[Supplementary material]

The integration of millet into the diet of Central Asian populations in the third millennium BC

Giedre Motuzaite Matuzeviciute^{1,*}[ORCID: 0000-0001-9069-1551], Elina Ananyevskaya¹, Jorune Sakalauskaite²[ORCID: 0000-0002-8029-

8120], Orozbek Soltobaev³ & Kubatbek Tabaldiev⁴[ORCID: 0000-0002-6679-8030]

¹ Department of Archaeology, Vilnius University, Lithuania

² Department of Life Sciences and Systems Biology, University of Turin, Italy

³ Department of Archaeology and Ethnography, Kyrgyz National University, Bishkek, Kyrgyzstan

⁴ Department of Archaeology, Kyrgyz-Turkish Manas University, Bishkek, Kyrgyzstan

*Author for correspondence \square giedre.motuzaite@gmail.com

OSM A

Lab number	Site	Context	Element	Period	δ ¹³ C	$\delta^{15}N$	N%	С%	C/N atomic
BTC-KY-H1	Aigyrzhal 1	od. 3	Human petrous	Early–Late BA (2500–1200 BC)	-18.48	11.99	19.53	53.02	3.2
BTC-KY-H2	Aigyrzhal 1	K. 60 child	Human petrous	Early–Late BA (2500–1200 BC)	-18.20	14.01	18.49	49.57	3.1
BTC-KY-H3	Aigyrzhal 1	od. 2	Human petrous	Early–Late BA (2500–1200 BC)	-18.82	11.86	19.38	51.62	3.1
BTC-KY-H4	Aigyrzhal 1	K. 55	Human petrous	Early–Late BA (2500–1200 BC)	-17.90	12.07	15.90	43.85	3.2
BTC-KY-H5	Aigyrzhal 1	K. 11	Human petrous	Early–Late BA (2500–1200 BC)	-18.62	16.90	20.82	56.98	3.2
BTC-KY-H6	Aigyrzhal 1	K. 60 adult	Human petrous	Early–Late BA (2500–1200 BC)	-17.16	11.62	17.07	45.64	3.1
BTC-KY-H7	Aigyrzhal 1	K. 125	Human petrous	Early–Late BA (2500–1200 BC)	-17.88	12.28	14.86	41.01	3.2
BTC-KY-H24	Aigyrzhal 2		Human petrous	Early–Late BA (2500–1200 BC)	-17.62	11.72	13.98	37.02	3.1
BTC-KY-H25	Aigyrzhal 2		Human petrous	Early–Late BA (2500–1200 BC)	-17.80	11.80	14.40	38.29	3.1
BTC-KY-H26	Aigyrzhal 2		Human petrous	Early–Late BA (2500–1200 BC)	-18.80	11.00	15.28	40.63	3.1

Table S1a. δ^{13} C and δ^{15} N values of human remains from Kyrgyzstan.

BTC-KY-H27	Aigyrzhal 2		Human petrous	Early–Late BA (2500–1200 BC)	-18.25	12.54	13.31	36.54	3.2
BTC-KY-H28	Aigyrzhal 2		Human petrous	Early–Late BA (2500–1200 BC)	-18.80	11.10	14.80	39.87	3.1
BTC-KY-H29	Aigyrzhal 2		Human petrous	Early–Late BA (2500–1200 BC)	-17.61	11.73	14.56	38.87	3.1
BTC-KY-H30	Aigyrzhal 2	K. 19	Human petrous	Early–Late BA (2500–1200 BC)	-18.73	12.28	17.09	46.70	3.2
BTC-KY-H36	Aigyrzhal 2	Kurgan 135	Human metapodia	Early–Late BA (2500–1200 BC)	-18.08	10.50	12.97	33.95	3.1
BTC-KY-H37	Aigyrzhal 3		Human metapodia	Early–Late BA (2500–1200 BC)	-18.00	11.10	14.36	38.05	3.1
BTC-KY-H38	Aigyrzhal 3	od. 1	Human petrous	Early–Late BA (2500–1200 BC)	-18.83	12.72	18.90	51.52	3.2
		Object 1,		Early–Late BA (2500–1200 BC)					
BTC-KY-H39	Aigyrzhal 3	burial 20	Child vertebra		-18.74	13.82	20.24	54.03	3.1
		Object 1,		Early–Late BA (2500–1200 BC)					
BTC-KY-H40	Aigyrzhal 3	burial 5	Child vertebra		-18.80	13.80	16.24	42.66	3.1
		Object 1,		Early–Late BA (2500–1200 BC)					
BTC-KY-H41	Aigyrzhal 3	burial 7	Child vertebra		-18.78	13.66	21.20	56.13	3.1
		Object 1,		Early–Late BA (2500–1200 BC)					
BTC-KY-H42	Aigyrzhal 3	burial 16	Child vertebra		-18.55	11.79	18.08	47.08	3.0
		Object 1,		Early–Late BA (2500–1200 BC)					
BTC-KY-H43	Aigyrzhal 3	burial 5	Child vertebra		-19.34	11.18	17.53	46.28	3.1
		Object 1,		Early–Late BA (2500–1200 BC)					
BTC-KY-H44	Aigyrzhal 3	burial 13	Child vertebra		-19.18	12.80	16.60	43.49	3.1
		Object 1,		Early–Late BA (2500–1200 BC)					
BTC-KY-H45	Aigyrzhal 3	burial 14	Child vertebra		-19.05	12.56	17.14	44.69	3.0
		Kurgan 2,		Early–Late BA (2500–1200 BC)					
BTC-KY-H46	Aigyrzhal 3	burial 4	Human metapodia		-19.43	10.10	23.07	59.58	3.0
BTC-KY-H47	Aigyrzhal 3	Kurgan 137	Human skull	Early–Late BA (2500–1200 BC)	-18.17	11.14	13.45	34.87	3.0
BTC-KY-H48	Aigyrzhal 3	Kurgan 139	Human skull	Early–Late BA (2500–1200 BC)	-12.34	10.88	7.03	18.93	3.1
		Object 1,		Early-Late BA (2500-1200 BC)					
BTC-KY-H49	Aigyrzhal 3	Ograda 23	Child vertebra		-18.74	13.19	16.59	43.34	3.0
		Object 1,		Early–Late BA (2500–1200 BC)					
BTC-KY-H50	Aigyrzhal 3	Ograda 16	Child metapodia		-18.78	11.50	18.10	46.48	3.0
		Object 1,		Early–Late BA (2500–1200 BC)					
BTC-KY-H51	Aigyrzhal 3	ograda 3	Child vertebra		-18.51	12.30	20.45	53.97	3.1
		Object 1,	Juvenile <16 y.o.	Early–Late BA (2500–1200 BC)					
BTC-KY-H52	Aigyrzhal 3	ograda 17	1st phalanx		-19.18	11.25	13.56	35.05	3.0

		Object 3,		Early–Late BA (2500–1200 BC)					
BTC-KY-H53	Aigyrzhal 3	ograda 2	Child vertebra		-19.18	10.26	16.47	43.19	3.1
		Object 1,		Early–Late BA (2500–1200 BC)					
BTC-KY-H54	Aigyrzhal 3	ograda 22	Child clavicle		-19.19	11.64	12.46	32.62	3.1
		Object 1,	Juvenile <16 y.o.	Early–Late BA (2500–1200 BC)					
BTC-KY-H55	Aigyrzhal 3	ograda 18	1st phalanx		-18.52	11.55	23.81	61.64	3.0
		Object 1,		Early–Late BA (2500–1200 BC)					
BTC-KY-H56	Aigyrzhal 3	ograda 21	Child skull		-19.20	12.73	10.86	29.34	3.2
		Object 1,	~	Early–Late BA (2500–1200 BC)	10.00				
BTC-KY-H57	Aigyrzhal 3	ograda 4	Child vertebra		-19.09	12.71	14.57	38.33	3.1
	Chalchyk-		<u>a</u> ,,	Early–Late BA (2500–1200 BC)	10.00	10.10	19		2.1
ВТС-КҮ-Н58	Bulak	kurgan I	Skull bone		-18.33	12.48	n/k	n/k	3.1
			Childs	Early–Late BA (2500–1200 BC)					
DTO VN UCC	Kara-		burial/Koch-kor		10.40	11.0	12.07	27.2	2.1
BTC-KY-H66	Tumshuk		valley	E 1 L (DA (2500 1200 DC)	-18.40	11.9	13.87	37.3	3.1
	Kochkor	1 1 1		Early–Late BA (2500–1200 BC)					
DTO VV UCT	burial	plundered	TT		10.71	10.70	12 42	27.05	2.2
BIC-KI-H0/	grounds	Durial	Human	Early, Lata DA (2500, 1200 DC)	-18./1	12.72	15.45	57.05	3.2
DTC VV U60	Kurk Shouit	3rd skalaton	Humon alcult	Early–Late BA $(2500-1200 \text{ BC})$	_19.21	12.24	17 27	45.02	2.0
DIC-КІ-П09	Kyrk-Sneyn	Skeletoli		Early, Lata BA (2500, 1200 BC)	-10.51	12.34	17.27	43.02	5.0
DTC VV U70	Kurk Shouit	2nu skalaton	Humon alcult	Early–Late BA ($2500-1200$ BC)	-10.19	10.72	16.91	12 65	2.0
DTC-KT-II/0	Kyrk-Sheyit		Human alwill	Early_Late BA (2500–1200 BC)	19.10	0.07	0.52	45.05	3.0
BIC-KI-H/I	Kyrk-Sneyit	1 st skeleton	Human Skull	Early-Late DA (2500–1200 DC)	-18.00	9.97	9.52	25.02	3.1
DTC VV U74	Shuldural	Ogradka 2	Human 2nd	Early–Late BA ($2500-1200$ BC)	-16.01	11 52	1/12	27.14	2 1
$\frac{DIC-KI-\Pi/4}{DTC-KYU77}$				Early Late PA (2500, 1200 PC)	-10.91	11.33	14.15	37.14	3.1
BTC-KY-H/5	Shyldyrak	Ogradka I	Vertebra	Early-Late BA $(2500-1200 \text{ BC})$	-17.23	11.04	8.38	22.86	3.2
	01 11 1	0 11 4	Human 1st	Early–Late BA (2500–1200 BC)	10.24	10.00	20.25	50.60	2.0
BTC-KY-H/6	Shyldyrak	Ogradka 4	phalanx	E 1 L (DA (2500 1200 DC)	-18.34	10.99	20.35	52.63	3.0
	CI II	2020	TT '1	Early–Late BA (2500–1200 BC)	17.45	10 (7	17 10	10 50	2.2
BIC-KY-H/9	Chap II	excavation	Human rib		-17.45	12.67	15.18	42.58	3.3
BTC-KY-H77	Uch-Kurbu	kurgan 6		Final BA – EIA (1200–200 BC)	-17.04	11.80	13.45	35.88	3.1
BTC-KY-H15	Aigyrzhal 1	K. 4	Human petrous	Final BA – EIA (1200–200 BC)	-17.87	13.27	18.53	51.12	3.2
BTC-KY-H18	Aigyrzhal 1	K. 7, n. 2	Human petrous	Final BA – EIA (1200–200 BC)	-15.62	12.74	17.08	46.31	3.2
BTC-KY-H19	Aigyrzhal 1	K. 28	Human petrous	Final BA – EIA (1200–200 BC)	-18.47	12.67	18.98	50.72	3.1

