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Measuring wealth inequality: the Gini coefficient 

To represent inequality as a relationship among individuals we treat an economy as a 

complete undirected network, the edges of which (differences in some attribute between 

individuals), not the nodes (the individual attributes), are the fundamental data that motivates 

a standard inequality measure—the Gini coefficient (Bowles & Carlin 2018). Figure S1 

shows an example, where the numbers in the circles are the wealth of the individual 

represented by that node, and the numbers on the arrows are the indicated pair’s wealth 

difference. 
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Figure S1. Wealth differences among pairs of households. Each of the double-headed arrows 

indicates a unique pair, and the Gini coefficient is based on the wealth differences among all 

of the pairs. The Gini coefficient—one half of the average difference divided by the mean 

wealth—for the three-person economy shown is 𝟏𝟏𝟏𝟏
𝟑𝟑

× 𝟏𝟏
𝟏𝟏𝟏𝟏
𝟑𝟑

×
𝟏𝟏
𝟐𝟐= 𝟎𝟎.𝟏𝟏𝟑𝟑  

 

If there are k members of the population then the total number of unique non-identical pairs is 

, which for the k = 3 case in the figure are shown as the three edges in the figure. 

Let Δ be the sum of the absolute differences among the pairs of k wealth holders in a 

population and y, the mean wealth; then we have the following expression for one-half the 

relative mean difference, which is the Gini coefficient: 

       (1) 

 

The Gini coefficient is the mean difference among all pairs (the first term in the middle 

expression) relative to (divided by) the mean value of y (the “relative mean difference”) 

times one half. The algorithm conventionally used to calculate the Gini coefficient differs 

from equation 1 in ways that impart a downward bias that can be substantial where the 

number of observations is small (a common feature of feature of prehistoric datasets). We 

have followed Bowles and Carlin (2018) in correcting for the bias in the computational 

algorithm.  

This representation of the Gini coefficient allows very intuitive inferences about the meaning 

of any particular value of this measure of inequality. Three examples illustrate this. First, 

from the equation above we see that the relative mean difference is simply 2G; so, for 

example, a Gini coefficient of 0.35 means that the average difference between all pairs in the 

population is seventy percent of the mean wealth.  

Second, suppose there are just two people in a population, and they are dividing a ‘pie’ 

representing total wealth. The portion received by the disadvantaged member of the pair (σ) 

is  so using the same Gini coefficient as above, the smaller slice is 32.5 percent 

of the total, the richer of the pair receives 67.5 per cent of the ‘pie’.  

(1 ) 2Gσ = −
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Figure S2. A Lorenz curve for a class-divided economy. Shown in the figure are, on the x-

axis, the cumulative share of population ordered from the lowest to the highest level of 

wealth, and on the y-axis, the cumulative share of wealth owned by the indicated population 

share. The 45º black solid line shows a condition of perfect equality, according to which each 

k-per cent cumulative share of population owns k-per cent of the cumulative share of wealth. 

The Lorenz curve is the black, dashed segmented line below the perfect equality line and 

shows the relationship between cumulative shares of wealth and population in a society made 

of a fraction u of propertyless and a fraction n of small wealth owners owning a fraction s of 

wealth. The dotted area between the condition of perfect equality and the actual distribution 

of wealth in the society (the Lorenz curve) is a measure of the extent of inequality. This area 

divided by the entire area under the perfect equality line is an approximation of the Gini 

coefficient appropriate for large populations. 

 

Finally, consider a class-divided society shown in Figure S2, in which a fraction of the 

population (u) holds no wealth at all, small wealth holders (n percent of the total population) 

together own a fractional share, s, of the total wealth, and a wealthy class constituting a 

fraction 1-u-n of the population own the rest of the wealth. The Gini coefficient can be 
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expressed (Bowles and Carlin, 2018) as . Figure S2 shows a Lorenz curve 

for this population. 

