Supplemental material

(b)
Women

S1 Figure. Radar charts illustrating the percentage-wise differences in median intakes of meat and fish items among women and men with the lowest (first quintile) and highest (fifth quintile) intakes of (a) total vegetables and (b) potatoes relative to the median intake (equivalent to 100%) of the particular meat or fish item among the entire study population of similar sex. All food variables were energy-adjusted using the residual method. Black line: first quintile. Grey line: fifth quintile.

S2 Table. HR ($95 \% \mathrm{CI}$) for myocardial infarction per $250 \mathrm{kcal} /$ week higher intake of meat, fish, vegetables or potatoes in the Diet, Cancer and Health study

HR (95\% CI) per 250 kcal/week	Women (n=29,142/656)		
	Model 1a 1	Model 1b	
Total red meat	$1.08(1.05-1.11)$	$1.03(1.00-1.06)$	$1.01(0.97-1.05)$
\quad Unprocessed red meat	$1.10(1.05-1.14)$	$1.05(1.01-1.10)$	$1.03(0.97-1.08)$
\quad Processed red meat	$1.12(1.07-1.18)$	$1.02(0.97-1.08)$	$0.98(0.91-1.05)$
Total fish	$0.91(0.85-0.98)$	$0.93(0.86-1.00)$	$0.92(0.85-0.99)$
\quad Lean fish	$1.02(0.87-1.20)$	$1.00(0.86-1.17)$	$1.05(0.89-1.25)$
\quad Fatty fish	$0.84(0.76-0.93)$	$0.88(0.80-0.97)$	$0.86(0.77-0.96)$
Poultry	$0.97(0.89-1.06)$	$0.98(0.90-1.06)$	$0.98(0.90-1.07)$
Total vegetables	$0.85(0.79-0.91)$	$0.96(0.89-1.03)$	$0.97(0.89-1.05)$
Potatoes	$1.00(0.96-1.04)$	$0.97(0.93-1.02)$	$0.95(0.90-1.00)$

${ }^{1}$ Adjusted for age and total energy
${ }^{2}$ Model 1a further adjusted for alcohol abstain, alcohol intake, BMI, waist circumference, smoking, physical activity, duration of schooling, menopausal status and use of hormone replacement therapy
${ }^{3}$ Model 1 b further adjusted mutually for the investigated food items and for fruits, sweets, soft drinks, lean dairy products, fatty dairy products, potato chips, refined cereals, wholegrain cereals and nuts

S3 Table. HR (95% CI) for myocardial infarction per $250 \mathrm{kcal} /$ week higher intake of meat, fish, vegetables or potatoes in the Diet, Cancer and Health study

HR (95\% CI) per $250 \mathrm{kcal} /$ week	Men (n=26,029/1,694)		
	Model 1a 1	Model 1b	Model 2 3
Total red meat	$1.03(1.02-1.05)$	$1.01(1.00-1.03)$	$1.02(0.99-1.04)$
\quad Unprocessed red meat	$1.02(1.00-1.04)$	$1.01(0.99-1.03)$	$1.00(0.98-1.03)$
\quad Processed red meat	$1.06(1.04-1.08)$	$1.02(1.00-1.05)$	$1.03(1.00-1.06)$
Total fish	$0.97(0.94-1.01)$	$0.99(0.95-1.02)$	$1.00(0.96-1.04)$
\quad Lean fish	$1.00(0.92-1.09)$	$1.00(0.92-1.09)$	$1.03(0.94-1.13)$
\quad Fatty fish	$0.95(0.90-1.00)$	$0.98(0.93-1.02)$	$0.99(0.93-1.04)$
Poultry	$1.00(0.96-1.05)$	$1.03(0.98-1.07)$	$1.04(0.99-1.09)$
Total vegetables	$0.90(0.86-0.95)$	$0.99(0.94-1.04)$	$1.02(0.97-1.07)$
Potatoes	$1.02(1.00-1.04)$	$1.00(0.98-1.02)$	$1.01(0.98-1.03)$

[^0]S4 Table. HR (95% CI) for myocardial infarction associated with substitution of $250 \mathrm{kcal} /$ week from red meat, poultry or fish with vegetables or potatoes in the Diet, Cancer and Health study

