[Supplementary material]

Evaluating claims for an early peopling of the Americas: the broader context John McNabb^{*}

*Department of Archaeology, University of Southampton, University Road, Southampton SO17 1BJ, UK (Email: scarab@soton.ac.uk)

Reference	Supporting	Opposed	Details
Holen et al.	Yes		Sedimentary history of the layer (E) demonstrates gentle flow regime, not sufficient to re-arrange bones and
2017, 26			stones—silt and sand. Detached femoral heads next to anvil and vertical placement of tusk imply arrangement is
April ¹ incl.			human.
extended data1			Large bones are green bone fractures, many delicate bones unbroken. Pattern not explainable by post-depositional
incl.			sediment loading or weight from modern heavy machinery.
supplementary			Bones and teeth (molars) occur in clusters around anvils-anthropogenic arrangement.
data ¹			Bone not carnivore damaged & no sign of trampling. Other cracks/damage to bone can be explained by pre- &
			post-depositional mechanisms that are unrelated to anthropogenic damage patterns.
			Other fossils/carcass scatters in floodplain unaccompanied by stones and show no percussion damage. They also
			do show fluvial arrangement. Damage therefore not natural local processes.
			Damage to bone can be experimentally produced by percussion. Use-wear (polish) and impact damage on andesite
			anvils and on pegmatite and andesite hammer stones. No evidence of butchery (cut marks) so humans were
			extracting marrow and breaking bones and teeth to make organic tools.

Table S1. A summary of a selection of t	the arguments made against the	Cerutti Mastodon, and the replies to them.

Hovers 2017,	Yes	Cautiously supportive review by one of the paper's referees.		
26 April				
National	Precis of arguments	'Humans in California 130,000 years ago? Get the Facts.		
Geographic	both supporting and	https://www.nationalgeographic.com.au/history/humans-in-california-130000-years-ago-get-the-facts.aspx		
webpages at	disputing	Some good video footage of excavation and artefacts.		
time of				
announcement,				
2017, 26 April				
Haynes 2017,	Yes	Cites a range of opinions on the site's/paper's integrity and notes clever self-positioning of journal Nature. Argues		
21 June		that breakage of stone and bone is by heavy plant machinery. Cites a number of locations where these damage		
		patterns are artificial due to heavy machinery. Dating is questioned and lack of struck lithics worrying.		
Boëda et al.	Yes	Accepts the percussion character of damage on anvils and hammer stones; notes the damage is at exact place		
2017, 22 June		where impact damage would be expected (convex edge of clast)—serial impact points. Accepts the bone		
		percussion evidence too (impact patterns are exactly what/where you would expect from this activity), as well as		
		the dating. Unexpected results are validated by purely empirical observations, supported by actualistic data.		
Braje et al.	Yes	Insufficient geological/sedimentary contextual data to establish the case for an undisturbed site. All the natural		
2017, 17 July		processes that could produce damage patterns to the bones, and introduce stones as well as fracture them, have not		
		been effectively eliminated by the authors; alternatives are not comprehensively falsified. There is no		
		archaeological background for humans in Beringia or North-eastern Asia at 130 kya, and after many years of		
		searching there is no evidence along the north-west Pacific coast at this time.		