Using this expression for the Gini, and supposing that in the population under consideration 

there are none without wealth, we have G = n – s, and this allows us, again, to see what our 

average Gini of 0.35 means. If ninety-nine of a hundred wealth holders together own 0.64 of 

the wealth and the remaining holder owns the rest, we have G = 0.99 – 0.64. = 0.35. 

We mentioned in the introduction that similar Gini coefficients can be associated with very 

different distributions of wealth. The Lorenz curves in Figure S3 illustrate this fact, with 

concentration at the top (Tell Brak) and at the bottom (Tell Sabi Abyad) of the wealth 

distribution accounting for similar levels of wealth inequality as measured by the Gini 

coefficient.  

 
Figure S3. Lorenz curves from two (small) populations with similar Gini coefficients. The 

wealth measure is house area. The Gini coefficient for Tell Sabi Abyad is 0.317 and for Tell 

Brak is 0.361, computed using total house area. 

 

(1 )G u n u s= + − −
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From individual to household inequality in grave wealth   

Table S1 presents the results of the method implemented to calculate between-household 

inequality from individual burial goods, as described in section 2 of our paper. The four sites 

with the greatest number of gender-identified observations are Wildcat Canyon, Berrian's 

Island and Sheep Creek in the Columbia Plateau dataset (Schulting 1995) and Belleview in 

the Hohokam dataset (McGuire 1992). 

The random assortment method consists in the following steps. We first created a vector of 

female observations randomly ordered and then assigned each element of the vector (first to 

last) to an element of the males’ vector ordered by increasing wealth. When females 

outnumbered males (or vice versa) some males (or females) were randomly drawn twice to 

form a couple. In the wealth assortment algorithm when females outnumber males (or vice 

versa), in order to not lose information, the poorest female is matched with a fictitious male 

with a wealth equal to the wealth of the poorest man. The last rows shows the results of the 

same procedure implemented among the !Kung (they provide a robustness test that we 

explain below.)  
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Table S1. Gini coefficients of grave wealth for individual and couples. Shown in column 

(3) are the Gini computed only across the gender-identified individuals in each site and 

in column (4) those computed on couples’ wealth when individuals are matched through 

maximal wealth assortment. Column (5) reports the average Gini coefficient across the 

ten rounds of random assortment. Column (6) is the mean of the Gini in columns (4) 

and (5). Shown in column (7) are the ratios μ in each archaeological site and in the 

!Kung dataset and obtained as the ratio of the average Gini of couples’ wealth, column 

(6), and the Gini of individuals’ wealth, column (3). 

Society Site 
Gini on 

individuals 

Gini wealth 

assortment 

Gini random 

assortment 

(average across 

10 rounds) 

Average 

Gini of 

couples’ 

wealth 

μ 

(1) (2) (3) (4) (5) (6) (7) 

Hohokam Belleview 0.698 0.748 0.533 0.640 0.92 

Columbia 

Plateau 

Wildcat 

Canyon 
0.622 0.677 0.513 0.595 0.96 

Berrian’s 

Island 
0.522 0.540 0.372 0.456 0.87 

Sheep 

Creek 
0.764 0.757 0.587 0.672 0.87 

!Kung - 0.219 0.196 0.148 0.172 0.78 

 

We used this ratio for the individuals-to-household adjustment, treating couples’ wealth as 

household wealth. In the southern Mesopotamia dataset (Stone 2018), for example, the Gini 

coefficient computed on all individual graves at Eridu during the Late Ubaid is equal to 

0.445. We multiply this number by the 0.91 ratio and obtain the estimated Gini on couples’ 

wealth equal to 0.405. 

As a robustness check, we also ask, using a dataset for which (unusually) we know the actual 

wealth of both members of couples, if the Gini for couples obtained through our method is 

close to the Gini computed on the wealth of true couples. We do this using the information on 

individual wealth in the !Kung population from the dataset described in (Wiessner 1982) . To 

replicate the methods used on the Columbia Plateau and Hohokam datasets, we estimate 

couples’ wealth as the simple sum of all the items owned by the male and the female member 
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and we compute the Gini coefficient based on this sum for all couples, which is equal to 

0.168.  

