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Strontium isotope analysis: general principles and application to Northern Italy 

Strontium isotope ratios in odontoskeletal remains are regularly employed to assess the 

provenance and trace the mobility of individuals in different phases of their lives. These are 

determined by comparing the ratio between strontium-87 (87Sr) and strontium-86 (86Sr) in 

bones/teeth, with the local baseline values measured in faunal/vegetal samples (modern 

and/or ancient) from the archaeological site or its geologically coherent immediate hinterland. 

The technique has been in use for more than 30 years in bioarchaeological research and is 

described in detail in a number of publications (e.g. Grupe et al. 1997; Montgomery et al. 

2000; Bentley & Knipper 2005; Douglas Price et al. 2012; Giblin et al. 2013; Scheeres et al. 

2013; Harvig et al. 2014; Sjögren et al. 2016). 

As radiogenic strontium-87 (87Sr) originates over time from the radioactive decay of 

rubidium-87 (87Rb; half-life of 48.8 Ma), the ratio 87Sr/86Sr depends on the age of a given 

bedrock, but also on its geochemical nature. Older geological units (>100Ma), such as 

Palaeozoic metamorphic and Mesozoic igneous rocks in the Alps, generally display higher 
87Sr/86Sr values (≥0.71), while younger materials, such as Cenozoic marine carbonates and 

chalks in the Apennines, show lower ratios (≤0.709). Sediments in alluvial plains reflect the 

ratio of their parent material, or an admixture of the ratios that characterise the different 

geological units affected by the erosive activity of the rivers in the uplands.  
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Frattesina is located on the right bank of the Po di Adria palaeoriver, and therefore the local 

soils are composed of an admixture of the alluvial sediments collected from both the right 

(Apennine) and left (Alpine) tributaries. The River Adige runs not far north of the site, 

carrying exclusively sediments of Alpine origin. Other alluvial basins characterise the area 

within 50 km: the Brenta river valley in the north (Alpine origin) and the Reno and Panaro 

river valleys in the south (Apennine origin). Hence, 87Sr/86Sr values are anticipated to vary 

significantly within a relatively small radius. 

Bioavailable strontium baselines have been mapped using an open-source geolithological 

map of Northern Italy (see http://sgi.isprambiente.it/GMV2/index.html), through Quantum 

GIS software (Figure 4). Ten different “geolithological zones” have been identified, where 

strontium isotope ratios are available and a framework of northeastern Italy has been 

summarised in Table S1 and Figure 4. 

Thirty-five new baseline values have been produced within the present study, analysing 

animal tooth enamel from Bronze Age sites (Sant’Eurosia, Casinalbo, Fondo Paviani) or 

modern snails found on targeted geolithological units at different distances. Ancient faunal 

remains have been considered to represent an average bioavailable Sr isotope composition 

over their feeding area (Price et al. 2002; Bentley 2006). However, it is very unlikely that 

humans and domestic animals ate food from distinct locations, marked by different isotope 

compositions.  

Tafuri et al.’s (2018) recent work has indeed demonstrated for the terramara at Fondo 

Paviani (as well as for other Terramare sites) that cattle, sheep/goats and domestic pigs were 

fed with C4 plants, presumably millet, which was also identified in the pollen series and 

phytolith record from the site (Dal Corso et al. 2017). This means that, during the Terramare 

period and also presumably at Frattesina, animals were almost certainly fed with fodder 

cultivated in the surrounding fields, and for this reason their strontium isotope composition 

most likely reflects the local baseline. Obviously, animals could also be part of 

gifts/exchanges with other distant communities and, therefore, this source has to be 

considered critically in comparison with other sources, but aids in validating the inferred 

bioavailable ranges. For our study, we have added snail shells, also used by several authors as 

an indicator of the locally bioavailable strontium source (Bentley et al. 2002; Wright 2005; 

Evans et al. 2010; Nafplioti 2011; Frei & Price 2012; Laffoon et al. 2012; Shishlina et al. 

2016; Emery et al. 2018; Panagiotopoulou et al. 2018). Some authors have pointed out that 

land snail shell 87Sr/86Sr can be biased towards values for soil carbonates; nonetheless their 

values are usually close to those of ground vegetation (Maurer et al. 2012). 
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The analysis of vine branches for wine ‘authentication’ or geographic traceability both north 

and south of the River Po represents another source of biologically available strontium 

baselines (Aviani 2013; Trincherini et al. 2014; Durante et al. 2015, 2016). 

