent individual study effect estimates and corresponding 95% CI. Grey box areas surrounding individual study effect estimates are proportional to the weight for the individual study. The diamond and broken vertical line represent the overall pooled estimate, the width of the diamond indicates its corresponding 95% CI. The unbroken vertical line represents the null value.

Supplemental Figure 4. Sub-group analysis by study quality: pooled mean difference in BMI (kg/m²) between the highest and lowest ntile of salt intake in cross-sectional studies of adults ^{a, b, c}

Study	Country		ES (95% CI)	% Weight
Moderate				
Baudrand 2014	Chile	0		2.27
Han 2017 - Female	China	3	0.90 (-0.06, 1.86)	2.33
Han 2017 - Male	China	2	1.20 (0.34, 2.06)	2.68
Hoffman 2009 - Female	Venzuela	5	2.00 (0.75, 3.25)	1.58
Hoffman 2009 - Male	Venzuela	9	2.50 (-0.26, 5.26)	0.40
Hulthen 2010	Sweden		3.00 (1.26, 4.74)	0.92
Madhavan 1994 - Black female	USA	8	1.90 (-0.28, 4.08)	0.62
Vladhavan 1994 - Black male	USA	7	2.30 (1.20, 3.40)	
Madhavan 1994 - Causcasian female	USA	4	3.50 (1.74, 5.26)	0.90
Madhavan 1994 - Causcasian male	USA	9	1.40 (0.44, 2.36)	2.33
Perin 2013	Brazil	8	5.30 (2.14, 8.46)	0.31
Radhika 2007	India	02	2.70 (2.11, 3.29)	4.00
Rhee 2014	Korea	3	2.70 (2.03, 3.37)	3.57
Sharma 2014	USA	85	0.80 (0.25, 1.35)	4.24
Verhave 2004	China	50	2.90 (2.61, 3.19)	5.91
Yan 2016	China	75	2.00 (1.51, 2.49)	4.61
Vega-Vega 2018	Mexico	7	3.50 (2.50, 4.50)	2.21
Subtotal (I-squared = 82.8%, p = 0.0	00)		2.11 (1.61, 2.61)	
Low				
Eufinger 2012	USA	6	1.00 (-0.67, 2.67)	
Huh 2015 - Female	Korea	18	 ◆ 1.40 (1.15, 1.65) 	
Huh 2015 - Male	Korea	44	◆ 0.60 (0.35, 0.85)	
Lee 2015	Korea	86		
Oh 2015	Korea	146	◆ 1.50 (1.36, 1.64)	
Yokokawa 2016	Thailand		 1.00 (0.47, 1.53)	
Petermann-Rocha 2019	Chile	13	➡ 2.00 (1.61, 2.39)	
Watanabe 2019	Japan	97	➡ 1.40 (1.05, 1.75)	
Welsh 2019 - Male	UK	0964	◆ 1.70 (1.64, 1.76)	
Welsh 2019 - Female	UK	9146	♦ 1.57 (1.51, 1.63)	
Subtotal (I-squared = 91.2%, p = 0.00	00)		1.36 (1.19, 1.54)	54.80
High				
**Ma 2015	UK	5	1.30 (-0.36, 2.96)	1 00
**Nam 2017 - Female	Korea	0	2.60 (1.07, 4.13)	
**Nam 2017 - Male	Korea	0	2.00 (1.07, 4.13)	
Subtotal (I-squared = 0.0% , p = 0.530			2.00 (1.06, 2.30)	
bubtotal (i squared 6.6%, p. 6.65			2.00 (1.20, 2.14)	4.41
Overall (I-squared = 88.5%, p = 0.00	0)		1.67 (1.50, 1.85)	100.00
NOTE: Weights are from random effe	cts analysi:			

^a All models are inverse-variance weighted random effects

^b **Low quality NOS** \leq **2:** Heterogeneity: τ^2 =0.06, χ^2 =102.62, df=9, P<0.001. Test for overall effect size=0: z=15.14, P<0.001. I² =91% (95% CI: 86, 95%)

Moderate quality NOS 3-4: Heterogeneity: τ^2 =0.75, χ^2 =93.10, df=16, P<0.001. Test for overall effect size=0: z=8.27, P<0.001. I² =83% (95% CI: 74, 89%)

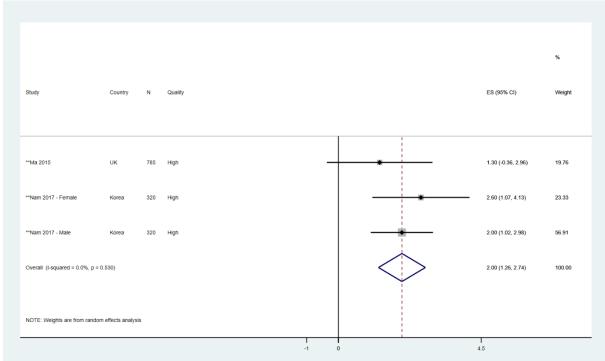
High quality NOS ≥5: Heterogeneity: τ^2 =0.00, χ^2 =1.27, df=2, P=0.530. Test for overall effect size=0: z=5.31, P<0.001. I² =0% (95% CI: 0, 90%)

^c Black dots with horizontal lines represent individual study effect estimates and corresponding 95% CI. Grey box areas surrounding individual study effect estimates are proportional to the weight for the individual study. The diamond and broken vertical line represent the overall pooled estimate, the width of the diamond indicates its corresponding 95% CI. The unbroken vertical line represents the null value.

Supplemental Figure 5. Sub-group analysis by sex: pooled mean difference in BMI (kg/m²) between the highest and lowest ntile of salt intake in cross-sectional studies of adults ^{a, b, c}

Study	Country	N		ES (95% CI)	Weig
oludy	Country	•		20 (00 % 01)	11010
Female					
Han 2017 - Female	China	733		0.90 (-0.06, 1.86)	3.92
Hoffman 2009 - Female	Venzuela	515		2.00 (0.75, 3.25)	2.49
Huh 2015 - Female	Korea	3618	-	1.40 (1.15, 1.65)	16.0
Madhavan 1994 - Black female	USA	138 -	•	1.90 (-0.28, 4.08)	0.90
Madhavan 1994 - Causcasian femal	eUSA	124		- 3.50 (1.74, 5.26)	1.34
**Nam 2017 - Female	Korea	320		2.60 (1.07, 4.13)	1.74
Welsh 2019 - Female	UK	239146	•	1.57 (1.51, 1.63)	20.6
Subtotal (I-squared = 42.4%, p = 0.1	108)		\diamond	1.56 (1.30, 1.81)	47.1
Male					
Han 2017 - Male	China	712		1.20 (0.34, 2.06)	4.65
Hoffman 2009 - Male	Venzuela	249 -		- 2.50 (-0.26, 5.26)	0.57
Huh 2015 - Male	Korea	3544	+	0.60 (0.35, 0.85)	16.0
Madhavan 1994 - Black male	USA	217	+ +	2.30 (1.20, 3.40)	3.14
Madhavan 1994 - Causcasian male	USA	329	i	1.40 (0.44, 2.36)	3.92
**Nam 2017 - Male	Korea	320		2.00 (1.02, 2.98)	3.79
Welsh 2019 - Male	UK	190964	•	1.70 (1.64, 1.76)	20.6
Subtotal (I-squared = 91.6%, p = 0.0	000)		\diamond	1.51 (0.90, 2.11)	52.8
Overall (I-squared = 84.8%, p = 0.0	00)		\diamond	1.47 (1.25, 1.68)	100.
NOTE: Weights are from random eff					

^a All models are inverse-variance weighted random effects

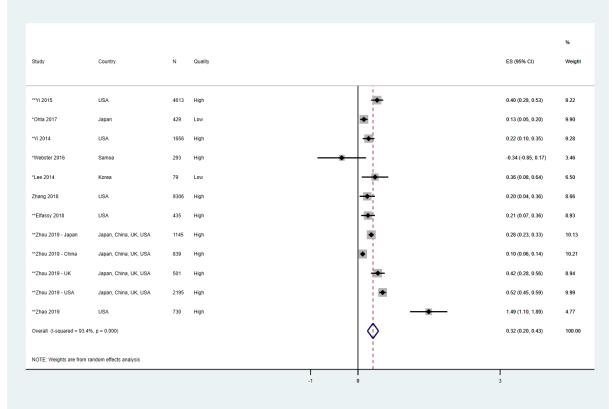

^b **Female:** Heterogeneity: τ^2 =0.03, χ^2 =10.41, df=6, P=0.108. Test for overall effect size=0: z=11.91, P<0.001. I² =42% (95% CI: 0, 76%)

Male: Heterogeneity: τ^2 =0.45, χ^2 =71.49, df=6, P<0.001. Test for overall effect size=0: z=4.87, P<0.001. I² =92% (95% CI: 85, 95%)

Overall: Heterogeneity: *τ*²=0.06, *χ*² =85.81, df=13, P<0.001. Test for overall effect size=0: z=13.62, P<0.001. I² =85% (95% CI: 76, 90%)

^c Black dots with horizontal lines represent individual study effect estimates and corresponding 95% CI. Grey box areas surrounding individual study effect estimates are proportional to the weight for the individual study. The diamond and broken vertical line represent the overall pooled estimate, the width of the diamond indicates its corresponding 95% CI. The unbroken vertical line represents the null value.