We then replicate for the !Kung the couples’ matching procedures used above for the 

archaeological datasets. In other words, we use the individual observations as if we knew 

nothing about who was actually paired with whom, which is the problem we confront with 

the burial data. We then create hypothetical couples by wealth assortment as well as through 

ten random assortments which, when averaged, gives a Gini coefficient equal to 0.172, which 

is remarkably close to the Gini computed on true couples (0.168). 

 

Sample size and the Gini coefficient 

Table S2 shows the skewness and bias of the three wealth distributions shown in section 3 of 

our paper. The degree of bias and imprecision of the estimate declines for larger sample sizes, 

but both are quite modest even for samples as small as 20.  

 

Table S2. Summary statistics of wealth distribution in three large datasets. For each of 

the three datasets used in the analysis, column (3) is the Gini coefficient on the total 

individual population, column (4) the number of observations, column (5) the third 

moment of the distribution (degree of right skewness) and columns (6-8) the bias, i.e. 

one minus the ratio of the estimated Gini to the true Gini, and the standard error (in 

parentheses) as a fraction of the true Gini, when the number of randomly selected 

individuals in the hypothetical limited dataset on which the Gini estimate is based is, 

respectively, 20, 50, and 150. Source: (McGuire 1992; Schulting 1995; Willführ & 

Störmer 2015). 

 Dates Gini N Skewness 

Bias 

(se) for  

n =20 

Bias (se) 

for  n 

=50 

Bias (se)  

for  n= 

150 

(1) (2) (3) (4) (5) (6) (7) (8) 

Columbia 

Plateau 

2000 BC– 

AD 1800 

0.62

3 
498 2.279 

-0.003 

(0.003) 

-0.00004 

(0.002) 

-0.020 

(0.001) 

Hohokam 
AD 750–

1125 

0.77

5 
254 4.241 

-0.002 

(0.003) 

-0.001 

(0.001) 

-0.0004 

(0.007) 

Krummhörn 
AD 1720–

1810 

0.80

3 
3908 3.588 

-0.020 

(0.002) 

-0.008 

(0.001) 

-0.003 

(0.001) 
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Accounting for those without wealth: using the class-based Gini coefficient to recover 

missing data 

If we know how many members of the population with zero wealth are missing from the data 

set we can make a surprisingly accurate approximation of the true Gini coefficient (that for 

the entire population, including those without wealth, the ‘zeros’).  

We begin with the expression for the Gini coefficient for the 3-class society above, namely  

(1 )G n u u s= + − −  

Here, u and n are the fractions of the entire population that are without wealth and ‘poor’, 

respectively.  

We would like to use data on a Gini coefficient measured on the population with positive 

wealth (which relative to the complete population is 1-u in number) along with data on the 

fraction of the total population that are zeros to estimate the true population Gini (including 

the zeros). For this population there are no individuals without wealth, so we have the 

fraction of this population that is poor as (1 )n u−  and the fraction that has positive wealth as 

1 (rather than (1-u) in the true population). So the Gini coefficient using information from the 

entire population is:  

1
nG s

u
′ = −

−
 

To recover the Gini for the entire population from these data, we multiply G’ by (1-u) and 

add u. This gives us: G G u uG′ ′= + −  

This expression is an approximation as it is based on a population with three homogeneous 

groups and, as a result, the Lorenz curve in three segments corresponding to the zeros, the 

poor, and the rich. We use this equation to estimate the true Gini coefficients from the Gini 

calculated without the zeros.  

