[Supplementary material]

The Keimoes 3 desert kite site, South Africa: an aerial lidar and micro-topographic exploration

Marlize Lombard¹, Matthew V. Caruana¹, Jaco van der Walt¹ & Anders Högberg^{1,2,*}

¹ Palaeo-Research Institute, University of Johannesburg, South Africa

² School of Cultural Studies Archaeology, Linnaeus University, Sweden

* Author for correspondence (Email: anders.hogberg@lnu.se)

Table S1. Newly calibrated age ranges for all the ¹⁴C-dated Stone Age stone structuresfrom Namibia and South Africa (calibrations based on Hogg *et al.* 2013; Loftus *et al.*2019).

Site	Radiocarbon date	Calibrated range at 95.4%	Pottery	Metal	Source/s
Brandberg (date 1)	150±50 BP (Pta-3891)	AD 1670 and younger	Yes	Not stated	Kinahan 1991
Skeleton Coast N2003/3	165±50 BP (KIA- 21033)	AD 1660 and younger	Yes	none	Eichhorn & Vogelsang 2011
Kuidas Spring	216±24 BP (OxA- 27897)	AD 1650-1880	Yes	Present	Veldman <i>et al.</i> 2017
Bloubos 7 (Spit 2)	340±50 BP (Pta-7730)	AD 1450-1670	Yes	None	Parsons 2004
Zerrissene Mountains	345±40 BP (Pta-1577)	AD 1470-1660	Yes	Present	Carr et al. 1978
Skeleton Coast N2002/5	400±50 BP (KN-5565)	AD 1440-1640	No	None	Eichhorn & Vogelsang 2011
Sylvia Hill (date 1)	510±45 BP (Pta-3294)	AD 1390-1610	Yes	Not stated	Shackley 1983
Brandberg (date 2)	570±50 BP (Pta-3873)	AD 1310-1460	Yes	Not stated	Kinahan 1991
Sylvia Hill (date 2)	1070±60 BP (Pta- 3295)	AD 890-1160	Yes	Not stated	Shackley 1983
Seacow River Valley	1080±40 BP (Beta- 230584)	AD 890-1150	Yes	Not stated	Sampson 2010
Skeleton Coast N2002/7	1175±25 BP (KIA- 18993)	AD 880-990	Yes	None	Eichhorn & Vogelsang 2011
Simon se Klip	1440±60 BP (GX- 32343)	AD 540-770	Yes	None	Jerardino & Maggs 2007
Jagt Pan 7	1610±50 BP (Pta- 4300)	AD 380-600	Yes	None	Parsons 2008
Hartmann's Valley	1690±110 BP (UtC- 9880)	AD 130-640	Yes	Present	Eichhorn & Vogelsang 2011
Springbokoog 1	4630±60 BP (Pta- 4091)	3520-3090 BC	No	No	Morris 1988; Beaumont & Vogel 1989; Beaumont <i>et</i> <i>al.</i> 1995

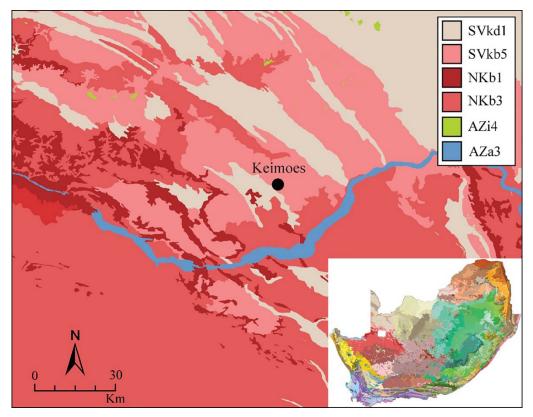


Figure S1. South African vegetation map and detailed veld-type map of the area surrounding Keimoes 3 including Lower Gariep Broken Veld (NKb1), Bushmanland Arid Grassland (NKb3), Kalahari Karroid Shrubland (NKb5), Gordonia Duneveld (SVkd1) and Lower Gariep Alluvial Vegetation (AZa3). AZi4 indicates saltpans of the southern Kalahari (map adapted from Mucina & Rutherford 2006).