Supplemental Figure 6. Sensitivity analysis adjustment with energy intake: Pooled mean difference in BMI (kg/m²) between the highest and lowest ntile of salt intake in cross-sectional studies with adjustment for energy intake among adults^{a, b, c}

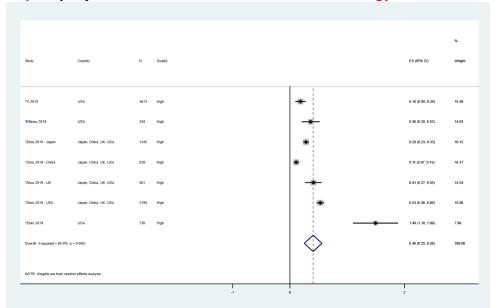


^a Inverse-variance weighted random effects model. Heterogeneity: τ^2 =0.00, χ^2 =1.27, df=2, P<0.001. Test for overall effect size=0: z=5.31, P<0.001. I² = 0% (95% CI: 0, 90%)

^b Black dots with horizontal lines represent individual study effect estimates and corresponding 95% CI. Grey box areas surrounding individual study effect estimates are proportional to the weight for the individual study. The diamond and broken vertical line represent the overall pooled estimate, the width of the diamond indicates its corresponding 95% CI. The unbroken vertical line represents the null value.

^c Quality refers to assessment made using Newcastle-Ottawa Scale Score. Studies with total scores of \geq 5*, 3-4* and \leq 2* were assessed as high, moderate and low-quality studies, respectively.

Supplemental Figure 7. Pooled difference in BMI (kg/m²) associated with sodium intake (393 mg/d) in cross-sectional studies of adults^{a, b, c, d}

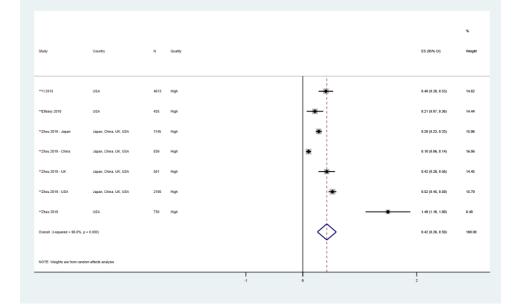

^a Inverse-variance weighted random effects model. Heterogeneity: τ^2 =0.03, χ^2 =166.42, df=11, P=0.001. Test for overall effect size=0: z=5.32, P<0.001. I² =93% (95% CI: 90, 96%)

^b Black dots with horizontal lines represent individual study effect estimates and corresponding 95% CI. Grey box areas surrounding individual study effect estimates are proportional to the weight for the individual study. The diamond and broken vertical line represent the overall pooled estimate, the width of the diamond indicates its corresponding 95% CI. The unbroken vertical line represents the null value.

^c Quality refers to assessment made using Newcastle-Ottawa Scale Score. Studies with total scores of $\geq 5^*$, 3-4^{*} and $\leq 2^*$ were assessed as high, moderate and low-quality studies, respectively. ^d Lee 2014 estimates are based on calculations for daily salt intake from spot urine using Kawasaki equation

* adjusted for covariates

Supplemental Figure 8. Sensitivity analysis adjustment with energy intake: Pooled difference in BMI (kg/m²) associated with sodium intake (393 mg/d) in cross-sectional studies of adults^{a, b}

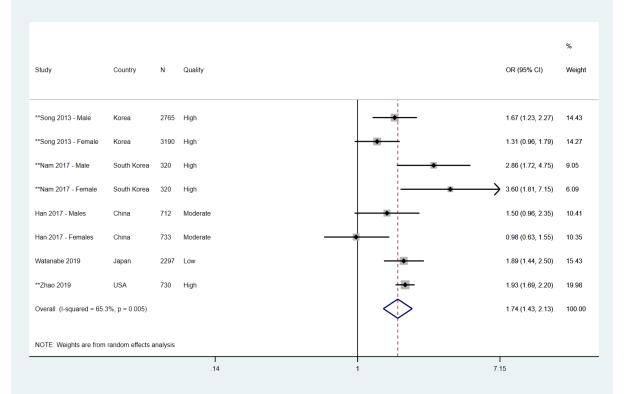


8 a) Fully adjusted models without the inclusion of energy intake^c

^a Inverse-variance weighted random effects model. Heterogeneity: τ^2 =0.04, χ^2 =146.56, df=6, P<0.001. Test for overall effect size=0: z=5.11, P<0.001. I² =96% (95% CI: 94, 97%)

^b Black dots with horizontal lines represent individual study effect estimates and corresponding 95% CI. Grey box areas surrounding individual study effect estimates are proportional to the weight for the individual study. The diamond and broken vertical line represent the overall pooled estimate, the width of the diamond indicates its corresponding 95% CI. The unbroken vertical line represents the null value.

^c Quality refers to assessment made using Newcastle-Ottawa Scale Score. Studies with total scores of ≥5*, 3-4* and ≤2* were assessed as high, moderate and low-quality studies, respectively. * adjusted for covariates



8 b) Fully adjusted models with the inclusion of energy intake^{a,b,c}

^a Inverse-variance weighted random effects model. Heterogeneity: τ^2 =0.04, χ^2 =149.91, df=6, P<0.001. Test for overall effect size=0: z=4.98, P<0.001. I² =96% (95% CI: 94, 97%)

^b Black dots with horizontal lines represent individual study effect estimates and corresponding 95% CI. Grey box areas surrounding individual study effect estimates are proportional to the weight for the individual study. The diamond and broken vertical line represent the overall pooled estimate, the width of the diamond indicates its corresponding 95% CI. The unbroken vertical line represents the null value.

^c Quality refers to assessment made using Newcastle-Ottawa Scale Score. Studies with total scores of \geq 5*, 3-4* and \leq 2* were assessed as high, moderate and low-quality studies, respectively. ** adjusted for covariates, including energy intake **Supplemental Figure 9.** Risk of overweight/obesity between the highest and lowest ntile of salt intake in cross-sectional studies of adults^{a, b, c}

^a Inverse-variance weighted random effects model. Heterogeneity: τ^2 =0.05 χ^2 =20.17, df=7, P=0.005. Test for overall effect size=0: z=5.46, P<0.001. I² =65% (95% CI: 26, 84%)

^b Black dots with horizontal lines represent individual study effect estimates and corresponding 95% CI. Grey box areas surrounding individual study effect estimates are proportional to the weight for the individual study. The diamond and broken vertical line represent the overall pooled estimate, the width of the diamond indicates its corresponding 95% CI. The unbroken vertical line represents the null value.