In order to check how good our approximation is, we use observed historical data in which 

zeros are present and perform a knock-out experiment: we eliminate the zeros, then use 

equation ‘3’ above to recover an estimate of the true (zeros in) Gini coefficient, and compare 

this estimate with the true (zeros in) Gini. We simulate the reconstruction using 32 complete 

datasets (1 Florence, 4 Krummhörn, 4 Hohokam, 23 Columbia Plateau) shown in Table S3. 

Comparing the Gini predicted using our method and the true one, we find that the two have a 

correlation coefficient equal to 0.99 (p<0.001). The mean absolute error as a fraction of the 

mean of the true Gini is 0.00005. 
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Accounting for those without wealth: southern Mesopotamia and Roman Italy 

We approximate the proportion of slaves in the ancient southern Mesopotamia urban 

population, reconstructing the number of slaves living in the city of Uruk in 3000 BC. We 

then apply the resulting slave ratio to the different periods (fourth to second millennia BC) 

covered by the inequality estimates (house space and grave goods) from southern 

Mesopotamia (Stone 2018). 

According to Westenholz (2002), the total population of Uruk in 3000 BC numbered  

40–45 000 individuals (including slaves). Taking as the total population number the midpoint 

42 500 and considering that about 9000 of them were slave workers employed in the textile 

sector (Jacobsen 1953; McCadams 1978), the first estimate of the slave percentage of the 

total population is equal to 21 per cent. In addition, we add to this estimate also the slaves 

employed as household workers in private, public and temple households. To estimate how 

many of the extant 33 500 individuals (that is total population minus slaves in textiles) were 

household slaves, we use the estimated proportion between free individuals and household 

slaves provided in Diakonoff (1969). There, it is estimated that for every 100 individuals, 

there existed about 16 privately owned slaves (our computation from Diakonoff (1969) p. 

175) employed as household workers. If we apply this ratio to the 33 500 individuals, we find 

that about 28 100 were free, while 5400 were slaves. Summarising, we count 14 400 slaves 

(textile workers and household workers), who accounted for the 34 per cent of the Uruk 

population. Table S4 shows how the Gini coefficients in southern Mesopotamia, fourth to 

second millennia BC change when the chosen fraction of zeros is 0.34. 

According to the information provided in Scheidel (2011), in Roman Italy slaves represented 

the nine per cent of total population. This is the fraction of slaves that we use to adjust the 

Gini coefficients computed in the Roman Italian towns of Herculaneum and Pompeii. 
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Table S3. Gini coefficients in 32 populations. The first 23 rows show the computations 

for the Columbia Plateau dataset, the subsequent 4 rows show the Hohokam and the 

remaining rows show the non-archeological datasets. Column (4) reports coefficients 

computed on the whole population. Column (5) shows Gini computed on the population 

without zeros. Note that the Gini coefficients of the whole population, column (4) of 

Berrian’s Island, Wildcat Canyon and Sheep Creek are different than those reported 

for the same three sites in column (3) of Table S1. The reason is that while in Table 1, 

the Gini coefficients were computed only on the gender identified individuals, here the 

Gini are estimated on all the individuals at the site. 

Site Sample size 
Fraction of 

zeros 
Giniinc Giniexc 

(1) (2) (3) (4) (5) 

45-FE-7 24 0.583 0.800 0.489 

45-ST-47 11 0.090 0.585 0.155 

45-ST-8 15 0.266 0.478 0.270 

Congdon 30 0.100 0.369 0.296 

Selah 12 0.166 0.356 0.213 

Beek’s pasture 18 0.444 0.761 0.549 

Berrian’s 

Island 33 0.121 

0.547 0.483 

Dalles 

Deschutes 34 0.411 

0.704 0.486 

Fish Hook Isl. 