BTC-KY-H22	Aigyrzhal 1	K. 8	Human petrous	Final BA – EIA (1200–200 BC)	-17.90	11.60	18.29	49.47	3.2
BTC-KY-H31	Aigyrzhal 2	K. 10	Human petrous	Final BA – EIA (1200–200 BC)	-14.46	13.05	17.29	46.42	3.1
BTC-KY-H32	Aigyrzhal 2			Final BA – EIA (1200–200 BC)	-17.50	12.50	15.58	41.34	3.1
BTC-KY-H33	Aigyrzhal 2			Final BA – EIA (1200–200 BC)	-17.90	12.20	14.74	39.51	3.1
BTC-KY-H34	Aigyrzhal 2			Final BA – EIA (1200–200 BC)	-17.81	12.08	14.73	39.04	3.1
BTC-KY-H35	Aigyrzhal 2			Final BA – EIA (1200–200 BC)	-17.72	12.83	14.73	39.29	3.1
		2002-2003							
BTC-KY-H60	Chap I	excav.	Human skull	Final BA – EIA (1200–200 BC)	-13.92	12.23	15.02	41.64	3.2
PTC VV U61	Chan I	Burial 1 in	Humon rib	Einel BA = EIA (1200, 200 BC)	-18 71	11 52	11.22	31.60	2.2
DIC-KI-1101		$C 118 C^2$		111111111111111111111111111111111111	10.71	11.32	11.22	31.09	5.5
BTC-KY-H62	Chap I	7Aug	Human phalanx	Final BA – EIA (1200–200 BC)	-18.42	11.34	13.82	39.03	3.3
	Chechen-	-	Human first						
BTC-KY-H63	Bulak	Kurgan 1	phalanx	Final BA – EIA (1200–200 BC)	-16.90	9.99	17.92	46.64	3.0
		Kurgan 1,							
		intrusive							
BTC-KY-H64	Chon-Alai	burial	Human vertebra	Final BA – EIA (1200–200 BC)	-17.15	11.43	11.96	31.67	3.1
BTC-KY-H65	Chon-Alai	Kurgan 1	Human vertebra	Final BA – EIA (1200–200 BC)	-17.73	10.70	12.69	33.20	3.1
	Mechet at-								
BTC-KY-H72	Bashi			Final BA – EIA (1200–200 BC)	-18.71	12.92	15.36	41.41	3.1
	Mechet at-								
ВТС-КҮ-Н73	Bashi			Final BA – EIA (1200–200 BC)	-18.12	12.93	15.64	42.22	3.1
BTC-KY-H78	Zhapyryk			Final BA – EIA (1200–200 BC)	-15.74	12.11	15.51	41.79	3.1
		K. 2	Human petrous	Turkic–Medieval (200 BC – AD					
BTC-KY-H8	Aigyrzhal 1			1700)	-18.56	13.26	16.54	44.60	3.1
		K. 24a	Human petrous	Turkic–Medieval (200 BC – AD					
BTC-KY-H9	Aigyrzhal 1			1700)	-18.28	12.89	18.99	52.01	3.2
		K. 120	Human petrous	Turkic–Medieval (200 BC – AD					
BTC-KY-H10	Aigyrzhal 1			1700)	-17.84	12.53	22.44	60.58	3.1
		K. 7, n. 3	Human petrous	Turkic–Medieval (200 BC – AD	10.05	10.04	10.05	10.01	
BTC-KY-H11	Aigyrzhal 1			1700)	-18.22	12.34	18.27	49.26	3.1
		K. 7, n. 1	Human petrous	Turkic–Medieval (200 BC – AD		10.1.5	10.00	T O OO	
BTC-KY-H12	Aigyrzhal 1			1700)	-15.61	13.16	18.33	50.00	3.2

		K. 1	Human petrous	Turkic–Medieval (200 BC – AD					
BTC-KY-H13	Aigyrzhal 1			1700)	-15.33	13.29	10.49	29.97	3.3
		K. 20	Human petrous	Turkic–Medieval (200 BC – AD					
BTC-KY-H14	Aigyrzhal 1			1700)	-18.47	12.57	19.23	52.24	3.2
		K. 14	Human petrous	Turkic–Medieval (200 BC – AD					
BTC-KY-H16	Aigyrzhal 1			1700)	-18.29	17.31	15.29	42.44	3.2
		K. 24ab	Human petrous	Turkic–Medieval (200 BC – AD					
BTC-KY-H17	Aigyrzhal 1			1700)	-18.65	12.57	21.06	57.21	3.2
		K. 45	Human petrous	Turkic–Medieval (200 BC – AD					
BTC-KY-H20	Aigyrzhal 1			1700)	-19.92	15.20	18.97	49.52	3.0
		K. 50	Human petrous	Turkic–Medieval (200 BC – AD					
BTC-KY-H21	Aigyrzhal 1			1700)	-18.01	11.72	18.96	52.12	3.2
		K. 47	Human petrous	Turkic–Medieval (200 BC – AD					
BTC-KY-H23	Aigyrzhal 1		_	1700)	-18.55	12.39	12.88	35.08	3.2
				Turkic-Medieval (200 BC-AD					
BTC-KY-H68	Kok-Tash		Rib	1700)	-16.91	13.80	10.19	29.45	3.4

Table	S1b.	δ ¹³ C	and	$\delta^{15}N$	values	of fa	unal re	emains	from	Kyrgyzstan.
	$\sim - \sim \cdot$	· ·		· · ·						

Lab	Site	Context	Species	Element	Dating	δ ¹³ C‰	δ ¹⁵ N‰	N%	С%	C/N
number										
BTC-KY-	Aigyrzhal 1	Sack 1, individual 1	Horse	Carpus/tarsus	Early–Late BA	-20.51	6.33	21.45	56.02	3.0
F6					(2500–1200 BC)					
BTC-KY-	Aigyrzhal 1	Kurgan 18	Horse	Splinter	Early–Late BA	-20.53	5.59	16.55	42.87	3.0
F8					(2500–1200 BC)					
BTC-KY-	Aigyrzhal 2	Kurgan 24	Horse	Cuboid	Early–Late BA	-20.62	5.22	12.37	33.19	3.1
F7		-			(2500–1200 BC)					
BTC-KY-	Aigyrzhal 2	Kurgan 9	Horse	Carpus/tarsus	Early–Late BA	-19.99	5.30	12.53	32.85	3.1
F10		-			(2500–1200 BC)					
BTC-KY-	Aigyrzhal 2	Kurgan 28	Horse	Cuboid	Early–Late BA	-20.72	5.66	20.75	53.81	3.0
F11		-			(2500–1200 BC)					
BTC-KY-	Aigyrzhal 2	Kurgan 24A	Horse	Cuboid	Early-Late BA	-20.23	5.63	20.55	53.37	3.0
F14		-			(2500–1200 BC)					
BTC-KY-	Aigyrzhal 2	Kurgan 184	Caprine	Radius	Early-Late BA	-18.63	7.04	24.87	64.13	3.0
F16		-	-		(2500–1200 BC)					

BTC-KY- F17	Aigyrzhal 2	Kurgan 184	Caprine	Lower jaw	Early–Late BA (2500–1200 BC)	-19.21	6.41	11.97	32.24	3.1
BTC-KY- F18	Aigyrzhal 2	Kurgan 184	Horse	Scapula	Early–Late BA (2500–1200 BC)	-20.53	4.97	17.30	45.15	3.0
BTC-KY- F19	Aigyrzhal 2	Kurgan 184	Wild goat	Horncore	Early–Late BA (2500–1200 BC)	-18.87	4.90	16.00	42.31	3.1
BTC-KY- F52	Aigyrzhal 2	BA	Big mammal (horse, cattle, etc.)	Bone fragment	Early–Late BA (2500–1200 BC)	-19.52	6.91	14, 90	39.68	3.1
BTC-KY- F53	Aigyrzhal 2	BA	Caprine	Bone fragment	Early–Late BA (2500–1200 BC)	-19.22	5.51	14.18	37.87	3.1
BTC–KY– F56	Aigyrzhal 2	MBA (1700 BC)	Caprine	Bone fragment	Early–Late BA (2500–1200 BC)	-19.75	7.12	n/k	n/k	3.2
BTC–KY– F9	Aigyrzhal 3	Kurgan 137	Caprine	Rib	Early–Late BA (2500–1200 BC)	-18.82	5.89	8.10	22.24	3.2
BTC–KY– F34	Chap II	C2.3D	Capra	Bone fragment	Early–Late BA (2500–1200 BC)	-19.35	8.38	41.26	14.98	3.2
BTC–KY– F35	Chap II	C2.3D	Bos	Bone fragment	Early–Late BA (2500–1200 BC)	-18.76	7.22	43.50	15.83	3.2
BTC-KY- F36	Chap II	C2.3D	Bos	Bone fragment	Early–Late BA (2500–1200 BC)	-19.04	6.57	43.66	15.96	3.2
BTC–KY– F37	Chap II	C2.3B	Ovis	Bone fragment	Early–Late BA (2500–1200 BC)	-19.46	6.99	45.24	16.48	3.2
BTC–KY– F38	Chap II	C2.4.1G	Bos	Bone fragment	Early–Late BA (2500–1200 BC)	-19.40	8.66	46.08	16.68	3.2
BTC-KY- F39	Chap II	C2.4.1G	Bos	Bone fragment	Early–Late BA (2500–1200 BC)	-19.11	7.00	39.14	14.19	3.2
BTC–KY– F40	Chap II	C2.4.1G	Ovis	Bone fragment	Early–Late BA (2500–1200 BC)	-18.99	7.66	44.68	16.32	3.2
BTC–KY– F41	Chap II	C2.4.1G	Bos	Bone fragment	Early–Late BA (2500–1200 BC)	-18.88	6.97	38.37	13.84	3.2
BTC–KY– F42	Chap II	C2.4.1G	Bos	Bone fragment	Early–Late BA (2500–1200 BC)	-18.92	7.69	39.17	14.28	3.2
BTC–KY– F43	Chap II	C2.4.1G	Ovis	Bone fragment	Early–Late BA (2500–1200 BC)	-19.73	8.11	38.13	13.74	3.2
BTC–KY– F44	Chap II	C2.2C	Ovis	Bone fragment	Early–Late BA (2500–1200 BC)	-19.08	6.93	46.20	16.62	3.2
BTC–KY– F45	Chap II	C2.2C	Bos	Bone fragment	Early–Late BA (2500–1200 BC)	-15.99	7.78	39.15	13.75	3.3