^c Quality refers to assessment made using Newcastle-Ottawa Scale Score. Studies with total scores of ≥5*, 3-4* and ≤2* were assessed as high, moderate and low-quality studies, respectively. ** adjusted for covariates, including energy intake

Supplemental Figure 10. Sub-group analysis by sex: Risk of overweight/obesity between the highest and lowest ntile of salt intake in cross-sectional studies of adults^{a, b, c}

Study	Country	Ν			OR (95% CI)	% Weigh
Male						
Song 2013 - Male	Korea	2765			1.56 (1.20, 2.03)	15.57
*Song 2013 - Male	Korea	2765			1.67 (1.23, 2.27)	14.53
*Nam 2017 - Male	South Korea	320			2.86 (1.72, 4.75)	10.09
lan 2017 - Male	China	712			1.50 (0.96, 2.35)	11.30
Subtotal (I-squared = 3	6.9%, p = 0.191)			1.74 (1.38, 2.18)	51.49
	•					
Female						
Song 2013 - Female	Korea	3190	_	•	1.10 (0.85, 1.43)	15.64
*Song 2013 - Female	Korea	3190			1.31 (0.96, 1.79)	14.41
*Nam 2017 - Female	South Korea	320			• 3 .60 (1.81, 7.15)	7.21
lan 2017 - Female	China	733			0.98 (0.63, 1.55)	11.25
Subtotal (I-squared = 7	3.3%, p = 0.011)			1.37 (0.94, 1.99)	48.51
				-		
Overall (I-squared = 68	.7%, p = 0.002)				1.55 (1.23, 1.96)	100.00
NOTE: Weights are fror	n random offect					
101E: Weights are from	n random ellect	s analysis				

^a All models are inverse-variance weighted random effects

^b **Female:** Heterogeneity: τ^2 =0.10, χ^2 =11.23, df=3, P=0.011. Test for overall effect size=0: z=1.63, P=0.103. I² =73% (95% CI: 25, 90%)

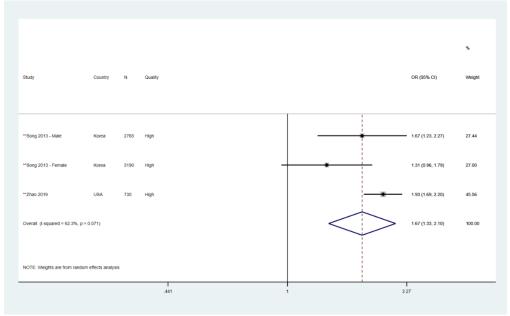
Male: Heterogeneity: τ^2 =0.02, χ^2 =4.75, df=3, P=0.191. Test for overall effect size=0: z=4.77, P<0.001. I² =37% (95% CI: 0, 80%)

Overall: Heterogeneity: τ^2 =0.07, χ^2 =22.39, df=7, P=0.002. Test for overall effect size=0: z=3.70, P<0.001. I² =69% (95% CI: 35, 85%)

^c Black dots with horizontal lines represent individual study effect estimates and corresponding 95% CI. Grey box areas surrounding individual study effect estimates are proportional to the weight for the individual study. The diamond and broken vertical line represent the overall pooled estimate, the width of the diamond indicates its corresponding 95% CI. The unbroken vertical line represents the null value.

Supplemental Figure 11. Sensitivity analysis adjustment with energy intake: Risk of

overweight/obesity between the highest and lowest ntile of salt intake in cross-sectional studies of adults

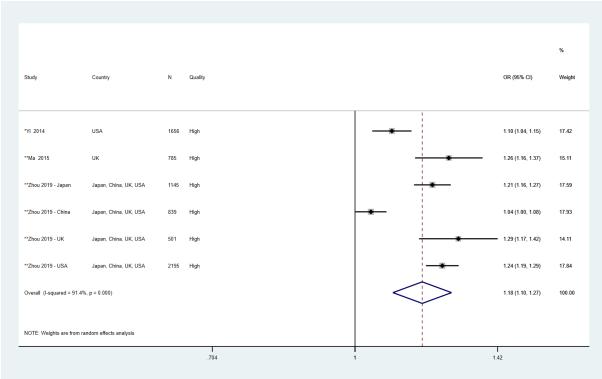

 Story
 Ocurry
 N
 Outry
 Outry
 N
 Outry
 N
 Outry
 N
 Outry
 N
 Outry
 N
 Outry
 <td

11 a) Fully adjusted models without the inclusion of energy intake^{a, b, c}

^a Inverse-variance weighted random effects model. Heterogeneity: τ^2 =0.07, χ^2 =13.17, df=2, P=0.001. Test for overall effect size=0: z=2.49, P=0.013. I² =85% (95% CI: 55, 95%)

^b Black dots with horizontal lines represent individual study effect estimates and corresponding 95% CI. Grey box areas surrounding individual study effect estimates are proportional to the weight for the individual study. The diamond and broken vertical line represent the overall pooled estimate, the width of the diamond indicates its corresponding 95% CI. The unbroken vertical line represents the null value.

^c Quality refers to assessment made using Newcastle-Ottawa Scale Score. Studies with total scores of \geq 5*, 3-4* and \leq 2* were assessed as high, moderate and low-quality studies, respectively. ** adjusted for covariates

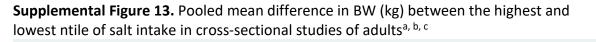


11 b) Fully adjusted models with the inclusion of energy intake^{a,b, c}

^a Inverse-variance weighted random effects model. Heterogeneity: τ^2 =0.03, χ^2 =5.30, df=2, P=0.071. Test for overall effect size=0: z=4.38, P<0.001. I² =62% (95% CI: 0, 89%)

^b Black dots with horizontal lines represent individual study effect estimates and corresponding 95% CI. Grey box areas surrounding individual study effect estimates are proportional to the weight for the individual study. The diamond and broken vertical line represent the overall pooled estimate, the width of the diamond indicates its corresponding 95% CI. The unbroken vertical line represents the null value.

^c Quality refers to assessment made using Newcastle-Ottawa Scale Score. Studies with total scores of \geq 5*, 3-4* and \leq 2* were assessed as high, moderate and low-quality studies, respectively. ** adjusted for covariates, including energy intake

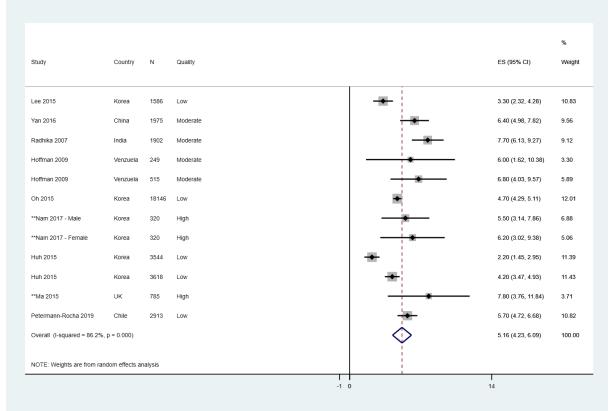


Supplemental Figure 12. Risk of overweight/obesity associated with sodium intake (393 mg/d) in cross-sectional studies of adults^{a, b, c}

^a Inverse-variance weighted random effects model. Heterogeneity: τ^2 =0.007, χ^2 =58.34, df=5, P<0.001. Test for overall effect size=0: z=4.49, P<0.001. I² =91% (95% CI: 84, 95%)

^b Black dots with horizontal lines represent individual study effect estimates and corresponding 95% CI. Grey box areas surrounding individual study effect estimates are proportional to the weight for the individual study. The diamond and broken vertical line represent the overall pooled estimate, the width of the diamond indicates its corresponding 95% CI. The unbroken vertical line represents the null value.

^c Quality refers to assessment made using Newcastle-Ottawa Scale Score. Studies with total scores of ≥5*, 3-4* and ≤2* were assessed as high, moderate and low-quality studies, respectively. * adjusted for covariates

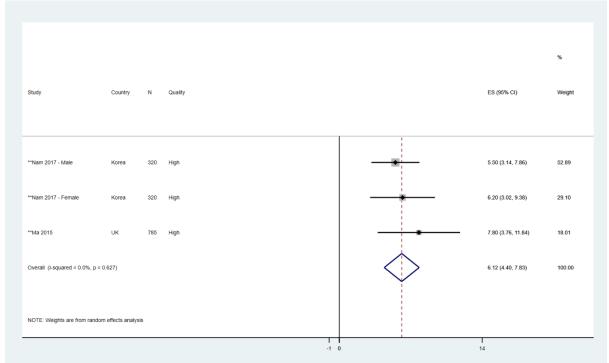

Study	Country	N	Quality			ES (95% CI)	% Weight
Yokokawa 2016	Thailand	793	Low			5.00 (3.45, 6.55)	12.73
Hulthen 2010	Sweden	79	Moderate			9.70 (1.71, 17.69)	3.99
Hoffman 2009	Venzuela	249	Moderate			9.00 (3.46, 14.54)	6.33
Hoffman 2009	Venzuela	515	Moderate			6.50 (3.73, 9.27)	10.71
Madhavan 1994 - Black Male	USA	217	Moderate			9.60 (6.01, 13.19)	9.27
Madhavan 1994 - Black female	USA	138	Moderate			8.40 (2.44, 14.36)	5.83
Madhavan 1994 - Causcasian Male	USA	329	Moderate			8.40 (5.29, 11.51)	10.10
Madhavan 1994 - Causcasian female	USA	124	Moderate			7.70 (3.08, 12.32)	7.59
**Nam 2017 - Male	Korea	320	High		•	7.50 (4.13, 10.87)	9.64
**Nam 2017 - Female	Korea	320	High			7.80 (3.08, 12.52)	7.44
Eufinger 2012	USA	286	Low	-		5.40 (-0.24, 11.04)	6.20
Vega-Vega 2018	Mexico	727	Moderate			14.70 (11.62, 17.78)	10.17
Overall (I-squared = 67.9%, p = 0.000)					\diamond	8.23 (6.35, 10.12)	100.00
NOTE: Weights are from random effects analysi	i -						

^a Inverse-variance weighted random effects model. Heterogeneity: τ^2 =6.66, χ^2 =34.32, df=11, P<0.001. Test for overall effect size=0: z=8.55, P<0.001. I² = 68% (95% CI: 41, 82%)

^b Black dots with horizontal lines represent individual study effect estimates and corresponding 95% CI. Grey box areas surrounding individual study effect estimates are proportional to the weight for the individual study. The diamond and broken vertical line represent the overall pooled estimate, the width of the diamond indicates its corresponding 95% CI. The unbroken vertical line represents the null value.