Holen et al.	Yes	Comprehensively refutes arguments of pressure from overhead by heavy machinery. Notes a number of Haynes's
2018a reply to		sites have been reinterpreted and the evidence now supports damage patterns on Cerutti bone. Lack of comparably
Haynes 2017,		aged sites due to archaeologists not looking for them, and lack of lithics reflects site function—short stay for
21 November		marrow- and bone-processing. Lithic tools not needed.
Holen et al.	Yes	Context of the site is a gently aggrading alluvial plain with no high ground nearby. The artefacts cannot be
2018b reply to		geofacts. That similar patterns of bone breakage could be a result of natural processes is acknowledged, but the
Braje, 2017,		totality of evidence renders this unlikely. There is some evidence for earlier sites than main occupation of
22 November		Americas in South America, and an absence of sites in North America and Beringia is only an absence of
		evidence.
Callaway	Precis of replies	Reporting on Ferraro et al.'s (2018) critique and Holen et al.'s (2018c).rebuttal.
2018, 7 & 8		
February		
Ferraro et al.	Yes	Similar damage patterns to bones can be caused by a number of different non-anthropogenic mechanisms.
2018, 8		Numerous examples offered and illustrated. Characteristic damage patterns caused by experimental hafted
February		hammer stones (striations and pits) are not present on the Cerutti bones, and they should be. Cobbles are present in
		alluvial fans upslope. These could be easily be transported by modest fluvial activity to the site.
Holen et al.	Yes	There is no evidence of alluvial fans higher in the profile and Ferraro <i>et al.</i> do not explain the clustering of large
2018c reply to		bones and artefacts. Many broken bones/breaks are encased in a pedogenic carbonate crust, proving the breaks are
Ferraro 2018,		ancient—cannot be a result of modern sediment loading/pressure. Crucially, Ferraro and colleagues focus on
8 February		

			inappropriate damage patterns and so do not explain the really significant ones. They also fail to cite evidence
			which demonstrates that their natural breakage patterns have been experimentally proved to be anthropogenic.
Haynes's 2018		Yes	Haynes feels he is misquoted/misunderstood on the dating, and the reinterpretations of the sites cited in Holen et
reply to Holen			al.'s (2018a) reply are just wrong. Encourages Holen and colleagues to provide more data on influence of plant
et al.'s Reply			machinery. Appeals to broader context of human dispersal into Americas for validating the site.
2018, 23 April			
Gruhn 2018 7	Yes (but		Personally observed the carbonate crust over the breaks and confirms these are ancient.
May, 2018 ² ,	only breaks		
	are ancient)		
Anonymous			'The Cerutti Mastodon Site: one year later' https://www.sdnhm.org/blog/blog_details/the-cerutti-mastodon-site-
'theNAT'			one-year-later/96/
website for			Very briefly sums up the current status debate for a popular audience and provides many links to academic papers
San Diego			and journalistic accounts.
Natural			
History			
Museum			
(undated)			
Sutton et al.		Yes	Evidence for bone breakage and anthropogenic patterning at site is better explained as disturbance and trampling
2019 27			by other mastodons. No evidence for a bone tool technology elsewhere. The site would not pass the stringent
March			criteria for hominin involvement that has been established for East Africa.

Ferrell 2019,	Yes	Damage to bones and artefacts is a result of construction. Importantly, he notes the carbonate crust is no	ot present
22 March		on every bone, and demonstrates that andesite cobbles/boulders and other rocks were naturally occurring	g on the
		floodplain.	

¹ Original article available only from *Nature*'s website by subscription or purchase. Extended data freely downloaded from https://www.nature.com/articles/nature22065. This represents 10 plates with various images of the site, aspects of the archaeological and faunal remains; and graphs from the dating; supplementary data, freely downloaded from https://www.nature.com/articles/nature22065, contains a PDF with 10 sections—1) Geological and depositional setting; 2) Sediment analysis; 3) Use-wear and impact on the hammer stones and anvils; 4) Taphonomy of the bones—natural *vs* artificial placement; 5) Experimental studies on elephant limb bone breakage; 6) Taphonomy of other skeletons in vicinity; 7) RC and OSL dating; 8) U-series dating; 9) Asian origins of the human dispersal into North America; 10) References. In addition, the web address for the supplementary information has six videos of bone with impact marks, one of a broken hammer stone, one of the experimental breakage of bone. 26 April 2017 was online release; 27 April 2017 hard copy released.

² Link to the San Diego Natural History Museum web pages for the Cerutti Mastodon site: https://www.sdnhm.org/exhibitions/the-ceruttimastodon-discovery/

Table S2. A selection of the more commonly c	cited fossil hominin remains from	China and Taiwan from the Middle and Late Pleistocene.