BTC-KY-	Chap II	C2.1F	Ovis	Bone fragment	Early–Late BA	-18.82	5.78	41.74	15.08	3.2
F46	Cl. II	C2 1E	Dec	Dens	(2500–1200 BC)	10 55	7.52	41.10	14.00	2.2
BIC-KI- F47	Chap II	C2.1F	BOS	Bone tragment	Early-Late BA $(2500, 1200 \text{ BC})$	-18.55	1.55	41.12	14.90	3.2
BTC_KY_	Chan II	C2 1F	Bos	Bone fragment	Early_L ate BA	_18 71	6.98	44 58	16.29	3.2
F48	Chap II	02.11	103	Done magnient	(2500-1200 BC)	10.71	0.70	44.50	10.27	5.2
BTC-KY-	Chap II	C2.1F	Bos	Bone fragment	Early–Late BA	-19.20	7.28	32.23	11.21	3.4
F49	1			Ũ	(2500–1200 BC)					
BTC-KY-	Chap II	C2.1F	Bos	Bone fragment	Early-Late BA	-18.70	6.99	43.60	15.73	3.2
F50					(2500–1200 BC)					
BTC-KY-	Chap II	C2.1F	Bos	Bone fragment	Early–Late BA	-19.03	8.08	37.80	13.50	3.3
F51					(2500–1200 BC)					
BTC-KY-	Kara–	Ky19.8F, part of	Caprine	Cervical	Early–Late BA	-20.24	6.69	42.24	14.99	3.3
F1	Tumshuk	human burial		vertebra	(2500–1200 BC)					
BTC-KY-	Kara–	human burial	cf. Horse	Bone fragment	Early–Late BA	-17.09	7.82	35.35	12.90	3.2
F2	Tumshuk				(2500–1200 BC)					
BTC-KY-	Kara–	KY19.7.F, part of	Horse	Bone fragment	Early–Late BA	-20.87	4.19	30.60	10.94	3.3
F3	Tumshuk	human burial, 0.3m			(2500–1200 BC)					
DTC KV	Vana	deptn KV10.5 E	Canaina	C l .	Early Late DA	17.09	7.10	24.92	12.09	2.4
BIC-KI-	Kara–	K I 19.5.F	Caprine	Scapula	Early-Late BA $(2500, 1200, \text{PC})$	-17.98	/.19	54.82	12.08	3.4
F4 PTC VV	I UIIISIIUK	K _w 10.2	Caprina	Corrous/torsus	$\frac{(2300-1200 \text{ BC})}{\text{Early}}$	10 71	11.22	26.45	12.00	2.2
BIC-KI- F5	Kala– Tumshuk	Ку19.2	Capille	Carpus/tarsus	(2500, 1200 BC)	-10.71	11.23	50.45	15.00	5.5
BTC KV	Chap II	2020 excevation	cf Cattle	Bone fragment	(2000-1200 BC) Early Late BA	10.30	8.07	1/1 33	42.01	35
F80	Chap II	2020 excavation	ci. Cattic	Done magnitud	(2500-1200 BC)	-19.50	0.07	14.55	42.01	5.5
BTC-KY-	Chan II	2020 excavation	Cattle	Bone fragment	Early–Late BA	-19.25	8 22	15.03	42.55	33
F81	Chup II	2020 cheuvaion	Cutto	Done muginem	(2500-1200 BC)	17.20	0.22	10.00	12.00	5.5
BTC-KY-	Chap II	2020 excavation	Animal	Bone fragment	Early–Late BA	-19.69	9.73	10.44	30.74	3.3
F82	- 1				(2500–1200 BC)					
BTC-KY-	Chap II	2020 excavation	cf. Cattle	Bone fragment	Early–Late BA	-19.00	9.72	15.53	43.96	3.4
F83				0	(2500–1200 BC)					
BTC-KY-	Chap II	2020 excavation	Sheep	Bone fragment	Early-Late BA	-18.41	6.98	14.49	41.10	3.3
F84					(2500–1200 BC)					
BTC-KY-	Chap II	2020 excavation	cf. Cattle	Bone fragment	Early-Late BA	-19.68	8.30	13.17	38.44	3.4
F85					(2500–1200 BC)					
BTC-KY-	Chap II	2020 excavation	Sheep	Bone fragment	Early-Late BA	-19.10	9.74	14.87	42.22	3.3
F86					(2500–1200 BC)					

BTC-KY- Chap II 2020 excavation Sheep Bone fragment Early-Late BA -19.51	10.63 15.14	42.82 3.3
F87 (2500-1200 BC) BTC-KY- Chap II 2020 excavation Sheep Bone fragment Early-Late BA	9.24 14.54	40.99 3.3
F88 (2500–1200 BC)		
BTC-KY-Chap II2020 excavationHorseBone fragmentEarly-Late BA-21.10	5.43 14.39	40.59 3.3
F89 (2500–1200 BC)		
BTC-KY-Chap II2020 excavationCattleBone fragmentEarly-Late BA-17.76	7.41 14.71	41.58 3.3
F90 (2500–1200 BC)		
BTC-KY- Chap II 2020 excavation Sheep Bone fragment Early-Late BA -18.57	7.51 15.85	44.97 3.3
F91 (2500-1200 BC) DTC_KV Chan H 2020 execution Chan Dec fromment Early Late DA 19.56	7 15 15 29	12 16 2 2
F_{02} = Chap II 2020 excavation Sheep = Bolle Tragment Early-Late BA = 18.30	7.15 15.56	45.40 5.5
BTC-KY- Chan II 2020 excavation Sheen Bone fragment Farly-Late BA -16.68	8 24 14 45	41 38 3 3
F93 $(2500-1200 \text{ BC})$	0.24 14.45	41.50 5.5
BTC-KY- Chap II 2020 excavation Sheep Bone fragment Early-Late BA -19.82	6.57 5.30	15.62 3.5
F94 (2500–1200 BC)		
BTC-KY- Aigyrzhal 2 Saka/wusun people Caprine Bone fragment Final BA/EIA -18.19	7.05 15.29	40.67 3.1
F65 (1200–200 BC)		
BTC-KY-Chap IC 114, sq. 2GCaprineProximalFinal BA/EIA-19.39	7.53 19.07	51.62 3.2
F73 metacarpal (1200–200 BC)		
BTC-KY- Chap I C 105, B 1005, sq. Caprine Proximal femur Final BA/EIA -18.88	7.21 16.22	44.31 3.2
F/4 F-E/6-/ (1200-200 BC) DTC_VVV CL114 D 1046 CL114	6.77 20.51	55.06 0.1
$\begin{bmatrix} BIC-KY - Chap I \\ Final BA/EIA \\ SD \\ \end{bmatrix} = \begin{bmatrix} CI14, B 1046, sq. \\ Caprine \\ \end{bmatrix} Caprine \\ \begin{bmatrix} Ulna \\ (1200, 200, BC) \\ \end{bmatrix} = \begin{bmatrix} CI14, B 1046, sq. \\ Caprine \\ \end{bmatrix} Caprine \\ \end{bmatrix}$	6.// 20.51	55.26 3.1
F/3 5D (1200-200 BC) BTC KV Chap I C 133 lower levels Capring Lower jaw Final BA/FIA 10.52	6 66 10 01	53 56 3 3
F76 $F76$	0.00 19.01	55.50 5.5
BTC-KY- Chap I C 133 B 1102 Caprine 2 nd phalanx Final BA/EIA -19.47	8.02 13.82	38.71 3.3
F77 (1200–200 BC)		
BTC-KY- Chap I House floor Cattle Metacarpal Final BA/EIA -19.68	7.70 17.12	46.77 3.2
F78 (1200–200 BC)		
BTC-KY-Chap IHouse floorCaprineCarpus/tarsusFinal BA/EIA-17.03I	11.92 36.42	13.15 3.2
F79 (1200–200 BC)		
BTC-KY- Chon-Alai Rofot-Korgan, Caprine Ulna Final BA/EIA -18.33	6.03 17.49	44.85 3.0
F15 Kurgan I (1200-200 BC) PTC KV Uab Kurbu C. 11 Javan 0. 8 Dog	8.06 10.00	22.12 2.4
$\begin{bmatrix} D I C - K I - \\ D C I K U D U \\ d og huriel \end{bmatrix} = \begin{bmatrix} D O g \\ D O g \\ d og huriel \end{bmatrix} = \begin{bmatrix} D O g \\ D O g \\ d og huriel \end{bmatrix} \begin{bmatrix} Mietapodia \\ (1200, 200, BC) \end{bmatrix}$	0.90 10.90	52.15 5.4
BTC-KY- Uch Kurbu B2 L8 TTB Caprine Distal humerus Final B4/EL4 _19/10	7 66 18 83	51.00 3.2
$\begin{bmatrix} F_{11} \\ F_{21} \end{bmatrix} = \begin{bmatrix} F_{11} \\ F_{22} \\ F_{23} \end{bmatrix} = \begin{bmatrix} F_{11} \\ F_{23} \\ F_{23} \\ F_{23} \end{bmatrix} = \begin{bmatrix} F_{11} \\ F_{23} \\ F_{23$	10.05	51.00 5.2