^c Quality refers to assessment made using Newcastle-Ottawa Scale Score. Studies with total scores of $\geq 5^*$, 3-4^{*} and $\leq 2^*$ were assessed as high, moderate and low-quality studies, respectively.

Supplemental Figure 14. Pooled mean difference in waist circumference (cm) between the highest and lowest ntile of sodium intake in cross-sectional studies of adults^{a, b, c}

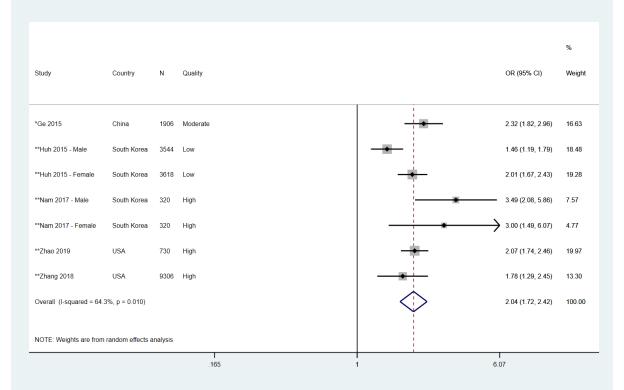


^a Inverse-variance weighted random effects model. Heterogeneity: τ^2 =1.84, χ^2 =79.72, df=11, P<0.001. Test for overall effect size=0: z=10.87, P<0.001. I² = 86% (95% CI: 78, 91%)

^b Black dots with horizontal lines represent individual study effect estimates and corresponding 95% CI. Grey box areas surrounding individual study effect estimates are proportional to the weight for the individual study. The diamond and broken vertical line represent the overall pooled estimate, the width of the diamond indicates its corresponding 95% CI. The unbroken vertical line represents the null value.

^c Quality refers to assessment made using Newcastle-Ottawa Scale Score. Studies with total scores of ≥5*, 3-4* and ≤2* were assessed as high, moderate and low-quality studies, respectively. ** adjusted for covariates, including energy intake

Supplemental Figure 15. Sensitivity analysis adjustment with energy intake: Pooled mean difference in waist circumference (cm) between the highest and lowest ntile of salt intake in cross-sectional studies with adjustment for energy intake among adults^{a, b, c}

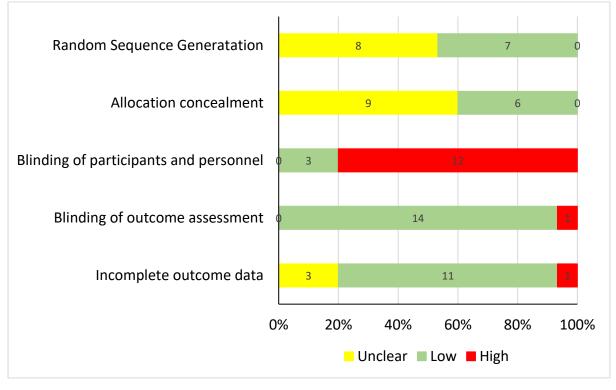

^a Inverse-variance weighted random effects model. Heterogeneity: τ^2 =0.00, χ^2 =0.93, df=2, P<0.001. Test for overall effect size=0: z=7.00, P<0.001. I² = 0% (95% CI: 0, 90%)

^b Black dots with horizontal lines represent individual study effect estimates and corresponding 95% CI. Grey box areas surrounding individual study effect estimates are proportional to the weight for the individual study. The diamond and broken vertical line represent the overall pooled estimate, the width of the diamond indicates its corresponding 95% CI. The unbroken vertical line represents the null value.

^c Quality refers to assessment made using Newcastle-Ottawa Scale Score. Studies with total scores of \geq 5*, 3-4* and \leq 2* were assessed as high, moderate and low-quality studies, respectively.

** adjusted for covariates, including energy intake

Supplemental Figure 16. Risk of abdominal obesity between the highest and lowest ntile of salt intake in cross-sectional studies of adults^{a, b, c}

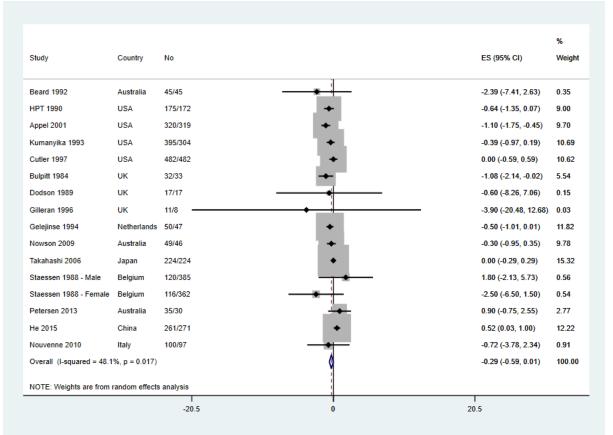

^a Inverse-variance weighted random effects model. Heterogeneity: τ^2 =0.03 χ^2 =16.81, df=6, P=0.010. Test for overall effect size=0: z=8.21, P<0.001. I² =64(95% CI: 19, 84%)

^b Black dots with horizontal lines represent individual study effect estimates and corresponding 95% CI. Grey box areas surrounding individual study effect estimates are proportional to the weight for the individual study. The diamond and broken vertical line represent the overall pooled estimate, the width of the diamond indicates its corresponding 95% CI and the extended line on the diamond represents the prediction interval. The unbroken vertical line represents the null value.

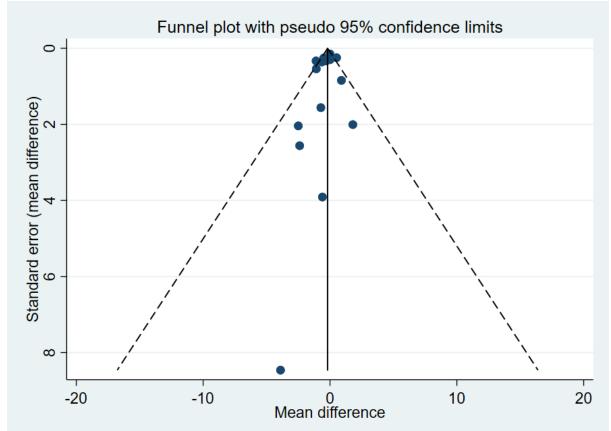
^c All studies defined abdominal obesity as waist circumference ≥90 cm males and ≥80 cm females ** adjusted for covariates

** adjusted for covariates, including energy intake

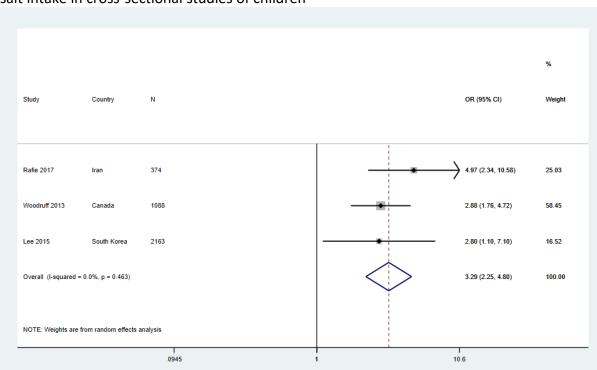
Supplemental Figure 17. Overview of risk of bias assessment of n=15 randomised controlled trials conducted in adults^a


Unclear

📕 High

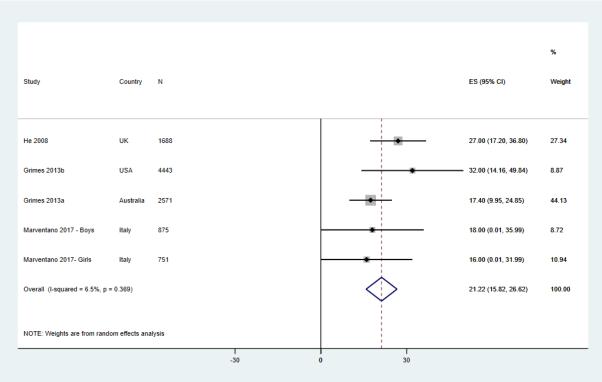

^a Selective outcome reporting was not assessed as it was deemed inapplicable for this review i.e. the primary outcome of this review was change in BW and this was not listed as an outcome in any of the assessed trials.