Table S2. Geology, soils, climate and vegetation overview within a 20km radius of Keimoes 3, according to bioregions and their vegetation units as identified and discussed in Mucina and Rutherford (2006).

Geology and soils	Climate	Altitude, features and vegetation			
NAMA-KAROO BIOME: BUSHMANLAND BIOREGION					
Lower Gariep Broken Veld: NKb1 (Mucina & Rutherford 2006: 333-34)					
The geology here is complex. Banded	The mean annual	Altitude ~400–1200m. Hills and low			
iron formation and amphibolites of the	precipitation ranges from	mountains characterise this region, plains are			
Asbestos Hills Subgroup are Vaalian and	~77mm in the west to	slightly irregular but with some rugged			
the carbonates and cherts of the Campbell	\sim 240mm in the east.	terrain (e.g. downstream of the Augrabies			
Group are of the same era. Metamorphic	Summers are hot with mean	Falls). The sparse vegetation is dominated by			
rocks of the Mokolian Erathem include	maximum temperatures for	shrubs and dwarf shrubs, with annuals			
quartzites and gneisses of the	January reaching 41°C in	(especially in the spring), and perineal			
Korannaland Supergroup as well as the	January, and mean	grasses and herbs. Groups of widely scattered			
Riemvasmaak gneiss. Metamorphosed	minimum temperatures -	low trees such Aloidendron dichotomum,			
clastic sediments of the Uitdraai	2°C in July for Kakamas.	(previously Aloe dichotoma) and the drought-			
formation are also Mokolian. Remaining	Frost varies from less than	resistant Vachellia karroo (previously Acacia			
areas are composed of the multiplex	10 days per annum in the	mellifera) occur on slopes of outcrops and on			
Namaqualand Metamorphic Complex.	west to around 30 days in	the sandy soils of foot slopes respectively.			
Soils are shallow and skeletal, typically	the east.				
of Ib, Ic and some Fb land types.					
Bushmanland Arid Grassland: NKb3 (Mucina & Rutherford 2006: 335–36)					

A third of the area is covered by recently (Quaternary) alluvium and calcrete. Superficial deposits of the Kalahari Group are present in the east. There are outcrops of Palaeozoic diamicitites of the Dwyka Group and metasediments of Mokolian age. The soils of most of the area are red-yellow apedal soils, freely drained, with a high base status and mostly < 300 mm deep, typical of Ag and Ae land types.	Rain falls largely in late summer/early autumn and varies annually, with a mean annual precipitation varying from 70mm in the west to 200mm in the east. At Kenhardt, mean maximum and minimum temperatures are 40.6°C for January and -3.7°C for July. The Middle Orange river, mostly surrounded with this regime experiences about ten days of frost per annum.	Altitude vary between 600 and 1200m. The landscape consists of extensive to irregular plains on a slightly sloping plateau, sparsely vegetated by grassland. It is dominated by white grasses (<i>Stipagrostis</i> species) giving this vegetation type the character of a semi- desert 'steppe'. In places, low <i>Salsola</i> shrubs change the vegetation structure. In years of abundant rainfall, the veld experiences rich displays of annual herbs.
Kalahari Karroid Shrubland: NKb5 (Mu	acina & Rutherford 2006: 337)	
Mudstones and shales of the Ecca Group (Prince Albert and Volksrust Formations) and Dwyka tillites, both of early Karoo age, dominate. About 20 per cent of rock outcrop is formed by Jurassic intrusive dolerite sheets and dykes. Soils are shallow Glenrosa and Mispah forms, with lime generally present in the landscape (Fc land type), and some red- yellow apedal, freely drained soils with high base status usually <15 per cent clay (Ah and Ai land types). The salt content in these soils is very high.	Rainfall occurs in late summer/early autumn with mean annual precipitation 100–200mm. Mean temperatures for January are ~40°C and for July ~ - 3°C.	Altitude ~800–1200m. Slightly irregular plains with dwarf shrubland dominated by a mixture of low sturdy, spiny (and sometimes also succulent) shrubs and white grasses characterises the landscape. In years of good rainfall, annuals such as <i>Gazania</i> and <i>Leyseria</i> species are abundant.
SAVANNA BIOME: KALAHARI DUN	EVELD BIOREGION	•
Gordonia Duneveld: SVkd1 (Mucina & F		
Aeolian sand underlain by superficial silcretes and calcretes of the Cenozoic Kalahari Group. Fixed parallel sand dunes, with almost exclusively Af land type.	Summer and autumn rainfalls with very dry winters. MAP 120–260mm. Frost fairly frequent to frequent in winter. December mean maximum temperature is ~40°C, and the mean minimum for July ~ -4°C.	Parallel dunes ~308m above plains. Open shrubland with ridges of grassland dominated by duinriet (<i>Stipagrostis amabilis</i>) and driedoring (<i>Rhigozum trichotomum</i>) in the inter-dune straiten.
FRESHWATER WETLANDS		
Lower Gariep Alluvial Vegetation: AZa.		
Recent alluvial deposits of the Orange River supporting soil forms such as Dundee and Oakleaf. The river cuts through a great variety of Precambrian metamorphic rocks. Ia land type. Subject to floods in summer.	Details as above for different regions.	Altitude 1–1000m with flat alluvial terraces and riverine islands supporting a complex of riparian thickets dominated by <i>Ziziphus</i> <i>mucronata</i> , <i>Euclea pseudebenus</i> and <i>Tamarix</i> <i>usneoides</i> , reed beds with <i>Phragmites</i> <i>australis</i> as well as flooded grasslands and herblands populating sand banks and terraces within and along the river.