BTC-KY-	Uch Kurbu	B2, L9, TTB	Cattle	Ulna	Final BA/EIA	-16.03	7.76	16.76	45.66	3.2
F32			Constant	TT'1.'.	(1200–200 BC)	10.24	6.00	11.47	22.55	2.2
BIC-KI-	Uch Kurbu	A3, L5, 11B	Caprine	1101a	Final BA/EIA	-19.34	0.88	11.4/	32.55	3.3
F35			D'	Den Comment	(1200–200 BC)	17.52	6.05	14.46	29.52	2.1
BIC-KY-	Uch Kurbu	BA (Andronovo)	Big mammal (horse,	Bone fragment	Final BA/EIA	-17.53	6.05	14.46	38.52	3.1
F54			cattle, etc.)		(1200–200 BC)	16.50	0.55	14.0	20.62	0.1
BIC-KY-	Uch Kurbu	BA (Andronovo)	Caprine	Bone fragment	Final BA/EIA	-16.52	8.55	14.8	39.63	3.1
F55			~ .		(1200–200 BC)					
BTC-KY-	Uch Kurbu	BA (Andronovo)	Caprine	Bone fragment	Final BA/EIA	-14.92	7.56	15.55	41.55	3.1
F57					(1200–200 BC)					
BTC-KY-	Uch Kurbu	BA (Andronovo)	Caprine	Bone fragment	Final BA/EIA	-14.63	9.38	16.2	42.59	3.1
F58					(1200–200 BC)					
BTC-KY-	Aigyrzhal 1	Kurgan 20? 24?	Horse	Carpus/tarsus	Turkic-medieval	-20.64	5.50	17.40	44.88	3.0
F12					(200 BC-AD					
					1700)					
BTC-KY-	Aigyrzhal 1	Ak-kiya, individual	Horse	Bone fragment	Turkic-medieval	-20.04	5.15	22.87	59.22	3.0
F13		2		-	(200 BC-AD					
					1700)					
BTC-KY-	Aigyrzhal 1		Caprine	Bone fragment.	Turkic-medieval	-17.75	7.12	n/k	n/k	3.2
F20			•	Ç	(200 BC-AD					
					1700)					
BTC-KY-	Aigyrzhal 1	Kurgan 24	Cattle	Distal tibia	Turkic-medieval	-20.46	5.24	20.13	51.73	3.0
F59	25	U			(200 BC-AD					
					1700)					
BTC-KY-	Aigyrzhal 1	Kurgan 1	Horse	Skull	Turkic-medieval	-20.16	6.27	10.98	28.63	3.0
F60	85			~~~~	(200 BC-AD)					
100					1700)					
BTC-KY-	Aigyrzhal 2	Turkic (c AD 4–7)	Caprine	Bone fragment	Turkic-medieval	_18 74	6.92	15 55	41 55	31
F67	riigjiziidi 2		Cupinie	Done mugment	(200 BC-AD)	10.71	0.72	10.00	11.55	5.1
107					(200 BC RD 1700)					
BTC KV	Aigurzhal 3	Turkic $(c \ AD \ 4 \ 7)$	Medium mammal	Bone fragment	Turkic medieval	21.66	5 5 2	15.02	13 60	3.2
DIC-KI- E69	Algyizhai 5	$\operatorname{Turkle}\left(\mathcal{C}, \operatorname{AD} + \mathcal{I}\right)$	Wedium mammai	Done magnient	(200 PC AD)	-21.00	5.52	15.92	45.09	5.2
1.00					(200 BC-AD 1700)					
DTC VV			~ .		1700)	1 6 9 7	7.74	41.1.6	15.0	0.1
DIC-NI-	Kok Soi	$\Box_{\mu\nu\rhoio}$ (AD) 170	Cottlo	Dona frogmant	L'undrage moduler of	16 11	111/		15 2	2
E66	Kok–Sai	Hunic (AD 179–	Cattle	Bone fragment	Turkic–medieval	-16.27	7.74	41.16	15.3	3.1
F66	Kok–Sai	Hunic (AD 179– 220)	Cattle	Bone fragment	(200 BC–AD	-16.27	7.74	41.16	15.3	3.1

BTC–KY– F69	Kok–Sai	En-2	Animal bone	Bone fragment	Turkic–medieval (200 BC–AD	-18.69	11.04	34.56	12.30	3.3
BTC-KY- F70	Kok–Sai	En-1	Caprine	Radius	Turkic-medieval (200 BC-AD 1700)	-18.69	10.99	27.20	9.57	3.3
BTC–KY– F71	Kok–Sai	Corral, 0.35m depth	Animal bone	Bone fragment	Turkic–medieval (200 BC–AD 1700)	-19.57	6.22	34.32	11.92	3.4
BTC–KY– F72	Kok–Sai	KY19.10F, Corral, 100mm depth	Caprine	Bone fragment	Turkic–medieval (200 BC–AD 1700)	-19.28	6.62	33.91	12.06	3.3
BTC–KY– F61	Kok–Tash	Proximal epiphysis	Horse	Tibia	Turkic–medieval (200 BC–AD 1700)	-19.91	5.62	13.16	37.31	3.3
BTC–KY– F62	Kok–Tash		Horse	Tibia	Turkic–medieval (200 BC–AD 1700)	-20.65	5.89	16.34	45.77	3.3
BTC–KY– F63	Kok–Tash	Metapodia UF	Caprine	Bone fragment	Turkic–medieval (200 BC–AD 1700)	-19.29	7.49	18.73	49.82	3.1

OSM B: Stable isotope analysis

Collagen extraction protocols and measurement of samples

The samples for stable isotope analysis were prepared in Bioarchaeology Research Centre at Vilnius University following the pre-treatment protocol outlined below:

- About 5g of bone was sampled
- The sampled bone was crushed to smaller pieces
- Samples were demineralised with 0.5 M HCl for 1–5 days
- After demineralisation, each sample was washed with distilled water until its pH level became 4–5
- pH 3 solution was added to each sample
- Samples in pH 3 solution were left in the 70° C for 24–48hr until they were fully gelatinised
- Samples were filtered
- Samples were frozen overnight at -30° C
- Samples were dried in a freeze-dryer
- 0.85–1.0 mg. was weighed from each sample, put into tin capsule and prepared for measuring

The samples were measured at the Center for Physical Scientific Research (Vilnius, Lithuania). An elemental analyser coupled to the isotope ratio mass spectrometer (EA-IRMS, Flash EA1112-Thermo V Advantage) via ConFlo III interface was used for the δ^{13} C and δ^{15} N analysis (see details in Garbaras *et al.* 2019). Carbon isotopic ratio measurements presented here are expressed relative to the Vienna Pee-Dee Belemnite (VPDB) standard, while the nitrogen isotopic ratio coincides with the air N2. The analytical precision and calibration of reference gas CO2 (for δ^{13} C measurements) to VPDB were evaluated by the repeated analysis of secondary reference material caffeine IAEA-600, and oil. The IAEA-600 standard was used for calibration of reference gases N2 (δ^{15} N measurements) to AIR (Table S2). Internal standards, flour and nicotinamide were used for tracing the analytical uncertainty (Table S3). **Table S2: Standard reference materials used for calibration of** δ^{13} C relative to VPDB and δ^{15} N relative to AIR.

Standard	Material	Accepted δ^{13} C (‰, VPDB)	Accepted δ^{15} N (‰, AIR)
IAEA-600	Caffeine	-27.777±0.043	+1.0±0.2

 Table S3: Standard reference materials used for to monitor internal accuracy and precision

Standard	Material	Mean δ^{13} C	Mean δ^{15} N
		(‰, VPDB)	(‰, AIR)
IRM-1	Flour	-26.5	+3.2
IRM-2	Nicotinamide	-31.36	+2.07

Success rate

The preservation of collagen was measured by C:N ratio of 2.9–3.6 (DeNiro 1985). We originally acquired 86 human and 94 animal bone samples for the research. However, nine human and three animal samples failed the collagen extraction. All other samples were measured and showed good preservation of collagen.

Site (n)			δ ¹³ C‰					$\delta^{15}N\%$		
	Min	Max	Mean	SD	Median	Min	Max	Mean	SD	Median
Early–Late Bronze Age (n =										
46)	-19.4	-12.3	-18.3	1.1	-18.6	10.0	16.9	12.0	1.2	11.8
Aigyrzhal 1 (n = 7)	-18.8	-17.2	-18.2	0.6	-18.2	11.6	16.9	13.0	1.9	12.1
Algyrzhal 2 (fi $-$ 8) Algyrzhal 3 (fi $=$	-18.8	-17.6	-18.2	0.5	-18.1	10.5	12.3	11.4	0.6	11.4
21) Chalchyk Bulak (n	-19.4	-12.3	-18.6	1.5	-18.8	10.1	13.8	12.0	1.1	11.8
= 1)	-18.3	-18.3				12.5	12.5			
= 1) Kochkor huriel	-18.4	-18.4				11.9	11.9			
grounds $(n = 1)$	-18.7	-18.7				12.7	12.7			
$\frac{\text{Kyrk-Sheyft}}{3}$	-19.2	-18.3	-18.7	0.4	-18.7	10.0	12.3	11.0	1.2	10.7
Shyldyrak ($n = 3$)	-18.3	-16.9	-17.5	0.8	-17.2	11.0	11.5	11.2	0.3	11.0
Chap II $(n = 1)$	-17.5	-17.5				12.7	12.7			
Final Bronze Age/Early Iron										
Age $(n = 19)$ Avgirzhal 1 $(n =$	-18.7	-13.9	-17.3	1.40	-17.7	10.0	13.3	12.1	0.9	12.2
4) Avgirzhal 2 (n –	-18.5	-15.6	-17.5	1.30	-17.9	12.7	13.3	12.6	0.7	12.7
5)	-17.9	-14.5	-17.1	1.5	-17.7	12.1	13.1	12.5	0.4	12.5
Chap I (n = 3) Chechen-Bulak (n	-18.7	-13.9	-17.0	2.7	-18.4	11.3	12.2	11.7	0.5	11.5
= 1)	-16.9	-16.9				10.0	10.0			
Chon-Alai (n = 2)	-17.7	-17.2				10.7	11.4			

Table S4. Summary of human isotopic values.

Mechet at-Bashi (n										
= 2)	-18.7	-18.1				12.9	12.9			
Uch-Kurbu (n = 1)	-17.0	-17.0				11.8	11.8			
Zhapyryk ($n = 1$)	-15.7	-15.7				12.1	12.1			
Turkic/Medieval										
(n = 13)	-19.9	-15.3	-17.9	1.30	-18.3	11.7	17.3	13.3	1.5	12.9
Aigyrzhal 1 (n –										
$r_{15}y_{12}mar_{1}(m - m)$										
12)	-19.9	-15.3	-18.0	1.30	-18.3	11.7	17.3	13.3	1.5	12.7

Table S5. Summary of herbivore isotopic values.

Species (n)			δ ¹³ C‰					δ^{15} N‰		
	Min	Max	Mean	SD	Median	Min	Max	Mean	SD	Median
Early-Late Bronze										
Age $(n = 52)$	-21.1	-16.0	-19.2	1.0	-19.2	4.2	11.2	7.2	1.5	7.1
Caprine $(n = 22)$	-20.2	-16.7	-19.0	0.7	-19.1	5.5	11.2	7.6	1.5	7.1
Cattle $(n = 17)$	-19.7	-16.0	-18.8	0.8	-19.0	6.6	9.7	7.7	0.8	7.5
Horse $(n = 10)$	-20.9	-17.1	-20.1	1.1	-20.5	4.2	7.8	5.8	1	5.6
Final Bronze										
Age/Early Iron										
Age $(n = 15)$	-19.7	-14.6	-18.0	1.8	-189	6.0	11.9	7.8	1.4	7.6
Caprine (n = 13)	-19.5	-14.6	-18.1	1.7	-18.9	6.0	11.9	7.8	1.5	7.5
Cattle $(n = 2)$	-19.7	-16.0				7.7	7.8			
Medieval (n = 12)	-20.7	-16.3	-19.3	1.3	-19.6	5.2	11.0	6.7	1.6	6.4
Caprine $(n = 5)$	-19.3	-17.8	-18.8	0.6	-18.7	6.6	11.0	7.8	1.8	7.1
Cattle $(n = 2)$	-20.5	-16.3				5.2	7.7			
Horse $(n = 5)$	-20.7	-19.9	-20.3	0.4	-20.2	5.2	6.3	5.7	0.4	5.6

Table S6. Previously published human isotopic values from Kyrgyzstan used for

statistical comparisons.