II 13 0.307 

0.625 0.437 

Juniper 22 0.181 0.572 0.471 

Keller Ferry 12 0.583 0.743 0.294 

Koomloops 24 0.041 0.315 0.284 

Nicoamen 15 0.133 0.559 0.485 

Nicola Valley 10 0.200 0.452 0.296 

Okonogan 18 0.388 0.638 0.385 

Rabbit Island I 11 0.090 0.390 0.323 

Rabbit Island 

II 15 0.133 

0.394 0.298 
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Site Sample size 
Fraction of 

zeros 
Giniinc Giniexc 

(1) (2) (3) (4) (5) 

Sheep Creek 38 0.447 0.750 0.538 

Sheep Island 22 0.318 0.639 0.458 

Sundale 19 0.473 0.774 0.549 

Whitestone 38 0.342 0.579 0.352 

Wildcat 32 0.312 0.667 0.509 

Yakima 22 0.454 0.700 0.427 

21st Street 32 0.468 0.740 0.530 

22nd Street 43 0.348 0.752 0.608 

Belleview 99 0.545 0.757 0.487 

Moreland 69 0.536 0.812 0.582 

Krummhörn 

1750 1066 0.446 0.766 0.576 

Krummhörn 

1765 1553 0.465 0.775 0.580 

Krummhörn 

1780 1984 0.513 0.797 0.583 

Krummhörn 

1810 2354 0.599 0.829 0.575 

Florence 1427 9779 0.146 0.787 0.750 
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Table S4. Adjusted Gini coefficients for southern Mesopotamia and Roman Italy. 

Shown in the table are the Gini coefficients for southern Mesopotamia and Roman Italy 

from Stone (2018) before the zero adjustment, and after the correction for the sample 

bias and couples’ adjustment (only for grave goods), column (4). The fraction of the 

missing non-owners used in the zero adjustment is 0.34 for southern Mesopotamia and 

0.09 for Roman Italy and the Gini coefficients adjusted to account for the missing zeros 

according to the method explained in the current section are in column (5). 

Phase 
Year 

(midpoint) 

Type of 

wealth 

Gini adjusted by 

sample bias and 

couples excluding 

slaves 

Gini adjusted by 

sample bias and 

couples including 

slaves 

(1) (2) (3) (4) (5) 

Eridu Late Ubaid 4500 BC 
Grave 

goods 

0.405 0.607 

Kafajah Early 

Dynastic 
2500 BC 

Grave 

goods 

0.409 0.610 

Kafajah Early 

Dynastic 
2500 BC House size 

0.708 0.807 

Akkadian 2250 BC 
Grave 

goods 

0.738 0.822 

Neo Babylonian 500 BC 
Grave 

goods 

0.815 0.878 

Neo Babylonian 500 BC House size 0.426 0.621 

Old Babylonian 1750 BC 
Grave 

goods 

0.819 0.881 

Old Babylonian 1750 BC House size 0.494 0.666 

Italy—

Herculaneum 
AD 79 House size 

0.530 0.572 

Italy—Pompeii AD 79 House size 0.546 0.587 

 

Accounting for (non-randomly) missing wealth owners: the case of Knossos 

A problem arising with the house size dataset for Neopalatial Knossos (data from Christakis 

(2008) and Whitelaw (2001a, unpublished database)) is that the available data provide 
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information on only a small fraction of the total area of the city, 13 houses in total: Palace, 

Little Palace/Unexplored Mansion, Acropolis House, Hogarth’s House A, House of Chancel 

Screen, House of Frescoes, Royal Villa, SEX: North House, SEX: South House, South 

House, Southeast House, Southwest House, Northeast House. 

Most of the 13 houses appear to have been ‘elite’ structures including the Palace and Little 

Palace/Unexplored Mansion, and likely excluding a large fraction of population (a mixture of 

elites/non-elites) living in the extensive urban settlement (Whitelaw 2004). For this reason, 

the Gini coefficient computed on the sum of living and storage space of these 13 houses is 

not representative of the actual distribution of house space, as also suggested by Whitelaw 

(2001b). 