HR (95\% CI) per $250 \mathrm{kcal} / \mathrm{week}$	Women ($\mathrm{n}=29,142 / 656$)		
	Model 1a ${ }^{1}$	Model $1 \mathrm{~b}^{2}$	Model 2^{3}
Vegetables			
Total vegetables for red meat	0.81 (0.75-0.88)	0.95 (0.88-1.02)	0.97 (0.89-1.05)
Total vegetables for unprocessed red meat	0.81 (0.74-0.88)	0.91 (0.84-1.00)	0.94 (0.86-1.03)
Total vegetables for processed red meat	0.82 (0.75-0.90)	0.97 (0.89-1.06)	0.99 (0.91-1.09)
Total vegetables for fish	0.94 (0.84-1.05)	1.05 (0.94-1.17)	1.06 (0.95-1.19)
Total vegetables for lean fish	0.73 (0.60-0.89)	0.88 (0.73-1.07)	0.92 (0.75-1.11)
Total vegetables for fatty fish	1.04 (0.91-1.18)	1.12 (0.98-1.27)	1.13 (0.99-1.29)
Total vegetables for poultry	0.85 (0.75-0.96)	0.98 (0.87-1.11)	0.99 (0.87-1.12)
Potatoes			
Potatoes for red meat	0.92 (0.87-0.98)	0.94 (0.89-0.99)	0.94 (0.89-1.00)
Potatoes for unprocessed red meat	0.92 (0.86-0.98)	0.91 (0.86-0.98)	0.92 (0.86-0.99)
Potatoes for processed red meat	0.93 (0.87-1.01)	0.97 (0.90-1.05)	0.97 (0.90-1.05)
Potatoes for fish	1.07 (0.98-1.16)	1.04 (0.95-1.13)	1.03 (0.95-1.13)
Potatoes for lean fish	0.84 (0.70-1.00)	0.88 (0.74-1.05)	0.90 (0.75-1.07)
Potatoes for fatty fish	1.19 (1.06-1.33)	1.12 (1.00-1.25)	1.10 (0.99-1.24)
Potatoes for poultry	0.96 (0.88-1.06)	0.97 (0.89-1.07)	0.96 (0.88-1.06)

[^1]S5 Table. HR (95% CI) for myocardial infarction associated with substitution of $250 \mathrm{kcal} /$ week from red meat, poultry or fish with vegetables or potatoes in the Diet, Cancer and Health study

HR (95\% CI) per 250 kcal/week	Men $(\mathbf{n}=\mathbf{2 6 , 0 2 9 / 1 , 6 9 4})$		
	Model 1a 1	Model 1b ${ }^{2}$	Model 2 3
Vegetables			
Total vegetables for red meat	$0.89(0.84-0.93)$	$0.97(0.93-1.02)$	$0.99(0.94-1.05)$
Total vegetables for unprocessed red meat	$0.91(0.86-0.96)$	$0.99(0.93-1.04)$	$1.01(0.96-1.07)$
\quad Total vegetables for processed red meat	$0.88(0.84-0.92)$	$0.97(0.92-1.02)$	$0.99(0.94-1.04)$
Total vegetables for fish	$0.93(0.87-0.99)$	$1.00(0.94-1.07)$	$1.01(0.95-1.08)$
\quad Total vegetables for lean fish	$0.87(0.78-0.96)$	$0.97(0.87-1.08)$	$0.99(0.89-1.10)$
\quad Total vegetables for fatty fish	$0.95(0.88-1.03)$	$1.01(0.94-1.09)$	$1.02(0.95-1.10)$
Total vegetables for poultry	$0.88(0.82-0.95)$	$0.96(0.89-1.03)$	$0.97(0.90-1.05)$
Potatoes			
Potatoes for red meat	$0.98(0.96-1.01)$	$0.99(0.96-1.01)$	$0.99(0.96-1.02)$
\quad Potatoes for unprocessed red meat	$1.00(0.97-1.03)$	$1.00(0.97-1.03)$	$1.00(0.97-1.03)$
\quad Potatoes for processed red meat	$0.96(0.94-0.99)$	$0.98(0.95-1.01)$	$0.98(0.95-1.01)$
Potatoes for fish	$1.03(0.99-1.07)$	$1.01(0.97-1.06)$	$1.01(0.97-1.05)$
Potatoes for lean fish	$0.96(0.88-1.06)$	$0.99(0.90-1.08)$	$0.98(0.90-1.08)$
Potatoes for fatty fish	$1.06(1.00-1.12)$	$1.03(0.97-1.09)$	$1.02(0.96-1.08)$
Potatoes for poultry	$0.98(0.93-1.03)$	$0.97(0.92-1.02)$	$0.97(0.92-1.02)$