Table S3. Synthesis of the micro-topographic features of some Negev kite sites as

discussed by Bar-Oz et al. (2011: 109-211).

Kite	Micro-topographic features (natural and/or constructed)
Samar West-	The kite is located on a plain, facing north towards a rich grazing pasture and marshland oasis 3km
A kite	south of it. Its right arm reaches the apex from the northwest, its arms create a narrow neck near the
	apex. Excavation revealed that the apex of the trap was built above a shallow wadi bed, to take
	advantage of the small topographic difference that is needed to hide the enclosure. The head itself is
	circled by a wall made of massive stones. A large, round pit was dug before the construction of the
	enclosure wall. In addition, a stone ramp was built where the arms meet the apex, to increase the vertical
	difference between the running plane of the hunted game and the bottom of the trap's head. Both
	operations created a change in depth from ~0.6-0.7m to more than 1.5m (Nadel et al. 2010).

Samar West-	The kite is adjacent to the Samar West-A kite and together they form the shape of a W open to the north.
B kite	The right arm of Samar West-B starts at the foot of a steep hill. Together the two kites block the
	southern exit from the rich pasture area of the oasis. The arms of Samar West-B were built on a flat
	area, running south into a shallow wadi, where the apex was constructed. The head of the kite was
	surrounded by a massive wall preserved up to 1.2m. The excavated trench clearly indicates that, before
	construction, the builders dug a wide, shallow pit, approximately 1m deep, including a vertical cut into
	the wadi bank and a ramp on the terrace, just above the enclosure, to enhance the depth of the vertical
	fall and to hide the trap from the driven game. Later the kite's enclosure was turned into a corral.
Sayarim kite	The kite is located on a slope facing east with its arms open to a plain on the west, dropping steeply
	towards the apex, built within a small wadi.
Pitam kite 4	The kite is built on an east-facing slope, opening to a plateau on the west and curves steeply into a small
	wadi on the east, where the apex is built. The lack of vegetation to the west can explain the kite's
	location, and it blocks ancient trails used by ungulates. A massive barrier of large rocks forms the
	enclosure that was originally built within the small wadi, diverting it with a few metres.
Har Harut	This is a small kite located within a crater. Like the Pitam and Sayarim kites, its setting indicates that it
kite	was carefully placed within a narrow pass on ancient animal trails.
Nahal Eshel	The kite is built on the edge of a plateau. The arms open to the west toward a wide plain, while they
kite	converge to the apex on a steep, rocky slope. The natural slope was utilised for the kite's design and the
	construction of the enclosure.
Nahal Horsha	These two kites are located above and to the west of a broad wadi that runs to the north. They are
North and	approximately 600 m away from each other on flat hilltops. The arms of both kites are open to the
South	plateau. One of the arms was built along a natural cliff. In both kites, the apex was set below a cliff ~5
	m deep that faces east (northern kite) and southeast (southern kite), and both are opened to the west and
	northwest. At the bottom of the cliff, a massive rampart created a round enclosure.
Giv'at	A small kite situated on a plain intersected by west-east wadis. The arms run on a steep slope, while the
Shehoret kite	apex is in the wadi.
Har	The arms of this small kite located at a topographic saddle run from the north and west, capturing the
Shahamon	animals driven from a broad wadi to the north. The apex is massively built in a wadi.
kite	