We have also taken into account chemical analyses of natural mineral waters (Voerkelius et 

al. 2010). The work by Voerkelius et al. is relevant for comparison with the nearest baselines, 

but strontium isotope ratios from spring waters can only be used with caution, as they 

represent a very locally-specific kind of evidence, while an individual’s diet is an admixture 

of different sources from a specific, but wider, area. 

The Po Plain is one of the most intensely exploited regions of Europe, with extremely few 

uncultivated, non-urbanised areas. A very recent detailed Sr isotope survey in Poland 

(Zieliński et al. 2016, 2018) showed that the modern biosphere (animals) and hydrosphere 

(surface waters) can be contaminated by anthropogenic strontium derived from agriculture, 

industrial and municipal sources. For that reason, comparison of multiple sample types is 

necessary to achieve a robust isoscape. Following Emery et al.’s (2018) ‘first map’, inspired 

by a number of examples, all of them interpolating a variety of strontium sources (Evans et 

al. 2010; Nafplioti 2011; Maurer et al. 2012; Hartman & Richards 2014; Willmes et al. 2014; 

Laffoon et al. 2017), we have considered previous studies, in order to make a comparison 

between three different sources, namely ancient animals, modern snail shells and modern 

plants. However, compared to other ‘isoscapes’, the strontium isotope map of Italy still lacks 

in spatial resolution and critical assessment of baselines, which need to be enhanced. The 

variation in the currently available strontium isotope ratios for each of the ten geolithological 

zones is shown in Table S1. 

Concerning the different sources of strontium used for baselines, the 87Sr/86Sr obtained from 

different sources at Frattesina appear rather homogenous (0.70853, 0.708639 and 0.70898 for 

modern snails, 0.70892 for archaeological fauna). We can also compare the values obtained 

for Emilian Pliocene/Pleistocene limestone: the bedrock yielded a mean 87Sr/86Sr of 0.7087, 

soils 0.7087, snail shell 0.7085, springwater 0.7088, and wine 0.7090. Similarly 

geolithological zones 1, 2, 7-9 all display narrow ranges from a variety of samples and 

lithologies. We can therefore conclude that even if there is a slight variation of the isotopic 

composition, these are nonetheless relatively small, and the eventual impact of anthropogenic 

strontium (fertiliser/pollution) is negligible. Additional sources for local baselines are 

nonetheless necessary to refine the preliminary framework presented here. 

Buffer zones were drawn around Frattesina at three different radii: 5km (site catchment area, 

direct control), 20km (immediate hinterland), 50km (broader hinterland), in order to model 
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individual mobility in the territory. Since 87Sr/86Sr values within the 5 and 20km radii are 

rather uniform in this area, the two buffer zones were unified in a larger 0–20 km zone. 

 

Table S1. The 10 identified geolithological zones, 87Sr/86Sr baselines (minimum, 

maximum, mean values), and related references. 

Zone 

number 

Zone name Geolithology 87Sr/86Sr 

min 

87Sr/86Sr 

max 

87Sr/86Sr 

mean 

References 

1 Emilian plain Holocene alluvial 

sediments (derived 

from zone 2 or 3) 

0.7084 0.7090 0.7087 Trincherini et al. 

2014; Durante et 

al. 2015; present 

study 

2 Emilian 

Apennines 

Cenozoic marine 

sediments 

(sandstones, 

limestones, marls, 

turbidites, flysches, 

sands, clays, chalks)  

0.7085 0.7090 0.7088 Vaiani 2000; 

Scheeres et al. 

2013; Durante et 

al. 2015; 

Argentino et al. 

2017; present 

study 

3 Upper Taro 

River valley  

Mesozoic 

ophiolites/green 

stones and Cenozoic 

marine sediments 

0.7092 0.7109 0.7101 Voerkelius et al. 

2010 

4 Garda's 

moraine 

amphitheatre 

Pleistocene moraine 

deposits (from zones 

6 and 10) 

0.7079 0.7080 0.7080 Present study 

5 Mantova or 

Verona plain 

Pleistocene alluvial 

sediments (from 

zones 6 and 10) 

0.7088 0.7089 0.7089 Francisci et al. 

