Supplemental Table 1: Final factor loadings for food/beverage items derived in the entire REGARDS population (showing only those with absolute values >0.15 for simplicity)

	Convenience	Plant- based	Sweets/ Fats	Southern	Alcohol/ Salads
100\% fruit juice		0.2529		0.1663	-0.1716
Added fats			0.3953	0.3752	0.2533
Beans	0.3555	0.3762			
Beer		-0.1598			0.2271
Bread			0.4708	0.3656	
Bread - Whole Grain		0.3025	0.1804		
Butter			0.1721		0.3230
Candy			0.4023		
Cereal		0.3804			-0.1982
Cereal - High Fiber		0.2366		-0.2546	
Chinese food	0.4373				
Chocolate			0.4564		
Coffee			0.2171	-0.1630	0.2964
Condiments	0.2458		0.3081		0.2887
Desserts	0.1974		0.5340		-0.1666
Eggs and egg dishes				0.4161	0.2911
Fish	0.2666	0.3810			0.2099
Fried food	0.2428			0.5598	
Fried potatoes	0.3705		0.2759	0.1649	
Fruit		0.5754			
Highfat dairy	0.1777		0.3727		0.2143
Liquor					0.3104
Lowfat dairy		0.1998		-0.1865	
Margarine			0.3737		
Mexican dishes	0.4846				
Milk alternatives		0.1771			
Milk - Highfat			0.1829	0.2441	
Milk - Lowfat		0.1649		-0.4170	
Miscellaneous sugar			0.5377	0.1890	
Mixed dishes with meat	0.6136				
Organ meat	0.1736			0.4719	
Pasta dishes	0.5937		0.1660		
Pizza	0.4547	-0.1765	0.2046		
Potatoes	0.3649		0.2616		
Poultry	0.2863	0.3149			
Processed meats	0.2526		0.2575	0.4476	0.2160
Red meat	0.4476		0.1755	0.2562	0.2593

Refined grains	0.3050	0.1736	0.2044	0.2038	
Salad dressing/sauces		0.3042			0.5508
Salty snacks	0.3239		0.3040		0.1858
Seeds, nuts		0.2646	0.1907		0.2403
Shell fish	0.2755			0.2366	
Soda	0.4388	-0.2265		0.3172	
Soup			0.3853		-0.1528
Sugar-sweetened beverages	0.1881		0.3105		
Sweet breakfast foods		0.5881			
Tea		0.4068			-0.1732
Vegetable - cruciferous	0.1572	0.4936		-0.2193	0.4760
Vegetable - dark yellow		0.4795			0.2674
Vegetable - green leafy	0.3533	0.3172			-0.2530
Vegetable - other		0.3168			0.3618
Vegetable - tomato		0.3140		-0.2470	
Vegetable mixed dishes					
Water					
Wine					
Yogurt					

Supplemental Table 2. Descriptive statistics of the REGARDS study population (2003-2007), subset with dietary data, and subset with dietary and SES data (analytic sample)

		Entire REGARDS Cohort	Dietary Data Available*	Dietary \& SES Data Available (Analytic Sample)
		$\mathrm{n}=30,183$	$\mathrm{n}=21,636$	$\mathrm{n}=17,062$
Age (avg., std. dev.)	$64.8(9.4)$	$64.9(9.3)$	$64.7(9.3)$	
Race 1	Black	41.5%	33.6%	34.6%
Sex	Female	55.1%	55.9%	54.4%
	Stroke Belt	34.6%	34.4%	33.9%
Region 2	Buckle	20.9%	21.9%	21.3%
	Non-Stroke Belt	44.5%	43.8%	44.8%

1. A significant difference ($\mathrm{p}<0.05$) was observed in the percentage of the samples that were black between both the entire REGARDS cohort and the sample with dietary data available, and also between the entire REGARDS cohort and the sample with both dietary and SES data available.
2. A significant difference ($\mathrm{p}<0.05$) was observed in the percentage of the samples residing in the designated regions between only the entire REGARDS cohort and the sample with dietary data available.
*From the entire REGARDS cohort, 8,546 were either missing FFQ data altogether, had more than 15% missing data on the FFQ, or had implausible reported energy intakes ($<3,347$ or $>20,920 \mathrm{~kJ} / \mathrm{d}$ in men and $<2,092$ or $>18,828 \mathrm{~kJ} / \mathrm{d}$ in women)

Chi-squared tests were performed for all categorical variables, and Student's T-test for continuous variables.

Supplemental Table 3: Logistic regression of dietary patterns vs. SES indicators in the REGARDS study population (2003-2007, $\mathrm{n}=16,666$)