Sample						C/N	
number	Site	Context	Dating	$\delta^{13}C$	$\delta^{15} \mathrm{N}$	atomic	Reference
	Aygirdjal	K. 67	2203-2041 cal				
	(Aigyrzhal)		BC (3735±20				
			BP, PSUAMS-				
N/A			4607)	-17.69	11.91	3.2	Narasimhan et al. 2018
	Aygirdjal	K. 67A	2114–1928 cal				
	(Aigyrzhal)		BC (3630±20				
			BP, PSUAMS-				
N/A			4750)	-18.14	11.44	3.1	Narasimhan et al. 2018
		Kurgan nr.					
CGG_2_0		K9 (individ.					de Barros Damgaard et al.
15973	Keden	nr. 1)	168-83 BC	-17.06	13.63	3.2	2018
CGG_2_0		Kurgan nr.					de Barros Damgaard et al.
15975	Keden	K45	356–285 BC	-18.27	11.68	3.2	2018
CGG_2_0		Kurgan nr.					de Barros Damgaard et al.
15977	Keden	K53	361-349 BC	-16.91	12.24	3.2	2018
CGG_2_0		Kurgan nr.					de Barros Damgaard et al.
15978	Keden	K60	403–434 BC	-17.50	12.51	3.2	2018
CGG_2_0		Kurgan nr.					de Barros Damgaard et al.
15979	Keden	K71	453–446 BC	-17.84	14.03	3.3	2018
CGG_2_0		Kurgan nr.					de Barros Damgaard et al.
15980	Keden	K70	265–271 BC	-17.61	11.88	3.2	2018
CGG_2_0		Kurgan nr.					de Barros Damgaard et al.
15981	Keden	K65	89–74 BC	-17.34	12.98	3.2	2018

CGG_2_0		Kurgan nr.					de Barros Damgaard et al.
15982	Keden	K63	159–132 BC	-17.53	12.74	3.2	2018
CGG_2_0							de Barros Damgaard et al.
15983	Baskya 1	Kurgan nr. 7	169–90 BC	-17.92	13.54	3.2	2018
CGG_2_0							de Barros Damgaard <i>et al</i> .
15984	Baskya 1	Kurgan nr. 3	166–89 BC	-17.43	13.41	3.2	2018
CGG_2_0							de Barros Damgaard <i>et al</i> .
15985	Baskya 1	Kurgan nr. 4	349–313 BC	-17.98	13.79	3.2	2018
		Kurgan nr. 1					
		(individ. 1,					
CGG_2_0		buried with					de Barros Damgaard <i>et al</i> .
15989	Baskya 2	individ. 2.),	AD 397–570	-15.10	11.80	3.2	2018
CGG_2_0							de Barros Damgaard et al.
15991	Baskya 2	Kurgan nr. 19	AD 382–433	-17.34	13.12	3.2	2018
CGG_2_0							de Barros Damgaard et al.
15992	Baskya 2	Kurgan nr. 10	AD 430-492	-15.55	12.61	3.2	2018
CGG_2_0	-	-					de Barros Damgaard et al.
15994	Baskya 2	Kurgan nr. 21	AD 557–615	-16.31	11.82	3.2	2018
CGG 2 0	2	e					de Barros Damgaard et al.
15995	Baskva 2	Kurgan nr. 25	AD 349-368	-15.76	12.36	3.2	2018
CGG 2 0	J	Kurgan nr. 18					de Barros Damgaard <i>et al.</i>
15996	Baskva 2	(child)	AD 60-143	-17.40	13.85	3.2	2018
CGG 2 0	Dusitju 2	(ennu)	112 00 110	1,110	10100	0.2	de Barros Damgaard <i>et al</i>
15007	Bashva 2	Kurgan nr. 20	AD 252 308	14 10	12 50	37	2018
CGG 2 0	Daskya 2	Kurgan III. 20	AD 252-500	-14.10	12.50	5.2	de Barros Damgaard <i>et al</i>
15009	Declare 2	Vurgen nr. 7	AD 264 274	16.20	11.20	2.2	
13996 CCC 2 0	Daskya 2	Kurgan III. 7	AD 204–274	-10.50	11.50	5.2	2010 do Parros Damaaard <i>at al</i>
15000	Declara 2	<i>V</i>	AD 255 201	15 10	12.90	2.2	de Barros Danigaard <i>et al.</i>
15999	Baskya 2	Kurgan nr. 2	AD 255–301	-15.10	12.80	3.2	2018
		Kurgan nr. 30					
		(child, buried					
		together with					
CGG_2_0		another					de Barros Damgaard <i>et al</i> .
16000	Baskya 2	individual),	AD 385–435	-17.30	12.90	3.2	2018
		Kurgan nr. 5					
		(individ. 2 out					
		of three					
		individuals					
		buried					
		together.					
CGG 2 0		individual 3.					de Barros Damgaard <i>et al.</i>
16006	Baskva 2	is a child).	AD 257–297	-14.30	13.30	3.2	2018
CGG 2 0	Dubliju 2	is a child),	110 201 201	1 1100	10.00	0.2	de Barros Damgaard <i>et al</i>
16007	Zhanyryk	Kurgan nr. 50	AD 177–190	-16 50	10.00	32	2018
CGG 2 0	Znupyryk	Rungun III. 50		10.50	10.00	5.2	de Barros Damgaard <i>et al</i>
16008	Thonyryk	Kurgan nr A	AD 83 177	16.40	11.00	37	2018
CCC 2 0	Zпаругук	Kurgan III. 4	AD 05-177	-10.40	11.90	5.2	do Parros Damaaard <i>at al</i>
16010	7hony mile	Vuncon na 2	AD 170 104	16 10	11.50	2.2	de Barlos Dangaard <i>et al.</i>
10010	Zпаругук	Kurgan nr. 2	AD 170–194	-10.10	11.50	5.2	2018
		Kurgan nr. 16					
		(human					
		(warrior)					
		buried					
CGG_2_0		together with					de Barros Damgaard <i>et al</i> .
16011	Boz-Adyr	horse),	AD 424–474	-17.20	12.80	3.2	2018
CGG_2_0							de Barros Damgaard et al.
16012	Uch-Kurbu	Kurgan nr. 9	AD 259–281	-16.80	12.80	3.2	2018
		Kurgan nr. 14					
CGG 2 0		(individual					de Barros Damgaard et al.
16014	Uch-Kurbu	2.),	AD 61–144	-15.00	14.10	3.2	2018
CGG 2 0		,,					de Barros Damgaard <i>et al.</i>
16015	Kyzyl-Too	Kurgan nr. 2	AD 1161-1255	-18 50	10.50	32	2018
CGG 2 0	119291 100	Italgan m. 2	110 1101 1255	10.50	10.50	5.2	de Barros Damgaard <i>et al</i>
16016	Uch-Kurbu	Kurgan nr. 8	AD 255 300	18 50	10.55	37	2018
10010	Con-Kulbu	Kurgan nr. 14	<i>233–3</i> 00	10.30	10.55	5.4	2010
CGG 2 0		(individual					de Barros Damagard et al
16017	Hah Kurbu	(individual	AD 214 261	16 20	12 60	30	
	Och-Kulbu	r.(ciiid <i>))</i> ,	AD 214-201	-10.30	12.00	5.2	40 Rarros Damagard et al
16020	Hab Varter	Vurgen nr. 1 / 2	(group)	15.00	16 00	2 1	
10020	OCII-KUIDU	Kurgan nr. 1/2	(grav 2),	-13,90	10.20	3.1	2010

CGG_2_0 16021	Uch-Kurbu	Kurgan 1 / 4 (grav 4.),	AD 134–219	-16.50	12.11	3.1	de Barros Damgaard <i>et al.</i> 2018
CGG_2_0 16022	Boz-Advr	Kurgan nr. 28	AD 1170–1171	-16.50	12.10	3.2	de Barros Damgaard <i>et al.</i> 2018
CGG_2_0	20211091	1101 gui 111 20		10.00	12110	0.2	de Barros Damgaard <i>et al.</i>
16024	Boz-Adyr	Kurgan nr. 36	AD 1156–1224	-18.00	10.60	3.2	2018 da Barras Damagand et al.
16025	Boz-Adyr	Kurgan nr. 31	AD 1678–1696	-18.20	12.00	3.2	2018
CGG_2_0							de Barros Damgaard et al.
16026	Boz-Adyr	Kurgan nr. 38	AD 1029–1049	-18.70	13.30	3.1	2018

Table S7. Information on the sites where the samples were collected. BA = Bronze Age;

MBA = Middle Bronze Age; FBA = Final Bronze Age; EIA = Ear	'ly Iron Age.
--	---------------

Site	No. of samples	Dating	Elevation
	23 humans, seven		
Aigyrzhal 1	animals	BA –Medieval	2020m asl
	13 humans, 13		
Aigyrzhal 2	animals	BA-Medieval	2020m asl
	21 humans, two		
Aigyrzhal 3	animals	BA-Medieval	2020m asl
Chalchyk-Bulak	one human	BA	3070m asl
	Three humans,		
Chap I	seven animals	FBA/EIA	2000m asl
	One human, 33		
Chap II	animals	EBA-MBA	2000m asl
Chechen-Bulak	One human	EIA	1925m asl
	Two humans, one		
Chon-Alai	animal	EIA	2680m asl
	One human, five		
Kara-Tumshuk	animals	BA	1800m asl
Kochkor burial			
grounds	One human	BA	2200m asl
Kok-Sai	Five animals	Medieval	2000m asl
	One human, three		
Kok-Tash mausoleum	animals	Medieval	1990m asl
Kyrk-Sheyit	Three humans	BA	2030m asl
Mechet at-Bashi	Two humans	EIA	2380m asl
Shyldyrak	Three humans	BA	990m asl
-	One human, eight		
Uch-Kurbu	animals	EBA-MBA	1720m asl
Zhapyryk	One human	EIA	2550m asl

Figure S1. Scatter plot with Early–Late Bronze Age human and animal stable isotope analysis.

Figure S2. Scatter plot with Final Bronze Age/Early Iron Age human and animal stable isotope analysis.

Figure S3. Scatter plot with Turkic–Medieval human and animal stable isotope analysis.