In order to have a more realistic representation of the missing population, we create a random 

log normal distribution of total house space for the population not excavated (in ancient 

societies the distribution of house space was usually strongly right skewed, making the log 

normal distribution appropriate.) The estimation of the Gini coefficient by this means will be 

sensitive to three key parameters in the random log normal distribution: the number of 

missing households, how unequally distributed these house sizes are and the mean size of 

total space they have. Following (Whitelaw 2001b, 2004, 2019), we take as the estimate of 

Knossos population the midpoint between 17 000 and 25 000 individuals, which translates 

into 6000 households (assuming that the households had a size of 3.5 adult equivalents). 

Assuming that such a population probably represented the middle and lower social strata, we 

reproduce their possible house space as a truncated random log normal distribution with 

mean computed from the three available observations most likely to be similar to non-elite 

houses (SEX and Acropolis houses). As a measure of variation, we use the average standard 

deviation of houses measured for two East Cretan sites with relatively complete town plans 

and a standardized plan of small houses, Gournia and Pseira (Whitelaw, unpublished 

database). We then set as minimum and maximum house, respectively, the size of the 

smallest house at Pseira, and the size of the Little Palace/Unexplored Mansion. Finally, we 

compute the Gini coefficient on the house areas of this hypothetical population. 

 

Comparability among different asset types 

In Bogaard et al. (2018) we suggested that, when living and storage spaces can be clearly 

identified, these two areas can be aggregated in a single measure of household wealth. Here, 

as explained in section 5 of our paper given the large number of archaeological cases 
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assembled and compared, we limit our analysis to the storage space as a main measure of 

wealth.  

We compare the wealth inequality assessed through grave goods with the one assessed 

through house area (living and storage space) using the archaeological cases for which the 

two measures are available in the same period and location. These cases are Early Dynastic 

Kafajah, Old Babylonian Ur and Neo Babylonian Ur in southern Mesopotamia (Stone 2018), 

and the late Neolithic site of Gomolava in the western Balkans (Porčić 2018). 

In our comparison, we use the Gini coefficients after correction to represent couples (section 

2), for sample bias (section 3), and for missing zeros (section 4). Next, we calculate for each 

phase/site, the ratio of the estimated inequality of household wealth (the house area including 

living and storage space and already corrected by sample bias, couples’ and zero 

adjustments) to the estimated inequality of grave goods among couples. This ratio is quite 

similar across the four sites for which such comparison is possible: inequality in house size is 

approximately three quarters the level of inequality in grave goods. The implied downward 

adjustment in the inequality measure based on grave goods is 28 per cent with a standard 

error of 0.019. 

The fact that grave wealth is more unequally distributed than household wealth is consistent 

with our signaling model of the grave wealth phenomenon, developed in section 9 of this 

document. In Table S5 we show the Gini coefficients from archeological data used to 

estimate the adjustment from grave to household wealth inequality. We use this adjustment to 

correct the Gini coefficients in our dataset computed on grave goods. While our estimate of 

the required adjustment is based on a very limited sample, we are reassured by the modest 

standard error, 0.019, and the fact that the two measures (Ginis based on house size and grave 

goods) are almost perfectly correlated (r= 0.678, p < 0.001). 
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Table S5. Gini coefficients in archaeological sites and the adjustment across different 

asset type. Shown for each archaeological dataset for which more than one measure of 

inequality is available, column (1), are the Gini computed on available asset types, 

columns (3)–(4), and the difference between grave and house size inequality relative to 

inequality of grave wealth, column (5). Shown in the last row is the relative mean 

difference between the Gini estimated on the two asset types (standard error in 

parentheses.) 