[^2]
S6 Text. Model equivalence of substitution models

In a model with three food groups (for simplicity), described by the variables x_{1}, x_{2} and x_{3}, we want to estimate the association of "more x_{2} (e.g. vegetables) at the expense of x_{3} (e.g. red meat) in relation to the outcome", i.e. substituting x_{2} for x_{3}.

The model used in this study (model A) can be written like this, where $x_{\text {total }}=x_{1}+x_{2}+x_{3}$:
$\ln (h(t ; x))=\ln \left(h_{0}(t)\right)+\beta_{1} x_{1}+\beta_{2} x_{2}+\beta_{3} x_{t o t a l}(m o d e l \mathrm{~A})$

The model used by for example Bernstein et al in the Harvard cohorts (model B) can be written like this:
$\ln (h(t ; x))=\ln \left(h_{0}(t)\right)+\gamma_{1} x_{1}+\gamma_{2} x_{2}+\gamma_{3} x_{3} \quad($ model $B)$
Model B can then be re-parametrised:

$$
\begin{aligned}
\ln (h(t ; x)) & =\ln \left(h_{0}(t)\right)+\gamma_{1} x_{1}+\gamma_{2} x_{2}+\gamma_{3} x_{3} \\
& =\ln \left(h_{0}(t)\right)+\gamma_{1} x_{1}+\gamma_{2} x_{2}+\gamma_{3}\left(x_{1}+x_{2}+x_{3}\right)-\gamma_{3} x_{1}-\gamma_{3} x_{2} \\
& =\ln \left(h_{0}(t)\right)+\left(\gamma_{1}-\gamma_{3}\right) x_{1}+\left(\gamma_{2}-\gamma_{3}\right) x_{2}+\gamma_{3} x_{\text {total }}
\end{aligned}
$$

In model B , the parameters can be renamed and written like this:
$\ln (h(t ; x))=\ln \left(h_{0}(t)\right)+\tilde{\beta}_{1} x_{1}+\tilde{\beta}_{2} x_{2}+\tilde{\beta}_{3} x_{t o t a l}$,
in which $\quad \tilde{\beta}_{1}=\gamma_{1}-\gamma_{3}$,
$\tilde{\beta}_{2}=\gamma_{2}-\gamma_{3}$ and
$\tilde{\beta}_{3}=\gamma_{3}$.

Therefore, the two models are equivalent, and the parameter β_{2} in model A is equivalent to $\gamma_{2}-\gamma_{3}$ in model B.

[^0]: ${ }^{1}$ Adjusted for age and total energy
 ${ }^{2}$ Model 1a further adjusted for alcohol abstain, alcohol intake, BMI, waist circumference, smoking, physical activity and duration of schooling
 ${ }^{3}$ Model 1 b further adjusted mutually for the investigated food items and for fruits, sweets, soft drinks, lean dairy products, fatty dairy products, potato chips, refined cereals, wholegrain cereals and nuts

[^1]: ${ }^{1}$ Adjusted for age and total energy
 ${ }^{2}$ Model 1a further adjusted for alcohol abstain, alcohol intake, BMI, waist circumference, smoking, physical activity, duration of schooling, menopausal status and use of hormone replacement therapy
 ${ }^{3}$ Model 1 b further adjusted for fruits, sweets, soft drinks, lean dairy products, fatty dairy products, potato chips, refined cereals, wholegrain cereals and nuts

[^2]: ${ }^{1}$ Adjusted for age and total energy
 ${ }^{2}$ Model 1a further adjusted for alcohol abstain, alcohol intake, BMI, waist circumference, smoking, physical activity and duration of schooling
 ${ }^{3}$ Model 1 b further adjusted for fruits, sweets, soft drinks, lean dairy products, fatty dairy products, potato chips, refined cereals, wholegrain cereals and nuts