Supplemental Figure 18. Pooled net change (kg) in BW associated with a reduced salt diet in randomised controlled trials of adults ^{a, b, c}


^a Inverse-variance weighted random effects model. Heterogeneity: τ^2 =0.13 χ^2 =28.91, df=15, P=0.017. Test for overall effect size=0: z=1.88, P=0.06. I² =48% (95% CI: 7, 71%)

^b Black dots with horizontal lines represent individual study effect estimates and corresponding 95% CI. Grey box areas surrounding individual study effect estimates are proportional to the weight for the individual study. The diamond and broken vertical line represent the overall pooled estimate, the width of the diamond indicates its corresponding 95% CI and the extended line on the diamond represents the prediction interval. The unbroken vertical line represents the null value. ^c No represents number of participants at end of trial in control/reduced sodium group. Of note Staessen et al. 1988 used different population samples at baseline and follow-up.

Supplemental Figure 19. Funnel plots with pseudo 95% confidence limits for meta-analyses: Randomised controlled trials of reduced sodium vs. control diet on BW^a


^a Egger's regression asymmetry test P=0.30 indicates no publication bias.

Supplemental Figure 20. Risk of overweight/obesity between the highest and lowest ntile of salt intake in cross-sectional studies of children^{a, b}

^a Inverse-variance weighted random effects model. Heterogeneity: τ^2 =0.0 χ^2 =1.54, df=2, P=0.463. Test for overall effect size=0: z=6.17, P<0.001. I² =0% (95% CI: 0, 90%)

^b Black dots with horizontal lines represent individual study effect estimates and corresponding 95% CI. Grey box areas surrounding individual study effect estimates are proportional to the weight for the individual study. The diamond and broken vertical line represent the overall pooled estimate, the width of the diamond indicates its corresponding 95% CI. The unbroken vertical line represents the null value.

Supplemental Figure 21. Pooled association between salt intake (g/d) and sugar-sweetened beverage consumption (SSB) (g/d) in cross-sectional studies of children ^{a, b}

^a Inverse-variance weighted fixed effects model. Heterogeneity: χ^2 =4.28, df=4, P=0.369. Test for overall effect size=0: z=8.12, P<0.001. I² =6.5% (95% CI: 0, 81%)

^b Black dots with horizontal lines represent individual study effect estimates and corresponding 95% CI. Grey box areas surrounding individual study effect estimates are proportional to the weight for the individual study. The diamond and broken vertical line represent the overall pooled estimate, the width of the diamond indicates its corresponding 95% CI. The unbroken vertical line represents the null value.

REFERENCES

- 1. Ng MFleming TRobinson M *et al.* (2014) Global, regional, and national prevalence of overweight and obesity in children and adults during 1980-2013: a systematic analysis for the Global Burden of Disease Study 2013. *Lancet* **384**, 766-781.
- 2. Wang YC, McPherson K, Marsh T *et al.* (2011) Health and economic burden of the projected obesity trends in the USA and the UK. *Lancet* **378**, 815-825.
- 3. Bleich S., Cutler D., Murray C. *et al.* (2008) Why is the developed world obese? *Annu Rev Public Health* **29**, 273-295.
- 4. Swinburn B, Sacks G Ravussin E (2009) Increased food energy supply is more than sufficient to explain the US epidemic of obesity. *Am J Clin Nutr* **90**, 1453-1456.
- 5. Grimes CA, Riddell LJ, Campbell KJ *et al.* (2016) 24-h urinary sodium excretion is associated with obesity in a cross-sectional sample of Australian schoolchildren. *Br J Nutr* **115**, 1071-1079.
- 6. Libuda L, Kersting M Alexy U (2012) Consumption of dietary salt measured by urinary sodium excretion and its association with body weight status in healthy children and adolescents. *Public Health Nutr* **15**, 433-441.
- 7. Zhu H, Pollock NK, Kotak I *et al.* (2014) Dietary sodium, adiposity, and inflammation in healthy adolescents. *Pediatrics* **133**, e635-e642.
- 8. Larsen SC, Ängquist L, Sørensen TIA *et al.* (2013) 24h Urinary Sodium Excretion and Subsequent Change in Weight, Waist Circumference and Body Composition. *PLoS ONE* **8**.
- 9. Ma Y, He FJ Macgregor GA (2015) High salt intake: Independent risk factor for obesity? *Hypertension* **66**, 843-849.
- 10. Yi SS, Firestone MJ Beasley JM (2015) Independent associations of sodium intake with measures of body size and predictive body fatness. *Obesity* **23**, 20-23.
- 11. Yi SS & Kansagra SM (2014) Associations of sodium intake with obesity, body mass index, waist circumference, and weight. *Am J Prev Med* **46**, e53-e55.
- 12. Yoon YS & Oh SW (2013) Sodium density and obesity; the Korea National Health and Nutrition Examination Survey 2007-2010. *Eur J Clin Nutr* **67**, 141-146.
- 13. Bolhuis DP, Lakemond CM, de Wijk RA *et al.* (2012) Effect of salt intensity in soup on ad libitum intake and on subsequent food choice. *Appetite* **58**, 48-55.
- 14. Grimes CA, Riddel LJ, Campbell KJ *et al.* (2013) Dietary Salt Intake, Sugar-Sweetened Beverage Consumption, and Obesity Risk. *Pediatrics* **131**, 14-21.
- 15. Grimes CA, Wright JD, Liu K *et al.* (2013) Dietary sodium intake is associated with total fluid and sugar-sweetened beverage consumption in US children and adolescents aged 2-18 y: NHANES 2005-2008. *Am J Clin Nutr* **98**, 189-196.
- 16. He FJ, Marrero NM MacGregor GA (2008) Salt intake is related to soft drink consumption in children and adolescents: A link to obesity? *Hypertension* **51**, 629-634.
- 17. He FJ, Markandu ND, Sagnella GA *et al.* (2001) Effect of salt intake on renal excretion of water in humans. *Hypertension* **38**, 317-320.
- 18. Karppanen H & Mervaala E (2006) Sodium intake and hypertension. *Prog Cardiovasc Dis* **49**, 59-75.
- 19. Brown IJ, Tzoulaki I, Candeias V *et al.* (2009) Salt intakes around the world: implications for public health. *Int J Epidemiol* **38**, 791-813.
- 20. He FJ, Li J Macgregor GA (2013) Effect of longer term modest salt reduction on blood pressure: Cochrane systematic review and meta-analysis of randomised trials. *BMJ* **346**, f1325.
- 21. Strazzullo P, D'Elia L, Kandala NB *et al.* (2009) Salt intake, stroke, and cardiovascular disease: meta-analysis of prospective studies. *BMJ* **339**, b4567.
- 22. Moosavian SP, Haghighatdoost F, Surkan PJ *et al.* (2017) Salt and obesity: a systematic review and meta-analysis of observational studies. *Int J Food Sci Nutr* **68**, 265-277.