Region—site 
Period 

(midpoint) 

Gini 

(house 

size) 

Gini 

(grave) 

Relative difference between 

the Gini of grave goods and 

the Gini of household wealth 

(1) (2) (3) (4) (5) 

Balkans—Gomolava 4750 BC 0.327 0.498 0.343 

South Mesopotamia—

Kafajah 
2500 BC 

0.610 0.807 0.244 

South Mesopotamia—

Ur 
2250 BC 

0.666 0.881 0.244 

South Mesopotamia—

Ur 
1750 BC 

0.621 0.878 0.291 

Average 0.281 (0.019) 

 

A note on the inclusion of southern Mesopotamia data in our dataset.  

Since the southern Mesopotamian cases provided in Stone (2018) show, in some cases (Early 

Dynastic period, Old and Neo Babylonian), two Gini coefficients in the same period 

computed on two different types of assets from the same population, we add them in our 

dataset in the following way. We adjust both measures using the adjustments explained here 

and in the and we then average the two measures. We implemented this procedure also for 

the Balkan site of Gomolava (Porčić 2018). 

 
Jerf al Ahmar 

A problem arises when we aggregate living and storage spaces for Jerf al Ahmar in northern 

Mesopotamia (mid–late tenth millennium BC). As the only storage spaces were located in a 

central building (EA30), their allocation to the surrounding households of the relevant phase 

considered here (II/W) is uncertain (Stordeur 2015; Bogaard et al. 2018). 
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Our method to estimate a measure of aggregated wealth is similar to our algorithm for 

matching males and females to measure couples’ grave goods inequality. It is based on two 

steps. We observe that the excavated area included five houses and six storage bins. We first 

assume that the house with the largest living area would have had the largest storage bin (in 

building EA30), the second largest living area the second largest storage bin and so on. 

Excluding from the matching procedure the smallest storage bin, we compute the Gini 

coefficient of the simple sum of spaces on the basis of this ‘wealth matching’, and find it to 

be equal to 0.200. We then randomly assign the five bins included to the five surrounding 

houses and compute the Gini coefficient on the sum of the two measures. We repeat the 

random assignment 10 times and get an average Gini equal to 0.187. The average Gini 

between the ‘wealth’ and random matching is 0.193, and this is the measure we use in our 

dataset.  

We also check what the Gini coefficient would be if each household had the same proportion 

of storage space in Building EA30. The Gini of the sum of the two areas after equal 

assignment of storage is 0.187. 

 

The scale effect and the accuracy of the nested method 

The scale effect is estimated by comparing inequality and population at a lower-level entity 

(a ‘village’) and a higher-level entity (‘district’). The scale effect for some population entity j, 

termed γj, is the difference between the Gini coefficient for the higher-level entity, gi, and the 

Gini coefficient for the lower level entity, gj, divided by the difference between the 

population of the higher-level entity, ni, and the population of the lower one, nj: 

                                                        𝛾𝛾𝑗𝑗 = 𝑔𝑔𝑖𝑖−𝑔𝑔𝑗𝑗
𝑛𝑛𝑖𝑖−𝑛𝑛𝑗𝑗

     (4) 

We assess the accuracy of the nested method to adjust for different population size using the 

following thought experiment. From the Columbia Plateau dataset (Schulting 1995), we 

select the archaeological period—the protohistoric phase—with the largest number of sites 

(10), which together, we assume, represent the entire set of level entities (which we will call 

‘villages’) making up the higher level entity (the district) 

Then we suppose that we have evidence on z <10 of these, i.e. some but not all of the 

villages. How accurate a prediction of the inequalities at the district level will we produce 

using our estimated pure scale effect function estimated from our three datasets and shown in 

Figure 7 of the main text? We answer this question by selecting, for each z between 1 and 10, 

all the possible sets of z villages and computing the mean absolute error between the Gini 
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predicted at the larger entity using the pure scale effect function, and the true Gini at the 

larger entity.  

We then plot in Figure S4 the mean absolute errors computed at different number z of 

villages used for the prediction. The figure shows that the mean absolute error as fraction of 

the true Gini, which is already very small (0.14) when we only use one village, becomes even 

smaller (0.06) as the number of villages included in the prediction increases to 4. Using all 10 

of the data points, the error is about 0.04. 