Table S8. Results of the ¹⁴C dating of human and animal bone collagen samples from

Kyrgyzstan.								
¹⁴ C Lab	BTC lab				¹⁴ C			Calibrated
number	number	Site	Context	Material type	Age	±	$\delta^{13}C$	age BC/AD
FTMC-	BTC-KY-	Aigyrzhal		human				
MP17-4	H13	1	Kurgan 1	collagen	1493	35	-15.3	444–648
FTMC- MP17-5	BTC-KY- H12	Aigyrzhal 1	Kurgan 7. burial 1	human collagen	1724	37	-15.6	247-411
UBA-	BTC-KY-	Aigyrzhal	1	caprine bone	1721	57	10.0	217 111
23655	F20	1	Ritual pit	collagen	3345	32	-17.8	1736–1533
UBA-	BTC-KY-	Aigyrzhal	I I	human				
27672	H25	2		collagen	3899	35	-17.8	2471-223
UBA-	BTC-KY-	Aigyrzhal		human				
27673	H26	2	cairn	collagen	3913	32	-18.8	2475-2289
UBA-	BTC-KY-	Aigyrzhal	stone	human				
27674	H28	2	cyst	collagen	3526	38	-18.8	1959–1742
UBA-	BTC-KY-	Aigyrzhal	Kurgan	human				
27675	H32	2	33	collagen	2522	29	-17.5	790–544
UBA–	BTC-KY-	Aigyrzhal	Kurgan	human				
27676	H33	2	10	collagen	2352	29	-17.9	517-382
FTMC-	BTC-KY-	Aigyrzhal	Kurgan	human				
MP17-2	H48	3	139	collagen	3856	36	-12.3	2460-2204
UBA–	BTC-KY-	Aigyrzhal		human				
27677	H37	3		collagen	3160	33	-18.0	1504–1320
FTMC-	BTC-KY-		Human	human				
MP17–3	H60	Chap I	burial	collagen	2742	35	-13.9	979–811
FTMC-	BTC-KY-			cattle bone				
YL92-1	F45	Chap II		collagen	3760	29	-16.0	2287-2041

	DTC VV			juvenile				
UDA-	DIC-KI-	Kara–	Child's	human				
41510	H66	Tumshuk	burial	collagen	3257	29	-18.4	1612-1448
		Tumbnuk	bullar	conagen	5251	2)	10.4	1012 1440

.

• 1

OSM C: collagen peptide mass fingerprinting

Preparation and measurement of samples

The ZooMS analysis presented here was carried out at the palaeoproteomics lab of the Department of Life Sciences and Systems Biology (University of Torino) using the collagen extracted at Centre for Bioarchaeology Research (see collagen extraction protocol in the Supplementary Material–B). First of all, the lyophilised collagen extracts were dissolved in 200µL HPLC–grade water. 20µL of each aliquot was subsampled and transferred to separate eppendorfs (LoBind), evaporated using a centrifugal evaporator (Eppendorf concentrator plus) and resuspended in 100µL 50mM ammonium bicarbonate (ABC) solution. Following this, samples were reduced with 1M DL–dithiothreitol (Sigma, Canada) for 1h at 65°C and alkylated with 0.5M iodoacetamide (Sigma, USA) at room temperature in the dark for 45min. Digestion was carried out using trypsin (Promega, VP111, proteomics grade) at 37°C for ~18hrs (overnight). Digestion was stopped with 10% TFA (to a final concentration of 0.1%). Digested peptides were purified and concentrated using C18 solid–phase extraction tips (Pierce zip–tip) according to established protocols.

 0.5μ L aliquots of peptide solution were mixed with 0.5μ L of α -cyano-4-hydroxycinnamic acid (HCCA) matrix solution (1%, prepared in 50% acetonitrile/0.1% trifluoracetic acid (ν/ν)) and spotted on a MTB Biotarget 96 MALDI stainless steel plate. Each sample was spotted in duplicate and analyzed in manual mode on a bench-top Microflex LRF MALDI-TOF mass spectrometer (Bruker Daltonics, Germany) at the Department of Clinical and Biological Sciences (Ospedale San Luigi Gonzaga), University of Turin. Samples were analyzed in reflector mode, using the following parameter settings: ion source 1 18.96 kV; ion source 2 16.02 kV; lens voltage 9.05 kV, reflector 20.01 kV, laser power 22%. The spectrum collected for each sample resulted from the sum of 1000 laser shots. Mass range was 800–4000 *m/z* and peptide masses below 650 Da were suppressed. The peptide calibration standard (#8206195, Bruker Daltonics, Germany), a mixture of seven peptides (Angiotensin II *m/z*=1046.541, Angiotensin I *m/z* = 1296.685, Substance_P *m/z* = 1347.735, Bombesin *m/z* = 1619.822, ACTH (1–17 clip) *m/z* = 2093.086, ACTH (18–39 clip) *m/z* = 2465.198 and Somatostatin *m/z* = 3147.471) was used for external mass calibration to maximise mass accuracy. The spectra were exported as text files and further analysed using the open access Mmass tool (Niedermeyer & Strohalm 2012). All of the resulting spectra were processed by performing baseline correction, smoothing; peak picking was performed selecting an S/N threshold ≥ 6 . Internal mass calibration was carried out using trypsin, matrix and keratin m/z values.

Results and taxonomic identification

The analysis and taxonomic identification of collagen samples was successfully obtained for majority of the samples. All identifications were based on the previously published markers (Buckley *et al.* 2014, 2018; Welker *et al.* 2016; Desmond *et al.* 2018).

Table S9. The table lists all the samples that were analysed in this study, obtained species IDs and peptide markers (m/z; Deam* notes deamidated peptide markers).

Sample	No	Identification	Peptide markers (<i>m/z</i>)		
BTC– KY– F34	1	<i>Capra</i> sp.	A – 1180.7; B – 1427.7; D – 2131.0; E – 2793.2 (Deam*); F – 2883.3; G' – 3093.5		
BTC– KY– F34	2	Capra sp.	A – 1180.7; B – 1427.7; D – 2131.0; E – 2792.3; F – 2883.4; G' – 3093.5		
BTC– KY– F35	1	Bos/Bison	A – 1192.6; A' – 1208.7; B – 1427.7; D – 2131.0; F – 2853.4; G – 2018.4 (Deam*); G' – 3033.5		
BTC– KY– F35	2	Bos/Bison	A – 1192.7; A' – 1208.8; B – 1427.8; D – 2131.0; E – 2793.2 (Deam*); F – 2853.4; G – 3017.4; G' – 3034.5 (Deam*)		
BTC– KY– F36	1	Bos/Bison	A – 1192.7; A' – 1208.8; B – 1427.7; D – 2131.0; E – 2793.2 (Deam*); F – 2853.4; G – 3017.4; G' – 3033.5		
BTC– KY– F36	2	Bos/Bison	A – 1192.7; A' – 1208.8; B – 1427.7; D – 2131.0; E – 2793.2 (Deam*); F – 2853.4; G – 3017.6; G' – 3034.6 (Deam*)		
BTC– KY– F37	1	Unresolved	B – 1427.7; D – 2131.0; E – 2793.2 (Deam*); F – 2883.4; G – 3017.5; G' – 3033.5		
BTC– KY– F37	2	<i>Ovis</i> sp. or <i>Rupicapra</i> sp. but not <i>Capra</i> sp.	A – 1180.8; B – 1427.7; C – 1580.8; D – 2131.0; E – 2792.2; F – 2883.3; G – 3017.4; G' – 3033.6		
BTC– KY– F38	1	Bos/Bison	A' – 1208.7; B – 1427.7; C – 1580.8; D – 2131.1; F – 2853.5; G – 3018.3 (Deam*); G' – 3034.6 (Deam*)		
BTC– KY– F38	2	Bos/Bison	A' – 1208.7; B – 1427.7; C – 1580.8; D – 2131.0; F – 2853.3; G – 3018.4 (Deam*); G' – 3034.4 (Deam*)		
BTC– KY– F39	1	Bos/Bison	A' – 1208.7; B – 1427.7; C – 1580.8; D – 2131.0; E – 2793.2 (Deam*); F – 2853.3; G – 3018.4 (Deam*); G' – 3034.4 (Deam*)		
BTC– KY– F39	2	Bos/Bison	A' – 1208.6; B – 1427.7; D – 2131.0; E – 2793.3 (Deam*); F – 2853.4; G – 3018.5 (Deam*); G' – 3033.6		