Hominin	Site/layer	Age kya	Age kya Stone tools	References	
Homo erectus	Zhoukoudian	400+	Core and flake assemblage on	(Shen <i>et al.</i> 2009)	
	locality 1, skull V, layer 3		local raw materials		
	Hexian, Longtan Cave,	412±25	No mention of lithics	(Liu et al. 2017; Martinón-Torres et al.	
	skull cap, jaw fragment + 2			2017)	

	teeth, and 10 separate teeth, layer 4 Nanjing	580–620	No mention of lithics	(Wu et al. 2011; Bruner et al. 2015)
	Penghu 1. Mandible & other fauna recovered by dredging. ¹	10–70 or 130–190	No lithics recovered	(Chang et al. 2015; Liu et al. 2017)
Homo sapiens	Fuyan Cave (Daoxian) 47 modern-looking teeth	80–120	No mention of lithics	(Liu <i>et al</i> . 2017; Martinón-Torres <i>et al</i> . 2017)
	Zhiren Cave, partial mandible, mandibular fragment, two molars; layer 2	106–110	No lithics recovered	(Martinón-Torres et al. 2017)
	Luna Cave	70–127	Flake tools – not clear if from same layer or above	(Bae <i>et al.</i> 2014)
	Huanglong Cave Seven teeth	34–44 (ESR) or 39–103 (U-series)	Core and flake assemblage, hammer stones, bone tools	(Liu et al. 2010; Shen et al. 2013)

	Liujiang (Tongtianyan) ² Almost complete skull & post-cranial material	>68-< 153 preferred is 111- 139	No mention of lithics	(Shen <i>et al.</i> 2002, Bae <i>et al.</i> 2014)
Homo heidelbergensis/ or archaic Homo	Dali, skull, open-air site on river terrace	<i>c</i> . 270	Core and flake assemblage. Small scrapers and point— described as 'rough'-looking	(Sun <i>et al.</i> 2017)
sapiens	Xujiayao, skull	260–370 (mean age)	Core and flake assemblage on local raw materials. Focus on crude-looking tools	(Anon 1980; Ao et al. 2017)
	Jinniushan, partial skeleton from layer 7 ³	260	Stone tools in layers 4–6, not clear if in layer 7 as well	(Rosenberg et al. 2006)
	Zhoukoudian, New Cave, locality 4	248–269	Core and flake assemblage on local raw materials	(Shen <i>et al.</i> 2004a)
	Zhoukoudian locality 15, no fossils but stratigraphically similar to New Cave locality 4	As New Cave	Core and flake assemblage on local raw materials	(Shen <i>et al</i> . 2004b)
	Chaoxian (Chaon/Yinshan), maxilla and occiput	310–360	No lithics recovered	(Shen <i>et al.</i> 2010)

¹ The date ranges for Penghu were generated by comparing the fluorine and sodium content of the jaw with those of a hyaena species of known temporal range. See Chang *et al.* (2015) and their online supplementary material for more details.

² Both cited references note concerns about the precise provenance of the skull that may have been recovered from re-deposited(?) cave breccia. Dating uncertainties reflect different potential provenances.

³ Holen *et al.* (2017: supplementary material) suggest that this skeleton is showing the beginnings of adaptations to cold climate that would presage the later ability to survive Late Pleistocene climates in Beringia. Rosenberg *et al.* (2006) note that the skeleton's proportions (certainly related to northern latitudes) are consistent with other Middle Pleistocene specimens of *Homo*, and that she is associated with evidence for a warm climate! Her population were probably dispersing east and southwards, not northwards.