2017; present 

study 

6 Lower Adige 

and Lower 

Brenta 

valleys  

Pleistocene/Holocene 

alluvial sediments 

(from zones 6, 9, 10) 

0.7089 0.7107 0.7097 Aviani 2013 
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7 Colli Euganei  Palaeogene-Miocene 

volcanics, 

carbonates, 

dolomites, marls, 

0.7077 0.7088 0.7081 Aviani 2013; 

present study 

8 Colli Berici Palaeogene-Miocene 

volcanics, 

carbonates, 

dolomites, marls, 

0.7072 0.7082 0.7077 Present study 

9 Monti Lessini Mesozoic carbonates 

and dolomites; 

Cenozoic basalts 

0.7076 0.7084 0.7079 Present study 

10 Alps (upper 

Adige/Isarco 

river valleys) 

Palaeozoic 

metamorphics and 

volcanics 

0.7132 0.7236 0.7202 Müller et al. 

2003 

 

Methods 

Cremated bone samples were drilled using the method reported by Harvig et al. (2014) and 

pre-treated following Snoeck et al. (2016: 401). In addition to bioavailable strontium isotope 

values from the literature (Table S1), baseline samples were taken from pig tooth enamel 

from the Frattesina settlement and snails from different locations within 2 km of the site. The 

demineralization of the samples was performed by acid decomposition: a portion of about 

50mg of samples was dissolved in 10ml of NHO3 UP 4M. 

Ultrapure HNO3 obtained from a sub-boiling system (DuoPUR, Milestone, Bergamo, Italia) 

and ultrapure 18.2 MΩ water from a Milli-Q (Millipore, USA) system were used for the 

sample dissolution. HCl of hyperpure grade (Panreac, Barcelona, Spain) was used for sample 

treatment. SRM-987 isotopic standard from the National Standards and Technology (NIST, 

Gaithersburg, MD, USA) was used for external precision measurement and method 

validation. The certified NIST value for the isotopic ratio is 87Sr/86Sr = 0.71034 ± 0.00026, 

which corresponds to an internal precision equal to 0.037%. 

The sample solution was loaded into a chromatographic extraction column packed with Sr-

resin (Triskem, Bruz, France) where Sr and also Na, K and Ca are retained. A Sr-resin 

specific method was used (Trincherini et al. 2014; Brescia et al. 2005) for the elution of the 

elements and was performed in three steps, using respectively: 5mL 2M HNO3 (fraction 1), 

5mL 8M HNO3 (fraction 2) and 5mL of ultrapure Milli-Q for the elution of Sr (fraction 3). 
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The content of Sr, Rb, Na, K and Ca was measured in the solution obtained after 

mineralization of the samples (a small aliquot of 100µL was collected just after 

mineralization) and in each of the three solutions eluted from the chromatographic column. 

The measurements were performed using the Agilent 7500a ICP mass spectrometer. The 

solution obtained from the third step of the elution (fraction 3) was then evaporated to 

dryness and the residue was dissolved in about 50µL of 1% nitric acid solution, in order to 

ensure a concentration of Sr suitable for TIMS analysis (≈ 200µg g-1).  

A Thermal Ionization Mass Spectrometer model MAT 262 VMC from Finnigan (Bremen, 

Germany), located at the Laboratory of Isotopic Mass Spectrometry (LIMS) of Laboratori 

Nazionali del Gran Sasso (LNGS) was used for isotope analysis. The instrument is equipped 

with 5 Faraday cups placed in a variable multicollector, with extensive optical geometry, but 

corresponding to a system that has a conventional geometry, with a 64cm deflection radius. A 

characteristic of the thermal ionization source is the stability of the signal, which guarantees a 

high precision of the measurement. “Zone refined” rhenium filaments were used for sample 

loading. The double filament technique was adopted. The software Spectromat (Bremen, 

Germany) was used for data acquisition and analysis; mass calibration and gain calibration 

were performed daily (Wieser & Schwieters 2005). Six blocks of ten replicates were acquired 

for each measurement reaching an associated average internal precision ≤ 0.003%. 
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