- 23. Grimes CA, Bolhuis DP, He FJ *et al.* (2016) Dietary sodium intake and overweight and obesity in children and adults: a protocol for a systematic review and meta-analysis. *Syst Rev* **5**, 7.
- 24. Moher D, Liberati A, Tetzlaff J *et al.* (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. *BMJ* **339**, b2535.
- Wells G., Shea B., O'connell D. *et al.* (1999) The Newcastle-Ottawa Scale (NOS) for Assessing the Quality of Nonrandomised Studies in Meta-Analyses.
 <u>http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp</u> (accessed 25th November 2015
- 26. Higgins JP, Altman DG, Gotzsche PC *et al.* (2011) The Cochrane Collaboration's tool for assessing risk of bias in randomised trials. *BMJ* **343**, d5928.
- 27. Borenstein M, Hedges LV, Higgins JPT *et al.* (2009) *Introduction to Meta-Analysis.* Chichester, UK: John Wiley & Sons.
- 28. Higgins JPT & Green S. Cochrane Handbook for Systematic Reviews of Interventions, Version 5.1.0.
- 29. Appel LJ, Espeland MA, Easter L *et al.* (2001) Effects of reduced sodium intake on hypertension control in older individuals: Results from the trial of nonpharmacologic interventions in the elderly (TONE). *Arch Intern Med* **161**, 685-693.
- 30. Bulpitt C, Daymond M, Bulpitt P *et al.* (1984) Is low salt dietary advice a useful therapy in hypertensive patients with poorly controlled blood pressure? *Ann Clin Res* **16**, 143-149.
- 31. Geleijnse JM, Witteman JCM, Bak AAA *et al.* (1994) Reduction in blood pressure with a low sodium, high potassium, high magnesium salt in older subjects with mild to moderate hypertension. *BMJ* **309**, 436-440.
- 32. Kumanyika SK, Hebert PR, Cutler JA *et al.* (1993) Feasibility and efficacy of sodium reduction in the Trials of Hypertension Prevention, phase I. Trials of Hypertension Prevention Collaborative Research Group. *Hypertension* **22**, 502-512.
- 33. Nowson CA, Wattanapenpaiboon N Pachett A (2009) Low-sodium Dietary Approaches to Stop Hypertension-type diet including lean red meat lowers blood pressure in postmenopausal women. *Nutr Res* **29**, 8-18.
- 34. Petersen K, Torpy D, Chapman I *et al.* (2013) Food label education does not reduce sodium intake in people with type 2 diabetes mellitus. A randomised controlled trial. *Appetite* **68**, 147-151.
- 35. Staessen J, Broughton PM, Fletcher AE *et al.* (1991) The assessment of the relationship between blood pressure and sodium intake using whole-day, daytime and overnight urine collections. *J Hypertens* **9**, 1035-1040.
- 36. Beard TC, Cooke HM, Gray WR *et al.* (1982) Randomised controlled trial of a no-added-sodium diet for mild hypertension. *Lancet* **2**, 455-458.
- 37. Dodson PM, Beevers M, Hallworth R *et al.* (1989) Sodium restriction and blood pressure in hypertensive type II diabetics: Randomised blind controlled and crossover studies of moderate sodium restriction and sodium supplementation. *BMJ* **298**, 227-230.
- 38. Gilleran G, O'Leary M, Bartlett WA *et al.* (1996) Effects of dietary sodium substitution with potassium and magnesium in hypertensive Type II diabetics: A randomised blind controlled parallel study. *J Hum Hypertens* **10**, 517-521.
- 39. He FJ, Wu Y, Feng XX *et al.* (2015) School based education programme to reduce salt intake in children and their families (School-EduSalt): cluster randomised controlled trial. *BMJ* **350**, h770.
- 40. Nouvenne A, Meschi T, Prati B *et al.* (2010) Effects of a low-salt diet on idiopathic hypercalciuria in calcium-oxalate stone formers: a 3-mo randomized controlled trial. *Am J Clin Nutr* **91**, 565-570.
- 41. China Salt Substitute Study Collaborative G (2007) Salt substitution: a low-cost strategy for blood pressure control among rural Chinese. A randomized, controlled trial. *J Hypertens* **25**, 2011-2018.

- 42. Cornelio ME, Godin G, Rodrigues RC *et al.* (2016) Effect of a behavioral intervention of the SALdavel program to reduce salt intake among hypertensive women: A randomized controlled pilot study. *Eur J Cardiovasc Nurs* **15**, e85-94.
- 43. Hu J., Zhao L., Thompson B. *et al.* (2018) Effects of salt substitute on home blood pressure differs according to age and degree of blood pressure in hypertensive patients and their families. *Clin Exp Hypertens* **40**, 664-672.
- 44. Li N, Yan LL, Niu W *et al.* (2016) The Effects of a Community-Based Sodium Reduction Program in Rural China - A Cluster-Randomized Trial. *PLoS One* **11**, e0166620.
- 45. Mu J, Liu Z, Liu F *et al.* (2009) Family-based randomized trial to detect effects on blood pressure of a salt substitute containing potassium and calcium in hypertensive adolescents. *Am J Hypertens* **22**, 943-947.
- 46. Takada T, Imamoto M, Fukuma S *et al.* (2016) Effect of cooking classes for housewives on salt reduction in family members: a cluster randomized controlled trial. *Public Health* **140**, 144-150.
- 47. Yang GH, Zhou X, Ji WJ *et al.* (2018) Effects of a low salt diet on isolated systolic hypertension: A community-based population study. *Medicine* **97**, e0342.
- 48. Zhao X, Yin X, Li X *et al.* (2014) Using a low-sodium, high-potassium salt substitute to reduce blood pressure among Tibetans with high blood pressure: A patient-blinded randomized controlled trial. *PLoS One* **9**, e110131.
- 49. Zhou B, Webster J, Fu LY *et al.* (2016) Intake of low sodium salt substitute for 3 years attenuates the increase in blood pressure in a rural population of North China A randomized controlled trial. *Int J Cardiol* **215**, 377-382.
- 50. Ioannidis JP, Patsopoulos NA Evangelou E (2007) Uncertainty in heterogeneity estimates in meta-analysis. *BMJ* **335**, 914-916.
- 51. Aballay LR, Osella AR, De La Quintana AG *et al.* (2016) Nutritional profile and obesity: results from a random-sample population-based study in Córdoba, Argentina. *Eur J Nutr* **55**, 675-685.
- 52. Afşar B & Kirkpantur A (2013) Baseline demographic, clinical and laboratory parameters related with 24 hour urinary sodium excretion in newly diagnosed patients with type 2 diabetes. *Turkish Nephrology, Dialysis and Transplantation Journal* **22**, 83-88.
- 53. Baudrand R, Campino C, Carvajal CA *et al.* (2014) High sodium intake is associated with increased glucocorticoid production, insulin resistance and metabolic syndrome. *Clinical Endocrinology* **80**, 677-684.
- 54. Buranakitjaroen P & Phoojaroenchanachai M (2013) The prevalence of high sodium intake among hypertensive patients at hypertension clinic, Siriraj Hospital. *Journal of the Medical Association of Thailand* **96**, S1-S8.
- 55. Campino C, Hill C, Baudrand R *et al.* (2016) Usefulness and Pitfalls in Sodium Intake Estimation: Comparison of Dietary Assessment and Urinary Excretion in Chilean Children and Adults. *Am J Hypertens* **29**, 1212-1217.
- 56. Cheung BM, Ho SP, Cheung AH *et al.* (2000) Diastolic blood pressure is related to urinary sodium excretion in hypertensive Chinese patients. *QJM* **93**, 163-168.
- 57. Choi JH & Heo YR (2017) The association between dietary sodium intake and adiposity, inflammation, and hormone markers. *J Nutr Health* **50**, 578-584.
- 58. Crouch SH, Ware LJ, Gafane-Matemane LF *et al.* (2018) Dietary sodium intake and its relationship to adiposity in young black and white adults: The African-Predict study. *J Clin Hypertens* **20**, 1193-1202.
- 59. Elfassy T, Mossavar-Rahmani Y, Van Horn L *et al.* (2018) Associations of Sodium and Potassium with Obesity Measures Among Diverse US Hispanic/Latino Adults: Results from the Hispanic Community Health Study/Study of Latinos. *Obesity* **26**, 442-450.