References

BAR-OZ, G., D. NADEL, U. AVNER & D. MALKINSON. 2011. Mass hunting game traps in the Southern Levant: the Negev and Arabah "desert kites". *Near Eastern Archaeology* 74: 208–15. https://doi.org/10.5615/neareastarch.74.4.0208

BEAUMONT, P.B. & J.C. VOGEL. 1989. Patterns in the age and context of rock art in the

Northern Cape. The South African Archaeological Bulletin 44: 73–81.

https://doi.org/10.2307/3887648

BEAUMONT, P.B., A.B. SMITH & J.C. VOGEL. 1995. Before the Einiqua: the archaeology of the frontier zone, in A.B Smith (ed.) *Einiqualand: studies of the Orange River frontier*: 236–64. Cape Town: UCT Press.

CARR, M.J., A.C. CARR & L. JACOBSON. 1978. Hut remains and related features from the

Zerrissene mountain area: their distribution, typology and ecology. Cimbebasia 2: 235–58.

EICHHORN, B. & R. VOGELSANG. 2011. Under the Mopane tree: Holocene settlement in

northern Namibia (Africa Praehistorica 24). Köln: Heinrich Barth Insitut.

HOGG, A.G. et al. 2013. SHCal13 Southern Hemisphere calibration, 0-50 000 years cal BP.

Radiocarbon 55: 1889–1903. https://doi.org/10.2458/azu_js_rc.55.16783

JERARDINO, A. & T. MAGGS. 2007. Simon se Klip at Steenbokfontein: the settlement pattern of a built pastoralist encampment on the west coast of South Africa. *South African Archaeological Bulletin* 62: 104–14.

KINAHAN, J. 1991. *Pastoral nomads of the central Namib Desert: the people that time forgot*. Windhoek: Namibia Archaeological Trust and New Namibia Books.

LOFTUS, E., P.J. MITCHELL & C. BRONK RAMSEY. 2019. An archaeological radiocarbon database for southern Africa. *Antiquity* 93: 870–85. https://doi.org/10.15184/aqy.2019.75 MORRIS, D. 1988. Engraved in place and time: a review of variability in the rock art of the Northern Cape and Karoo. *South African Archaeological Bulletin* 43: 109–20. https://doi.org/10.2307/3888623

MUCINA, L. & M.C. RUTHERFORD. 2006. *The vegetation of South Africa, Lesotho and Swaziland*. South African National Biodiversity Institute: Pretoria

NADEL, D., G. BAR-OZ, U. AVNER, E. BOARETTO & D. MALKINSON. 2010. Walls, ramps and pits: the construction of the Samar Desert kites, southern Negev, Israel. *Antiquity* 84: 976–92. https://doi.org/10.1017/S0003598X00067028

PARSONS, I. 2004. Stone circles in the Bloubos landscape, Northern Cape. *Southern African Humanities* 16: 59–69.

– 2008. Five later Stone Age artefact assemblages from the interior Northern Cape province. *The South African Archaeological Bulletin* 63: 51–60.

SAMPSON, C.G. 2010. Chronology and dynamics of later Stone Age herders in the upper Seacow River valley, South Africa. *Journal of Arid Environments* 74: 842–48.

https://doi.org/10.1016/j.jaridenv.2008.11.001

SHACKLEY, M. 1983. Human burials in hut circles at Sylvia Hill, south-west Africa/Namibia. *Cimbebasia 3*: 102–106.

VELDMAN, A., I. PARSONS & M. LOMBARD. 2017. Kuidas Spring 1, Namibia: first impressions of a Later Stone Age site complex. *South African Archaeological Bulletin* 72: 60–70.