
Supplemental Methods 

Network Analysis 

The incomplete nature of archaeological data holds significant challenges to the implementation of SNA 

methods for understanding the past (Brughmans, 2013; Mills, 2017; Peeples, 2017; Roberts et al., 2021). 

Various solutions have been proposed, but the common theme is the use of statistical validation to assess 

possible biases or errors in the data being analyzed (Östborn and Gerding, 2014; Peeples and Roberts, 

2013). Östborn and Gerting (2014) discuss the need for statistical rigor in network analyses in archaeology, 

and advocate for a random permutation approach to randomly reshuffle data to evaluate observed 

patterns from randomly dispersed datasets. 

Brughmans (2013) argues that there are two major problems with many recent implementations of SNA 

in archaeology: (1) a general unawareness of the history and diversity of formal network methods and 

their archaeological suitability has resulted in a very limited scope of SNA applications; and (2) most 

applications of SNA in archaeology are not driven by research questions, but rather a limited number of 

popular models and techniques.  Brughmans (2013) suggests that framing studies of archaeological SNA 

applications using complex systems theory can help alleviate some of the limitations. 

Central tenets of SNA are that: 1) Actors and their actions are viewed as interdependent; 2) Ties or linkages 

between actors are channels for the transfer of resources; 3) Network models view the network structural 

environment as providing opportunities for or constraints on individual action; and 4) Network models 

conceptualize structure (social, economic, political, and so forth) as lasting patterns of relations among 

actors (Brughmans, 2013; Wasserman and Faust, 1994). 

Network Indices 

We tested three commonly used comparative indices, including co-presence, Brainerd-Robinson (BR) 

similarity (Brainerd, 1951; Robinson, 1951), and chi-square distance. Co-presence is a simple similarity 

metric that establishes connections on the basis of the presence of particular categories of data at 

multiple sites (Brughmans, 2010). Following Peeples (2017), co-presence is calculated as: 

𝑃 = 𝐴 × 𝐴𝑇  

Where P is the number of overlapping categories between sites, A is the incidence matrix of categories, 

and AT is the transposed matrix of those categories. We generated co-presence networks using a threshold 

of 50% similarity. This threshold was chosen based on trial-and-error, whereby 50% yielded the best 

results. 

BR similarity calculates similarity between nodes as a proportion of the representation of the total number 

of categories present within the data. This is a commonly applied similarity metric, and is calculated, 

following Peeples (2017), using the equation:  

𝑆 =
2 − ∑𝑐|𝑥𝑐 − 𝑦𝑐|

2
 

Where S is the BR similarity score, c represents all the categories of data, x is the proportion of c in the 

first data assemblage, y is the proportion of c in the second assemblage.  



Lastly, Chi-Square distance is a measurement used for correspondence analyses that is weighted by the 

inverse of a data category’s frequency (Dodge, 2008). Chi-square distance is calculated using the equation: 

𝑋𝑛𝑐 = √∑
1

𝑎𝑛
(𝑥𝑛 − 𝑦𝑛)

2 

Where an is the proportional abundance of the nth element of the average row profile in the data, and x 

and y represent the row profiles for the two sites being compared. Chi-square distances are useful for 

accounting for rare attributes in the formation of data connections (Peeples and Roberts, 2013). 

Assessment of sampling error on network results 

To assess the effects that sampling error may have on our results, we calculated centrality metrics (degree, 

eigenvector, and betweenness) using 1000 bootstrap simulations to re-sample our data (following Mills 

et al. 2013; also see Roberts et al. 2021) and evaluate changes between randomized samples and our 

original dataset. Increased variability indicates higher risk of sampling error. Degree centrality for a node 

is defined as the total number of direct connections in which that node is involved (Peeples, 2017; Peeples 

and Roberts, 2013). Betweenness centrality is defined as the number of shortest paths between pairs of 

nodes in a network involving the target node divided by the total number of shortest paths in the network 

as a whole (Peeples, 2017; Peeples and Roberts, 2013). Eigenvector centrality is a measure of a node’s 

importance in a network defined in relation to other nodes to which it is connected (Peeples, 2017; 

Peeples and Roberts, 2013; Roberts et al., 2021). 

Next, we re-assess these networks for their resilience to sampling biases using 1000 bootstrap simulations 

to subsample the data into 10% intervals and calculate the rank-order correlation (Spearman’s ρ) of the 

overall sample and each sub-sample (Costenbader and Valente, 2003; Peeples, 2017). We also assessed 

these biases using fewer numbers of simulations (100, 200, 500), and results remained largely identical. 

This allows us to evaluate the errors in the dataset that may arise from sampling issues (see Supplemental 

File). This procedure is performed to account for missing nodes and edges in the dataset, which often 

plague archaeological investigations. 

Then, we assess the stability of individual nodes and edges in the network by using 1000 bootstrapped 

simulations of our network data to create sub-sampled datasets. This allows us to compare the original 

dataset with sub-sampled components for agreement or divergence.  

Ceramic Chronologies 

Relative chronologies for ceramics follow the typologies described in Douglass (2016). Based upon prior 

observations and studies (e.g., Douglass, 2016; Hixon et al., 2021; Parker Pearson, 2010; Wright et al., 

1996), ceramics containing triangular punctation marks and incising were found among the oldest 

archaeological contexts, spanning from the 9th century AD to between the 13th and 16th centuries AD. 

Circular and square punctations appear slightly later (around the 11th century), and the latest decorative 

style is shell-combing, which becomes prevalent around the 18th – 20th centuries. Using these decorative 

characteristics, we constructed the relative chronology used in this analysis.  

Paleoclimate Assessment using Bayesian Change Point Analysis (BCPA) 



We use Bayesian change point analysis (BCPA; Erdman & Emerson 2007), following Hixon et al. (2021) to 

estimate general trends in climatological conditions from speleothem proxies collected by Faina et al. 

(Faina et al., 2021)(2021) in Asafora Cave, SW Madagascar. BCPA is a statistical modeling approach that 

uses Markov Chain simulation to identify splits in a sequence of datapoints that can be approximated 

reasonably with a single mean value. We conduct BCPA in R (v. 4.1.2; R Core Team, 2021) using the bcp 

package (Erdman and Emerson, 2008).  
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