BTC-	1	Ovis sp. or Rupicapra sp.	A – 1196.7; B – 1427.7; C – 1580.7; D – 2131.0; E –
KY–		but not <i>Capra</i> sp.	2792.2; F – 2883.3; G – 3017.5; G' – 3033.5
F40			
BTC	2	Ovis sp. or Runicanra sp	A 1196 7: B 1/27 7: C 1580 7: D 2131 0: E
BIC- VV	2	but not Canra sp.	A = 1150.7, B = 1427.7, C = 1500.7, D = 2151.0, E = 2702.2, E = 2882.4, C = 2017.5, C' = 2023.5
KI-		but not <i>Capra</i> sp.	2/92.3; F = 2885.4; G = 5017.5; G = 5055.5
F40			
BTC-	1	Bos/Bison	A' - 1208.6; B - 1427.7; D - 2131.0; E - 2793.2 (Deam*);
KY–			F – 2853.4; G – 3017.4; G ² – 3033.5
F41			
BTC-	2	Bos/Bison	A' – 1208.7; B – 1427.7; D – 2131.0; E – 2793.3 (Deam*);
KY–			F – 2853.4; G – 3018.4 (Deam*); G' – 3033.5
F41			, , , , , , , , , , , , , , , , , , , ,
BTC-	1	Bos/Bison	A – 1192 7: A' – 1208 7: B – 1427 7: D – 2131 1: F –
KV_	1	Dos Dison	2853.5: G = 3018.5 (Deam*): G' = 3034.6 (Deam*)
E42			2055.5, G = 5010.5 (Deam), $G = 5054.0$ (Deam)
	2	D /D:	AL 1200 7 D 1407 7 C 1500 7 D 2121 0 E
BIC-	2	BOS/BISON	A = 1208.7; B = 1427.7; C = 1580.7; D = 2131.0; E = 2502.2; C = 1580.7; D = 2131.0; E = 2502.2; C = 1580.7; D = 2131.0; E = 2502.2; C =
KY–			2793.3 (Deam [*]); F – 2853.4; G – 3018.5 (Deam [*]); G [*] –
F42			3033.6
BTC-	1	Ovis sp. or Rupicapra sp. or	B – 1427.7; C – 1580.7; D – 2131.1; F – 2883.4; G –
KY–		<i>Ovibos</i> sp. but not <i>Capra</i> sp.	3018.5 (Deam*); G' – 3033.5
F43			
BTC-	2	Ovis sp. or Rupicapra sp. or	B – 1427 7: D – 2131 0: F – 2883 4: G – 3018 4 (Deam*):
KV KV	2	Ovis sp. of Rupicupita sp. of	G' = 3033.5
E42		Ovidos sp. out not Capia sp.	0 - 5055.5
Г 4 5	1		
BIC-	1	Ovis sp. or Rupicapra sp. or	B = 1427.7; $C = 1580.7$; $D = 2131.0$; $E = 2793.2$ (Deam*); F
KY–		<i>Ovibos</i> sp. but not <i>Capra</i> sp.	– 2883.3; G – 3018.4 (Deam*); G' – 3034.5
F44			
BTC-	2	Ovis sp. or Rupicapra sp. or	B – 1427.7; C – 1580.7; D – 2131.0; E – 2792.3; F –
KY–		<i>Ovibos</i> sp. but not <i>Capra</i> sp.	2883.4; G – 3017.5; G' – 3033.5
F44			
BTC-	1	Bos/Bison	A' - 1208.7; B - 1427.7; C - 1580.7; D - 2131.0; E -
KY_	•	200,2000	2793.2 (Deam*): $F = 2853.3$: $G = 3017.5$: $G' = 3033.5$
F45			2795.2 (Dealin), 1 2055.5, 0 5017.5, 0 5055.5
DTC	r	Pog/Pigon	A' 1209 7, D 1427 7, C 1590 7, D 2121 0, E
DIC-	Z	DOS/DISON	$A = 1208.7; B = 1427.7; C = 1380.7; D = 2151.0; E = 2702.2 (D_{11}) = 2052.4 (C_{11}) = 2017.4 (C_{11}) = 2022.5$
KY-			2/93.2 (Deam*); F = 2853.4; G = 301/.4; G = 3033.5
F45			
BTC-	1	Ovis sp. or Rupicapra sp. or	B – 1427.7; C – 1580.7; D – 2131.0; E – 2793.2 (Deam*); F
KY–		<i>Ovibos</i> sp. but not <i>Capra</i> sp.	– 2883.3; G – 3017.6; G' – 3034.5 (Deam*)
F46			
BTC-	2	Ovis sp. or Rupicapra sp. or	A – 1196.5; B – 1427.7; C – 1580.7; D – 2131.0; E –
KY_	-	Ovibos sp but not Capra sp	2792.2: F = 2883.4: G = 3017.5: G' = 3033.5
F46		c noos sp. out not Cupiu sp.	_,,,i _000,i, 0 001,i0, 0 000,i0
PTC	1	Bos/Bison	$\Lambda' = 1208.6$, B = 1427.7, D = 2121.0, E = 2702.2 (D ₂₀₀₀ *).
	1	DUS/DISUN	A = 1200.0; D = 1427.7; D = 2151.0; E = 2795.2 (Deam*); E 2952.2; C 2017.4; C 2022.5
K I –			F = 2855.5; G = 5017.4; G = 5055.5
F47			
BTC-	2	Bos/Bison	A' – 1208.7; B – 1427.7; C – 1580.8; D – 2131.0; E –
KY–			2793.3 (Deam*); F – 2853.4; G – 3017.5; G' – 3033.5
F47			
BTC-	1	Bos/Bison	A' – 1208.7; B – 1427.7; D – 2131.0; E – 2793.3 (Deam*);
KY–			F – 2853.4; G – 3018.5 (Deam*); G' – 3033.6
F48			, , , , , , , , , , , , , , , , , , , ,
BTC	2	Bos/Bison	Δ' - 1208 7· B - 1427 7· C - 1580 7· D - 2131 0· E
VV	4		$\frac{11}{2702} = \frac{11}{2707} + $
			2195.5 (Dealli [*]); $\Gamma = 2055.4$; $G = 5017.3$; $G = 5055.0$
F48		D	
BTC-	1	Bos/Bison	A' – 1208.7; B – 1427.7; D – 2131.0; E – 2792.3; F –
KY–			2853.3; G – 3017.5; G' – 3033.6
F49			

BTC– KY– F49	2	Bos/Bison	A' – 1208.7; B – 1427.7; D – 2131.0; E – 2792.3; F – 2853.4; G – 3017.5; G' – 3033.6
BTC– KY– F50	1	Bos/Bison	A' – 1208.7; B – 1427.7; C – 1580.7; D – 2131.0; E – 2792.3; F – 2853.4; F' – 2869.4; G – 3017.5; G' – 3033.5
BTC– KY– F50	2	Bos/Bison	B – 1427.7; D – 2131.0; E – 2793.2 (Deam*); F – 2853.4; G – 3017.5; G' – 3033.6
BTC– KY– F51	1	Bos/Bison	A' – 1208.7; B – 1427.7; C – 1580.7; D – 2131.0; E – 2793.2 (Deam*); F – 2853.3; G – 3017.5; G' – 3033.5
BTC– KY– F51	2	Bos/Bison	A' – 1208.7; B – 1427.7; D – 2131.0; E – 2793.3 (Deam*); F – 2853.4; G – 3017.5; G' – 3033.5

Table S10. Results of ZooMS analysis and isotopic measurements of indeterminateskeletal fragments from Chap II.

Lab. Code	Context	Result	$\delta^{13}C$	$\delta^{15}N$	C/Nat
BTC-KY-F34	C2.3D	Capra	-19.4	8.4	3.2
BTC-KY-F35	C2.3D	Bos	-18.8	7.2	3.2
BTC-KY-F36	C2.3D	Bos	-19.0	6.6	3.2
BTC-KY-F37	C2.3B	Ovis or Rupicapra	-19.5	7.0	3.2
BTC-KY-F38	C2.4.1G	Bos	-19.4	8.7	3.2
BTC-KY-F39	C2.4.1G	Bos	-19.1	7.0	3.2
BTC-KY-F40	C2.4.1G	Ovis or Rupicapra	-19.0	7.7	3.2
BTC-KY-F41	C2.4.1G	Bos	-18.9	7.0	3.2
BTC-KY-F42	C2.4.1G	Bos	-18.9	7.7	3.2
BTC-KY-F43	C2.4.1G	Ovis or Rupicapra	-19.7	8.1	3.2
		Ovis, Rupicapra or			
BTC-KY-F44	C2.2C	Ovibos	-19.1	6.9	3.2
BTC-KY-F45	C2.2C	Bos	-16.0	7.8	3.2
		Ovis, Rupicapra or			
BTC-KY-F46	C2.1F	Ovibos	-18.8	5.8	3.2
BTC-KY-F47	C2.1F	Bos	-18.6	7.5	3.2
BTC-KY-F48	C2.1F	Bos	-18.7	7.0	3.2
BTC-KY-F49	C2.1F	Bos	-19.2	7.3	3.4
BTC-KY-F50	C2.1F	Bos	-18.7	7.0	3.2
BTC-KY-F51	C2.1F	Bos	-19.0	8.1	3.3

Spectra images

Figure S4. Spectrum image of sample BTC–KY–F34 (left) and BTC–KY–F34 duplicate (right).

Figure S5. Spectrum image of sample BTC–KY–F35 (left) and BTC–KY–F35 duplicate (right).

Figure S6. Spectrum image of sample BTC–KY–F36(left) and BTC–KY–F36 duplicate (right).

Figure S6. Spectrum image of sample BTC–KY–F37 (left) and BTC–KY–F37 duplicate (right). Sample BTC–KY–F37 (left) did not give enough marker peaks, therefore identification was not possible.

Figure S7. Spectrum image of sample BTC–KY–F38 (left) and BTC–KY–F38 duplicate (right).

Figure S8. Spectrum image of sample BTC–KY–F39 (left) and BTC–KY–F39 duplicate (right).

Figure S9. Spectrum image of sample BTC–KY–F40 (left) and BTC–KY–F40 duplicate (right).

Figure S10. Spectrum image of sample BTC–KY–F41 (left) and BTC–KY–F41 duplicate (right).

Figure S11. Spectrum image of sample BTC–KY–F42 (left) and BTC–KY–F42 duplicate (right).

Figure S12. Spectrum image of sample BTC–KY–F43 (left) and BTC–KY–F43 duplicate (right).

Figure S13. Spectrum image of sample BTC–KY–F44 (left) and BTC–KY–F44 duplicate (right).

Figure S14. Spectrum image of sample BTC–KY–F45 (left) and BTC–KY–F45 duplicate (right).

Figure S15. Spectrum image of sample BTC–KY–F46 (left) and BTC–KY–F46 duplicate (right).

Figure S16. Spectrum image of sample BTC–KY–F47 (left) and BTC–KY–F47 duplicate (right).

Figure S17. Spectrum image of sample BTC–KY–F48 (left) and BTC–KY–F48 duplicate (right).

Figure S18. Spectrum image of sample BTC–KY–F49 (left) and BTC–KY–F49 duplicate (right).

Figure S19. Spectrum image of sample BTC–KY–F50 (left) and BTC–KY–F50 duplicate (right).

Figure S20. Spectrum image of sample BTC–KY–F51 (left) and BTC–KY–F51 duplicate (right).

References

BUCKLEY, M. *et al.* 2014. Species identification of archaeological marine mammals using collagen fingerprinting. *Journal of Archaeological Science* 41: 631–41.

https://doi.org/10.1016/j.jas.2013.08.021

2018. Species identification of voles and lemmings from Late Pleistocene deposits in Pin Hole Cave (Creswell Crags, UK) using collagen fingerprinting. *Quaternary International* 483: 83–89. https://doi.org/10.1016/j.quaint.2018.03.015

DE BARROS DAMGAARD, P. et al. 2018. The first horse herders and the impact of Early

Bronze Age steppe expansions into Asia. Science 360: eaar7711.

https://doi.org/10.1126/science.aar7711

DENIRO, M.J. 1985. Postmortem preservation and alteration of in vivo bone collagen isotope ratios in relation to palaeodietary reconstruction. *Nature* 317: 806.

https://doi.org/10.1038/317806a0

DESMOND, A. *et al.* 2018. ZooMS identification of bone tools from the North African Later Stone Age. *Journal of Archaeological Science* 98: 149–57.

https://doi.org/10.1016/j.jas.2018.08.012

GARBARAS, A. *et al.* 2019. Seasonal variation in stable isotope ratios of cow milk in Vilnius region, Lithuania. *Animals* 9: 69. https://doi.org/10.1038/317806a0

NARASIMHAN, V.M. *et al.* 2018. The genomic formation of South and Central Asia. *bioRxiv* 292581.

NIEDERMEYER, T.H. & M. STROHALM. 2012. mMass as a software tool for the annotation of cyclic peptide tandem mass spectra. *PLoS ONE* 7: e44913.

https://doi.org/10.1371/journal.pone.0044913

WELKER, F. *et al.* 2016. Palaeoproteomic evidence identifies archaic hominins associated with the Châtelperronian at the Grotte du Renne. *Proceedings of the National Academy of Sciences of the USA* 11340: 11162–67. https://doi.org/10.1073/pnas.1605834113

OSM D: list of references for Figure 6.