 

 
Figure S4. The accuracy of the nested method measured using the 10 protohistoric sites in 

the Columbia Plateau. The vertical axis measures the mean error in predicting the Gini 

coefficient for the higher-level entity when using data from the number of sites shown on the 

horizontal axis.  
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Signaling and grave goods 

For populations in which evidence of this practice is available, we treat grave goods not as a 

form of wealth itself but as an indicator of household wealth. We have already seen that as an 

empirical matter, grave goods are substantially more unequally distributed than is the floor 

area of dwellings, another indicator of wealth. Here we will see that if burying goods with the 

deceased is a form of social signaling, it is likely that inequalities in grave goods will provide 

an overestimate of disparities in total household wealth. Because it is the latter that is of 

interest (grave goods are just an indicator of total wealth) we will overestimate the degree of 

inequality by using measures of grave goods without an adjustment.   

Here is a very simple model showing why this may occur. There is one kind of wealth and 

the amount held by an individual is w. When he dies his son (a clone of his dad, the 

population is asexual) inherits all of his wealth and then transforms some amount of it g into 

grave goods, retaining the remainder w-g. If the wealth of the deceased includes stored grain, 

for example, some portion of that may be used to hire craftspeople to produce elaborate 

headdresses or ornaments.   

The son gains a social esteem value v for every unit of wealth that he transforms into goods 

buried with his late father. An individual’s utility u is an increasing concave function of his 

wealth remaining after assigning some to the production of grave goods (marginal utility is 

diminishing with increased remaining wealth). So, choosing ln(w-g) as a suitable increasing 

concave function, we have for the son the following maximization problem. Choose g to 

maximize 

              (5) 

Differentiating this with respect to g and setting the result equal to zero to find the g that 

maximizes the son’s utility, we have the son’s first order condition that determines the 

amount of grave wealth he should deposit as a function of the wealth he inherited from his 

father:  

       (6) 

In the entire wealth distribution there will be two classes of sons: those with wealth equal to 

or less than 1/v, who will deposit nothing in their father’s grave, and those with greater 

wealth, who will deposit goods in the grave whose production required the use of an amount 

of wealth that increases proportionally as wealth increases. In this model those with wealth 

equal to or less than 1/v do not signal, and those with greater wealth transform all wealth in 

excess of 1/v into grave goods. This is consistent with the common finding that there are a 

ln( )u w g vg= − +

1  for 1  and  0 otherwiseg w v w v= − > =
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significant number of individuals with no burial goods in many burial assemblages (Schulting 

1995). The fraction of wealth converted to grave goods (dividing the above equation by w) is  

  g/w = 1-1/vw        (7) 

which increases as wealth rises. The result is that for any non-degenerate distribution (e.g. 

perfect equality or its opposite, one person has the entire wealth) wealth converted to grave 

goods (g) will be more unequally distributed than will be total wealth (w). This is because 

wealthy sons convert a larger fraction of their wealth to their father’s grave goods than do 

less wealthy sons.  

The reason this is the case is that marginal utility of the son’s retained wealth is diminishing 

in its amount, while the marginal utility of the signal is a constant. If the value of the signal to 

the son is to advantage him in competitive status seeking it seems reasonable to assume that 

its marginal utility is not diminishing and could even be increasing (which were this to be the 

case would strengthen the results above). 

 

Gini coefficient for Çatalhöyük 

Our estimation of wealth inequality for prehistoric Çatalhöyük is different from the one 

provided in previous contributions where all observations were usually aggregated into a 

single population regardless of the different phases (e.g. Kohler et al. 2017). Here, instead, 

we follow the most recent phase differentiation and estimate the Gini coefficients for the two 

phases with more than three observations: North G and North H.  

 

Dataset  

The dataset assembled for the present research is part of the supplementary material 

(OSM_Dataset). 
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