| | Convenience | Plant-based | Sweets/Fats | Southern | Alcohol/Salads |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Household Income | | | | | |
| $\leq \$ 20 \mathrm{~K}$ | Ref | Ref | Ref | Ref | Ref |
| $\$ 20 \mathrm{~K}-\$ 34 \mathrm{~K}$ | $0.97(0.88,1.07)$ | $0.92(0.83,1.02)$ | $0.98(0.89,1.08)$ | $0.79(0.7,0.88)$ | $1.38(1.25,1.53)$ |
| $\$ 35 \mathrm{~K}-\$ 74 \mathrm{~K}$ | $1.01(0.92,1.12)$ | $0.96(0.87,1.07)$ | $0.98(0.89,1.09)$ | $0.66(0.59,0.73)$ | $1.81(1.63,2.02)$ |
| $\$ 75 \mathrm{k}+$ | $1.14(1.01,1.29)$ | $0.96(0.85,1.08)$ | $0.73(0.65,0.82)$ | $0.52(0.45,0.59)$ | $2.70(2.38,3.07)$ |
| Personal Education | | | | | |
| <High school | Ref | Ref | Ref | Ref | Ref |
| High school | $1.12(0.98,1.27)$ | $1.11(0.98,1.25)$ | $0.96(0.85,1.08)$ | $0.81(0.7,0.93)$ | $1.25(1.09,1.42)$ |
| Some college | $1.14(1.00,1.30)$ | $1.23(1.08,1.39)$ | $0.92(0.81,1.04)$ | $0.66(0.57,0.77)$ | $1.42(1.24,1.62)$ |
| College+ | $1.30(1.14,1.48)$ | $1.67(1.46,1.90)$ | $0.80(0.71,0.91)$ | $0.49(0.43,0.57)$ | $1.71(1.49,1.96)$ |
| Community SES ${ }^{1}$ | | | | | |
| Quartile 1 | Ref | Ref | Ref | Ref | Ref |
| Quartile 2 | $1.09(1.00,1.20)$ | $1.12(1.03,1.23)$ | $0.96(0.88,1.05)$ | $0.76(0.69,0.84)$ | $1.29(1.17,1.41)$ |
| Quartile 3 | $1.22(1.11,1.34)$ | $1.16(1.06,1.27)$ | $0.88(0.8,0.96)$ | $0.57(0.51,0.63)$ | $1.51(1.37,1.66)$ |
| Quartile 4 | $1.29(1.17,1.43)$ | $1.40(1.27,1.55)$ | $0.64(0.58,0.71)$ | $0.40(0.36,0.45)$ | $2.19(1.98,2.43)$ |

1. Community SES z-scores were obtained using the 6-component method developed by Anna Diez-Roux, then stratified into quartiles. Components included: median household income, median value of housing units, percentage of households with interest, dividend, or rental income, percentage of adults who completed high school, percentage of adults who completed college, and percentage of residents employed in executive, managerial, or professional occupations
*Effects differ statistically by race (p -value <0.05); see Table 4 . Odds ratios and confidence intervals are given where p-values not indicated.

Covariates for income models include: age, sex, race, smoking status, BMI category, hours of screen time (a proxy for physical inactivity), region, and education; Covariates for education models include: age, sex, race, smoking status, BMI category, hours of screen time (a proxy for physical inactivity), region, and income; Covariates for community SES models include age, sex, race, smoking status, BMI category, hours of screen time (a proxy for physical inactivity), and region

Supplemental Table 4: Logistic regressions of dietary patterns vs. SES indicators by race: High vs. low SES indicator and adherence to dietary patterns in the REGARDS study population (2003-2007, $n=16,666$)

| | | Convenience | Plant-based | Sweets/Fats | Southern | Alcohol/Salads |
| :---: | :---: | :--- | :--- | :--- | :--- | :--- | :--- |
| Household Income | Black | $1.13(0.91,1.42)$ | $1.04(0.83,1.30)$ | $0.82(0.66,1.03)$ | $0.54(0.42,0.69)$ | $2.01(1.60,2.53)$ |
| ($\$ 75 \mathrm{~K}+$ vs. $\leq \$ 20 \mathrm{~K})$ | White | $1.15(0.98,1.35)$ | $0.92(0.79,1.08)$ | $0.71(0.61,0.82)$ | $0.52(0.44,0.61)$ | $3.11(2.65,3.64)$ |
| (pinteraction in overall model) | | 0.6262 | 0.6083 | 0.3855 | 0.3633 | 0.0296^{*} |
| Individual Education | Black | $1.13(0.92,1.38)$ | $1.35(1.11,1.63)$ | $0.94(0.78,1.13)$ | $0.43(0.34,0.55)$ | $1.58(1.28,1.95)$ |
| (College+ vs. <High School) | White | $1.45(1.21,1.74)$ | $1.96(1.63,2.36)$ | $0.72(0.60,0.86)$ | $0.53(0.44,0.64)$ | $1.80(1.50,2.16)$ |
| (pinteraction in overall model) | | 0.1388 | 0.0007^{*} | 0.0454^{*} | 0.6756 | 0.1012 |
| Community SES ${ }^{1}$ | Black | $1.09(0.89,1.34)$ | $1.32(1.07,1.62)$ | $0.56(0.45,0.69)$ | $0.44(0.35,0.55)$ | $1.90(1.55,2.34)$ |
| (Quartile 4 vs. Quartile 1) | White | $1.39(1.22,1.58)$ | $1.47(1.29,1.67)$ | $0.66(0.59,0.75)$ | $0.39(0.34,0.45)$ | $2.29(2.01,2.60)$ |
| (pinteraction in overall model) | | 0.0059^{*} | 0.4133 | 0.2894 | 0.5852 | 0.3631 |

1. Community SES z-scores were obtained using the 6-component method developed by Anna Diez-Roux, then stratified into quartiles. Components included: median household income, median value of housing units, percentage of households with interest, dividend, or rental income, percentage of adults who completed high school, percentage of adults who completed college, and percentage of residents employed in executive, managerial, or professional occupations
*Statistically significant association of the interaction of race*SES indicator with adherence to the given dietary pattern in the overall model ($\mathrm{p}<0.05$). Odds ratios and confidence intervals are given where p -values not indicated. Interaction models for individual SES are for race*income or race*education, respectively. Covariates for these interaction models include: age, sex, race, region, education, income, and the other interaction term. Interaction models for community SES are race*community SES and covariates include age, sex, race, region, and community SES.

Covariates for income models include: age, sex, race, smoking status, BMI category, hours of screen time (a proxy for physical inactivity), region, and education; Covariates for education models include: age, sex, race, smoking status, BMI category, hours of screen time (a proxy for physical inactivity), region, and income; Covariates for community level SES models include: age, sex, race, smoking status, BMI category, hours of screen time (a proxy for physical inactivity), and region