- 60. Eufinger SC, Votaw J, Faber T *et al.* (2012) Habitual dietary sodium intake is inversely associated with coronary flow reserve in middle-aged male twins. *Am J Clin Nutr* **95**, 572-579.
- 61. Ferdaus SI, Kohno K, Hamano T *et al.* (2015) Altitudes of residential areas affect salt intake in a rural area in Japan: a Shimane CoHRE Study. *Hypertens Res* **38**, 895-898.
- 62. Ge Z, Guo X, Chen X *et al.* (2015) Association between 24 h urinary sodium and potassium excretion and the metabolic syndrome in Chinese adults: the Shandong and Ministry of Health Action on Salt and Hypertension (SMASH) study. *Br J Nutr* **113**, 996-1002.
- 63. Han W., Hu Y., Tang Y. *et al.* (2017) Relationship between urinary sodium with blood pressure and hypertension among a Kazakh community population in Xinjiang, China. *J Hum Hypertens* **31**, 333-340.
- 64. Hashimoto T, Takase H, Okado T *et al.* (2016) Significance of adjusting salt intake by body weight in the evaluation of dietary salt and blood pressure. *J Am Soc Hypertens* **10**, 647-655 e643.
- 65. Hoffmann IS & Cubeddu LX (2009) Salt and the metabolic syndrome. *Nutrition, Metabolism and Cardiovascular Diseases* **19**, 123-128.
- 66. Huh JH, Lim JS, Lee MY *et al.* (2015) Gender-specific association between urinary sodium excretion and body composition: Analysis of the 2008-2010 Korean National Health and Nutrition Examination Surveys. *Metabolism* **64**, 837-844.
- 67. Hulthén L, Aurell M, Klingberg S *et al.* (2010) Salt intake in young Swedish men. *Public Health Nutr* **13**, 601-605.
- Jiet LJ & Soma M (2017) High salt diets in young university adults and the correlation with blood pressure, protein intake and fat free mass. *Bioscience Horizons* 10, 10.1093/biohorizons/hzx1003.
- 69. Lee H, Cho HJ, Bae E *et al.* (2014) Not salt taste perception but self-reported salt eating habit predicts actual salt intake. *J Korean Med Sci* **29**, S91-S96.
- 70. Lee SK, Kim JS, Kim SH *et al.* (2015) Sodium excretion and cardiovascular structure and function in the nonhypertensive population: The Korean genome and epidemiology study. *Am J Hypertens* **28**, 1010-1016.
- 71. Madhavan S & Alderman MH (1994) Ethnicity and the relationship of sodium intake to blood pressure. *J Hypertens* **12**, 97-103.
- 72. Murakami K, Livingstone MBE, Sasaki S *et al.* (2015) Ability of self-reported estimates of dietary sodium, potassium and protein to detect an association with general and abdominal obesity: comparison with the estimates derived from 24 h urinary excretion. *Br J Nutr* **113**, 1308-1318 1311p.
- 73. Nam GE, Kim SM, Choi MK *et al.* (2017) Association between 24-h urinary sodium excretion and obesity in Korean adults: A multicenter study. *Nutrition* **41**, 113-119.
- 74. Navia B, Aparicio A, Perea JM *et al.* (2014) Sodium intake may promote weight gain; results of the FANPE study in a representative sample of the adult Spanish population. *Nutricion Hospitalaria* **29**, 1283-1289.
- 75. Oh SW, Han KH, Han SY *et al.* (2015) Association of sodium excretion with metabolic syndrome, insulin resistance, and body fat. *Medicine* **94**, e1650.
- 76. Ohta Y, ,, Kimura Y, Kitaoka C *et al.* (2017) Blood pressure control status and relationship between salt intake and lifestyle including diet in hypertensive outpatients treated at a general hospital. *Clin Exp Hypertens* **39**, 29-33.
- 77. Pan WH, Tseng WP, You FJ *et al.* (1990) Positive relationship between urinary sodium chloride and blood pressure in Chinese health examinees and its association iwth calcium excretion. *J Hypertens* **8**, 873-878.
- 78. Perin MS, Cornelio ME, Oliveira PA *et al.* (2019) Dietary sources of salt intake in adults and older people: a population-based study in a Brazilian town. *Public Health Nutr* **22**, 1388-1397.

- 79. Perin MS, Cornélio ME, Rodrigues RCM *et al.* (2013) Characterization of salt consumption among hypertensives according to socio-demographic and clinical factors. *Revista Latino-Americana de Enfermagem* **21**, 1013-1021.
- 80. Petermann-Rocha F, Sillars A, Brown R *et al.* (2019) Sociodemographic patterns of urine sodium excretion and its association with hypertension in Chile: A cross-sectional analysis. *Public Health Nutr* **22**, 2012-2021.
- 81. Polonia J, Maldonado J, Ramos R *et al.* (2006) Estimation of salt intake by urinary sodium excretion in a Portuguese adult population and its relationship to arterial stiffness. *Revista Portuguesa de Cardiologia* **25**, 801-817.
- 82. Polonia J, Martins L, Pinto F *et al.* (2014) Prevalence, awareness, treatment and control of hypertension and salt intake in Portugal: Changes over a decade the PHYSA study. *J Hypertens* **32**, 1211-1221.
- 83. Radhika G, Sathya RM, Sudha V *et al.* (2007) Dietary salt intake and hypertension in an urban south Indian population--[CURES 53]. *J Assoc Physicians India* **55**, 405-411.
- 84. Rashidah A, Yeo PS, Noor Ani A *et al.* (2014) Sodium intake among normotensive health staff assessed by 24-hour urinary excretion: A cross-sectional study. *Malaysian Journal of Nutrition* **20**, 317-326.
- 85. Rhee MY, Kim JH, Kim YS *et al.* (2014) High sodium intake in women with metabolic syndrome. *Korean Circ J* **44**, 30-36.
- 86. Ribi CH, Zakotnik JM, Vertnik L *et al.* (2010) Salt intake of the Slovene population assessed by 24 h urinary sodium excretion. *Public Health Nutr* **13**, 1803-1809.
- 87. Sanchez-Castillo CP, Warrender S, Whitehead TP *et al.* (1987) An assessment of the sources of dietary salt in a British population. *Clinical Science* **72**, 95-102.
- 88. Sharma S, McFann K, Chonchol M *et al.* (2014) Dietary sodium and potassium intake is not associated with elevated blood pressure in US adults with no prior history of hypertension. *J Clin Hypertens* **16**, 418-423.
- 89. Shay CM, Van Horn L, Stamler J *et al.* (2012) Food and nutrient intakes and their associations with lower BMI in middle-aged US adults: the International Study of Macro-/Micronutrients and Blood Pressure (INTERMAP). *Am J Clin Nutr* **96**, 483-491.
- 90. Shim E, Ryu HJ, Hwang J *et al.* (2013) Dietary sodium intake in young Korean adults and its relationship with eating frequency and taste preference. *Nutr Res Pract* **7**, 192-198.
- 91. Song HJ, Cho YG Lee H-J (2013) Dietary sodium intake and prevalence of overweight in adults. *Metabolism* **62**, 703-708.
- 92. Strazzullo P, Trevisan M Farinaro E (1983) Characteristics of the association between salt intake and blood pressure in a sample of male working population in southern Italy. *European Heart Journal* **4**, 608-613.
- 93. Vega-Vega O, Fonseca-Correa JI, Mendoza-De la Garza A. *et al.* (2018) Contemporary Dietary Intake: Too Much Sodium, Not Enough Potassium, yet Sufficient Iodine: The SALMEX Cohort Results. *Nutrients* **10**, 816.
- 94. Venezia A, Barba G, Russo O *et al.* (2010) Dietary sodium intake in a sample of adult male population in southern Italy: Results of the Olivetti Heart Study. *Eur J Clin Nutr* **64**, 518-524.
- 95. Verhave JC, Hillege HL, Burgerhof JGM *et al.* (2004) Sodium intake affects urinary albumin excretion especially in overweight subjects. *J Intern Med* **256**, 324-330.
- 96. Villani AM, Clifton PM Keogh JB (2012) Sodium intake and excretion in individuals with type 2 diabetes mellitus: A cross-sectional analysis of overweight and obese males and females in Australia. *J Hum Nutr Diet* **25**, 129-139.
- 97. Watanabe S, Konta T, Ichikawa K *et al.* (2019) The association between urinary sodium excretion and blood pressure in a community-based population: the Yamagata (Takahata) study. *Clin Exp Nephrol* **23**, 380-386.