Locations with millet evidence across Central Asia and Kashmir: 1) Aigyrzhal–3; 2) Chap I,II; 3) Uch–Kurbu; 4) Chechen–Bulak; 5) Kara–Tumshuk; 6) Alatau; 7) Kamenka; 8) Kargaly–1; 9) Kyzylasker; 10) Ornek; 11) Kyzyl Bulak; 12) Turgen–2; 13) Karatuma; 14) Karkara; 15) Serektas; 16) Khatau–1; 17) Shatyrkul'; 18) Shokpar; 19) Oi–Dzhailau 7–8; 20) Kainarbulak–1; 21) Shymkent; 22) Kaitpas; 23) Burgulyuk; 24) Babish Mulla–7; 25) Chirik Rabat; 26) Geoktchik Tepe; 27) Taksai–2; 28) Myrzhyk–6; 29) Tegiszhol; 30) Kurgan Borli; 31) Bozshakol; 32) Karazhartas; 33) Akbeit; 34) Karashoky; 35) Koitas; 36) Taldy–2; 37) Tasyrbai; 38) Kent; 39) Kyzyl; 40) Aktogai; 41) Kazakh Mys; 42) Karatobe; 43) Zevakinskyi; 44) Firsovo–11; 45) Afanasyeva Gora; 46) Karasuk III; 47) Uibat V; 48) Ai– Dai; 49) Aymyrlyg; 50) Begash; 51) Pethpuran Teng; 52) Kokel;53) Shorthugai; 54) Gonur; 55) Ojakly; 56) 1211/19; 57) Tasbas; 58) Tongtian cave; 59) Dingildzhe; 60) Farmstead 641; 61) Tahirbaj Tepe; 62) Kyzyltepa; 63) Novy–Kumak–2; 64) Tuzusai; 65) Taldy–Bulak–2; 66) Tseganka 8; 67) Dali; 68) Abylai; 69) Ushlep–5; 70) Maima–1; 71) Kazylgan; 72) Nargas Tepe.

Previously published data used for the map was collected from: Abdulganeyev (1997); Akbulatov (1999); Ananyevskaya *et al.* (2018, 2020); Andrianov (1969); Bakkels (2003); Beisenov *et al.* (2019); Bocherens *et al.* (2006); Frachetti *et al.* (2010); Hermes *et al.* (2019); Lightfoot *et al.* (2015); Motuzaite Matuzeviciute *et al.* (2015, 2016, 2018, 2020); Murphy *et al.* (2013); Nesbitt (1994); Ramaroli *et al.* (2010); Spengler *et al.* (2013, 2014, 2017); Svyatko & Beisenov (2017); Svyatko *et al.* (2013); Tolstov & Vaynberg (1967); Vainshtein (1980); Vorobyeva (1973); Vorobyeva & Gertman (1991); Wu *et al.* (2015); Yatoo *et al.* (2020); Zhou *et al.* (2020).

ABDULGANEYEV, M.T. 1997. O nalichii zemledeliya u naseleniya lesostepnogo i predgornogo altaya v epokhu zheleza, in Y.F. Kiryushin & A.A. Tishkin (ed.) *Sotsialno–ekonomicheskiye struktury drevnikh obschestv zapadnoi sibiri: materialy vserossyiskoi nauchnoi konferencii*: 138–41. Barnaul: Altaiskyi gosudarstvennyi universitet.

AKBULATOV, I. M. 1999. *Ekonomika rannih kochevnikov Yuzhnogo Urala (VII v. do n. e.–IV v. n. e.)*. Ufa: Nacionalyi Muzei Respubliki Bashkortostan.

ANANYEVSKAYA, E. *et al.* 2017. Early indicators to C₄ plant consumption in central Kazakhstan during the Final Bronze Age and Early Iron Age based on stable isotope analysis of human and animal bone collagen. *Archaeological Research in Asia* 15: 157–73. https://doi.org/10.1016/j.ara.2017.12.002

– 2020. The effect of animal herding practices on the diversity of human stable isotope values in North Central Asia. *Journal of Archaeological Science: Reports* 34: 102615. https://doi.org/10.1016/j.jasrep.2020.102615.

ANDRIANOV, B.V. 1969. Drevniye orositel'niye sistemy Priaralya (v svyazi s istoriei vozniknoveniya i razvitiya oroshaemogo zemledeliya). Moscow: Nauka. Glavnaya redakciya vostochnoi literatury.

BOCHERENS, H. *et al.* 2006. Stable isotope evidence for palaeodiets in southern Turkmenistan during the Historical period and Iron Age. *Journal of Archaeological Science* 33: 253–64. https://doi.org/10.1016/j.jas.2005.07.010

BAKKELS, C.C. 2003. The contents of ceramic vessels in the Bactria–Margiana

Archaeological Complex, Turkmenistan. *Electronic Journal of Vedic Studies* 9: 49–52.

BEISENOV, A.Z. *et al.* 2020. New isotopic data on the diet of the Saka period population from central Kazakhstan. *Povolzhskaya Arheologiya* 3: 208–18.

https://doi.org/10.24852/pa2020.3.33.208.218

FRACHETTI, M.D., R.N. SPENGLER, G.J. FRITZ & A.N. MAR'YASHEV. 2010. Earliest direct evidence for broomcorn millet and wheat in the central Eurasian steppe region. *Antiquity* 84: 993–1010. https://doi.org/10.1017/S0003598X0006703X

HERMES, T.R. *et al.* 2019. Early integration of pastoralism and millet cultivation in Bronze Age Eurasia. *Proceedings of the Royal Society B: Biological Sciences* 286: 20191273. https://doi.org/10.1098/rspb.2019.1273

LIGHTFOOT, E. *et al.* 2015. How 'pastoral' is pastoralism? Dietary diversity in Bronze Age communities in the central Kazakhstan steppes. *Archaeometry* 57: 232–49.

https://doi.org/10.1111/arcm.12123

MOTUZAITE MATUZEVICIUTE, G. *et al.* 2015. The extent of cereal cultivation among the Bronze Age to Turkic period societies of Kazakhstan determined using stable isotope analysis of bone collagen. *Journal of Archaeological Science* 59: 23–34.

https://doi.org/10.1016/j.jas.2015.03.029

– 2016. Climatic or dietary change? Stable isotope analysis of Neolithic–Bronze Age populations from the Upper Ob and Tobol River Basins. *The Holocene* 26: 1711–21. https://doi.org/10.1177/0959683616646843

– 2018. The effect of geographical margins on cereal grain size variation: case study for highlands of Kyrgyzstan. *Journal of Archaeological Science: Reports* 20: 400–10. https://doi.org/10.1016/j.jasrep.2018.04.037

– 2020. High–altitude agro–pastoralism in the Kyrgyz Tien Shan: new excavations of the Chap farmstead (1065–825 cal BC). *Journal of Field Archaeology* 45: 29–45. https://doi.org/10.1080/00934690.2019.1672128.

MURPHY, E.M. *et al.* Iron Age pastoral nomadism and agriculture in the eastern Eurasian steppe: implications from dental palaeopathology and stable carbon and nitrogen isotopes. *Journal of Archaeological Science* 40: 2547–60. https://doi.org/10.1016/j.jas.2012.09.038

NESBITT, M. 1994. Archaeobotanical research in the Merv Oasis. International Merv project, preliminary report on the second season (1993). Unpublished field report, Iran.

RAMAROLI, V. *et al.* 2010. The Chehr Abad salt men and the isotopic ecology of humans in ancient Iran. *American Journal of Physical Anthropology* 143: 343–54.

ttps://doi.org/10.1002/ajpa.21314

SPENGLER, R.N., C. CHANG & P.A. TOURTELLOTTE. 2013. Agricultural production in the Central Asian mountains: Tuzusai, Kazakhstan (410–150 BC). *Journal of Field Archaeology* 38: 68–85. https://doi.org/10.1179/0093469012Z.0000000037

SPENGLER, R.N. *et al.* 2014. Agriculturalists and pastoralists: Bronze Age economy of the Murghab alluvial fan, southern Central Asia. *Vegetation History and Archaeobotany* 23: 805–20. https://doi.org/10.1007/s00334–014–0448–0

2017. Linking agriculture and exchange to social developments of the Central Asian Iron
 Age. *Journal of Anthropological Archaeology* 48: 295–308.

https://doi.org/10.1016/j.jaa.2017.09.002

SVYATKO, S.V. & A.Z. BEISENOV. 2017. Perviye izotopniye danniye o diete naseleniya tasmolinskoi kultury. *Samarskyi Nauchnyi Vestnik* 6: 223–27.

https://doi.org/10.17816/snv201763223

SVYATKO, S.V. *et al.* 2013. Stable isotope dietary analysis of prehistoric populations from the Minusinsk Basin, southern Siberia, Russia: a new chronological framework for the introduction of millet to the eastern Eurasian steppe. *Journal of Archaeological Science* 40: 3936–45. https://doi.org/10.1016/j.jas.2013.05.005

TOLSTOV, S.P. & B.L. VAYNBERG. 1967. Koi–Krylgan–kala: Pamyatnik Kultury Drevnego Khorezma IV veka do n.e.–IV veka n.e. Moscow: Nauka.

VAINSHTEIN, S. 1980. *Nomads of South Siberia: the pastoral economies of Tuva*. Cambridge University Press: Cambridge.

VOROBYEVA, M.G. 1973. *Dingild'zhe: Usad'ba Serediny I Tysyacheletiya do n. e. v Drevnem Khorezme*. Moscow: Nauka.

VOROBYEVA, M.G. & N.A. GERTMAN. 1991. Raskopki dvukh usadeb vtoroi poloviny I tysyacheletiya n.e. v Djanbaskalinskom oazise, in G.M. Vinogradov (ed.) *Noviye otkrytiya v Priaralye 1*: 34–71. Moscow: Nauka.

WU, X., N.F. MILLER & P. CRABTREE. 2015. Agro–pastoral strategies and food production on the Achaemenid frontier in Central Asia: a case study of Kyzyltepa in southern Uzbekistan. *Iran* 53: 93–117. https://doi.org/10.1080/05786967.2015.11834752

YATOO, M.A. *et al.* 2020. New evidence from the Kashmir Valley indicates the adoption of East and West Asian crops in the western Himalayas by 4400 years ago. *Quaternary Science Advances* 2: 100011. https://doi.org/10.1016/j.qsa.2020.100011

ZHOU, X. *et al.* 2020. 5200–year–old cereal grains from the eastern Altai Mountains redate the trans–Eurasian crop exchange. *Nature Plants* 6: 78–87. https://doi.org/10.1038/s41477– 019–0581–y