- 98. Webster J, Su'a SA, Ieremia M et al. (2016) Salt Intakes, Knowledge, and Behavior in Samoa: Monitoring Salt-Consumption Patterns Through the World Health Organization's Surveillance of Noncommunicable Disease Risk Factors (STEPS). J Clin Hypertens 18, 884-891.
- 99. Welsh CE, Welsh P, Jhund P *et al.* (2019) Urinary Sodium Excretion, Blood Pressure, and Risk of Future Cardiovascular Disease and Mortality in Subjects Without Prior Cardiovascular Disease. *Hypertension* **73**, 1202-1209.
- 100. Yan L., Guo X., Wang H. *et al.* (2016) Population-based association between urinary excretion of sodium, potassium and its ratio with albuminuria in Chinese. *Asia Pac J Clin Nutr* **25**, 785-797.
- Yokokawa H, Yuasa M, Nedsuwan S *et al.* (2016) Daily salt intake estimated by overnight urine collections indicates a high cardiovascular disease risk in Thailand. *Asia Pac J Clin Nutr* 25, 39-45.
- 102. Zhang X, Wang J, Li J *et al.* (2018) A positive association between dietary sodium intake and obesity and central obesity: results from the National Health and Nutrition Examination Survey 1999-2006. *Nutrition Research* **55**, 33-44.
- 103. Zhao L, Cogswell M, Yang Q *et al.* (2019) Association of usual 24-h sodium excretion with measures of adiposity among adults in the United States: NHANES, 2014. *Am J Clin Nutr* **109**, 139-147.
- 104. Zhou L, Stamler J, Chan Q *et al.* (2019) Salt intake and prevalence of overweight/obesity in Japan, China, the United Kingdom, and the United States: the INTERMAP Study. *Am J Clin Nutr*.
- 105. Ard JD, Coffman CJ, Lin PH *et al.* (2004) One-year follow-up study of blood pressure and dietary patterns in Dietary Approaches to Stop Hypertension (DASH)-Sodium participants. *Am J Hypertens* **17**, 1156-1162.
- 106. Sakaki M, Tsuchihashi T Arakawa K (2014) Characteristics of the hypertensive patients with good and poor compliance to long-term salt restriction. *Clin Exp Hypertens* **36**, 92-96.
- 107. Takahashi Y, Sasaki S, Okubo S *et al.* (2006) Maintenance of a low-sodium, high-carotene and -vitamin C diet after a 1-year dietary intervention: the Hiraka dietary intervention follow-up study. *Prev Med* **43**, 14-19.
- 108. Hypertension Prevention Trial Research Group. (1990) The Hypertension Prevention Trial: three-year effects of dietary changes on blood pressure. Hypertension Prevention Trial Research Group. *Arch Intern Med* **150**, 153-162.
- 109. Staessen J, Bulpitt CJ, Fagard R *et al.* (1988) Salt intake and blood pressure in the general population: a controlled intervention trial in two towns. *J Hypertens* **6**, 965-973.
- 110. Takahashi Y, Sasaki S, Okubo S *et al.* (2006) Blood pressure change in a free-living population-based dietary modification study in Japan. *J Hypertens* **24**, 451-458.
- 111. The Trials of Hypertension Prevention Collaborative Research Group. Effects of weight loss and sodium reduction intervention on blood pressure and hypertension incidence in overweight people with high-normal blood pressure. The Trials of Hypertension Prevention, phase II. *Arch Intern Med*.
- 112. Cutler J, Whelton P, Appel L *et al.* (1992) The effects of nonpharmacologic interventions on blood pressure of persons with high normal levels. Results of the Trials of Hypertension Prevention, Phase I. *JAMA* **267**, 1213-1220.
- 113. Campanozzi A, Avallone S, Barbato A *et al.* (2015) High sodium and low potassium intake among Italian children: Relationship with age, body mass and blood pressure. *PLoS ONE* **10**.
- 114. De Santo NG, Dilorio B, Capasso G *et al.* (1987) Population based data on age related excretion of creatinine sodium and potassium in children of Southern Italy--the Cimitile study. *Int J Pediatr Nephrol* **8**, 35-40.
- 115. Ellison RC, Sosenko JM, Harper GP *et al.* (1980) Obesity, sodium intake, and blood pressure in adolescents. *Hypertension* **2**, I-78-I-82.

- 116. Gilardini L, Croci M, Pasqualinotto L *et al.* (2015) Dietary habits and cardiometabolic health in obese children. *Obesity Facts* **8**, 101-109.
- 117. Lakatos O, Gyorke ZS Sultan S (2015) Sodium and potassium intake in Hungarian children and adolescents: Comparison of two cross sectional studies. *Acta Alimentaria* **44**, 139-149.
- Lee M, Kim KM, Kim SM *et al.* (2015) Gender-based differences on the association between salt-sensitive genes and obesity in Korean children aged between 8 and 9 years. *PLoS ONE* 10.
- 119. Lee SK & Kim MK (2016) Relationship of sodium intake with obesity among Korean children and adolescents: Korea National Health and Nutrition Examination Survey. *Br J Nutr* **115**, 834-841.
- 120. Lurbe E, Alvarez V, Liao Y *et al.* (2000) Obesity modifies the relationship between ambulatory blood pressure and natriuresis in children. *Blood Pressure Monitoring* **5**, 275-280.
- 121. Maldonado-Martin A, Garcia-Matarin L, Gil-Extremera B *et al.* (2002) Blood pressure and urinary excretion of electrolytes in Spanish schoolchildren. *J Hum Hypertens* **16**, 473-478.
- 122. Okuda M, Asakura K, Sasaki S *et al.* (2016) Twenty-four-hour urinary sodium and potassium excretion and associated factors in Japanese secondary school students. *Hypertens Res* **39**, 524-529.
- 123. Rafie N., Mohammadifard N., Khosravi A. *et al.* (2017) Relationship of sodium intake with obesity among Iranian children and adolescents. *ARYA Atheroscle* **13**, 1-6.
- 124. Woodruff SJ, Fryer K, Campbell T *et al.* (2014) Associations among blood pressure, salt consumption and body weight status of students from south-western Ontario. *Public Health Nutr* **17**, 1114-1119.
- 125. Yamauchi T, Furuta M, Hamada J *et al.* (1994) Dietary salt intake and blood pressure among schoolchildren. *Ann Physiol Anthropol* **13**, 329-336.
- Lee M, Kwon DY Park J (2017) The impacts of the interaction of genetic variation, CYP11beta2 and NEDD4L, with sodium intake on pediatric obesity with gender difference: a 3-year panel study. *Int J Obes* 41, 542-550.
- 127. Gillum RF, Elmer PJ Prineas RJ (1981) Changing sodium intake in children. The Minneapolis Children's Blood Pressure Study. *Hypertension* **3**, 698-703.
- 128. Marventano S, Ferranti R, Antoci M *et al.* (2017) Association between sugar-sweetened beverages consumption and body composition in relation to salt among adolescent resident in Sicily, Southern Italy. *Current Nutrition and Food Science* **13**, 21-28.
- 129. World Health Organization. (2012) Guideline: Sodium intake for adults and children. Geneva: World Health Organization (WHO).
- 130. Powles J, Fahimi S, Micha R *et al.* (2013) Global, regional and national sodium intakes in 1990 and 2010: a systematic analysis of 24 h urinary sodium excretion and dietary surveys worldwide. *BMJ Open* **3**, e003733.
- 131. Fonseca-Alaniz MH, Brito LC, Borges-Silva CN *et al.* (2007) High dietary sodium intake increases white adipose tissue mass and plasma leptin in rats. *Obesity* **15**, 2200-2208.
- 132. Fonseca-Alaniz MH, Takada J, Andreotti S *et al.* (2008) High sodium intake enhances insulinstimulated glucose uptake in rat epididymal adipose tissue. *Obesity* **16**, 1186-1192.
- 133. Cocores JA & Gold MS (2009) The salted food addition hypothesis may explain overeating and the obesity epidemic. *Medical Hypotheses* **73**, 892-899.
- 134. Stachenfeld NS (2008) Acute Effects of Sodium Ingestion on Thirst and Cardiovascular Function. *Curr Sports Med Rep* **7**, S7-13.
- 135. Zhang Y, Li F, Liu FQ *et al.* (2016) Elevation of Fasting Ghrelin in Healthy Human Subjects Consuming a High-Salt Diet: A Novel Mechanism of Obesity? *Nutrients* **8**.
- 136. Lanaspa MA, Kuwabara M, Andres-Hernando A *et al.* (2018) High salt intake causes leptin resistance and obesity in mice by stimulating endogenous fructose production and metabolism. *Proc Natl Acad Sci U S A* **115**, 3138-3143.

- 137. Denton D., Weisinger R., Mundy NI. *et al.* (1995) The effect of increased salt intake on blood pressure of chimpanzees. *Nat Med* **10**, 1009-1016.
- 138. Anderson CAM, Appel LJ, Okuda N *et al.* (2010) Dietary sources of Sodium in China, Japan, the United Kingdon, and the United States, Women and Men Aged 40 to 59 Years: The INTERMAP Study. *J Am Diet Assoc* **110**, 736-745.
- 139. Lee H-S, Duffey KJ Popkin BM (2013) Sodium and potassium intake patterns and trends in South Korea. *J Hum Hypertens* **27**, 298-303.