References

ANON. 1980. Compiling group of the atlas, atlas of primitive man in China. Beijing: Science. AO, H., C.-R. LIU, A.P. ROBERTS, P. ZHANG & X. XU. 2017. An updated age for the Xujiayao hominin from the Nihewan Basin, north China: implications for Middle Pleistocene human evolution in East Asia. Journal of Human Evolution 106: 54-65. http://dx.doi.org/10.1016/j.jhevol.2017.01.014. BAE, C., W. WANG, J. ZHAO, S. HUANG, T. FENG & G. SHEN. 2014. Modern human teeth from Late Pleistocene Luna Cave (Guangxi, China). Quaternary International 354: 169-83. https://doi.org/10.1016/j.quaint.2014.06.051 BOËDA, E. 2017. The Cerutti Mastodon site: archaeological or paleontological? Paleoamerica 3: 193-95. https://doi.org/10.1080/20555563.2017.1338006 BRAJE, T.J., T.D. DILLEHAY, J.M. ERLANDSON, S.M. FITZPATRICK, D.K. GRAYSON, V.T. HOLLIDAY, R.L. KELLY, R.G. KLEIN, D.J. MELTZER & T.C. RICK. 2017. Were hominins in California ~130 000 years ago? Paleoamerica 3: 200-202. https://doi.org/10.1080/20555563.2017.1348091 BRUNER, E., D. GRIMAUD-HERVÉ, X. WU, J.M. DE LA CUÉTARA & R. HOLLOWAY. 2015. A paleoneurological survey of Homo erectus endocranial metrics. Quaternary International 368: 80-87. CALLAWAY, E. 2018. Critics attack study that rewrote human arrival in Americas. Nature 554: E1-2 8 February 2018. https://doi.org/10.1038/nature25165 CHANG, C.-H., Y. KAIFU, M. TAKAI, R.T. KONO, R. GRÜN, S. MATSU'URA, L. KINSLEY & L.-K. LIN. 2015. The first archaic Homo from Taiwan. Nature Communications 6: 6037. http://doi: 10.1038/ncomms7037 FERRARO, J.V., K.M. BINETTI, L.A. WIES, D. ESKER, L.E. BAKER & S.L. FORMAN. 2018. Contesting early archaeology in California. Nature 554: E1-2. https://doi.org/10.1038/nature25165 FERRELL, P.M. 2019. The Cerutti Mastodon site reinterpreted with reference to freeway construction plans and methods. PaleoAmerica. https://doi.org/10.1080/20555563.2019.1589663 GRUHN, R. 2018. Observations concerning the Cerutti Mastodon site. Paleoamerica 4: 101-102. https://doi.org/10.1080/20555563.2018.1467192 HAYNES, G. 2017. The Cerutti Mastodon. Paleoamerica 3: 196-99. https://doi.org/10.1080/20555563.2017.1330103

HAYNES, G. 2018. REPLY HOLEN ET AL. REGARDING THE CERUTTI MASTODON. PALAEOAMERICA 4: 99-100. HOLEN, S.R., T.A. DEMÉRÉ, D.C. FISHER, R. FULLAGAR, J.B. PACES, G.T. JEFFERSON, J.M. BEETON, R.A. CERUTTI, A.N. ROUNTREY, L. VESCERA & K.A. HOLEN. 2017. A 130 000-yearold archaeological site in Southern California, USA. Nature 544: 479-83. http://doi:10.1038/nature22065 HOLEN, S.R., T.A. DEMÉRÉ, D.C. FISHER, R. FULLAGAR, J.B. PACES, G.T. JEFFERSON, J.M. BEETON, A.N. ROUNTREY & K.A. HOLEN. 2018a. Broken bones and hammerstones at the Cerutti Mastodon site: a reply to Haynes. Paleoamerica 4: 8-11. https://doi.org/10.1080/20555563.2017.1396835 - 2018b. Disparate perspectives on evidence from the Cerutti Mastodon site: a reply to Braje et al. Paleoamerica 4: 12-15. https://doi.org/10.1080/20555563.2017.1396836 - 2018c. Holen et al. reply. Nature 554: E2-E3. http://doi:10.1038/nature25166 HOVERS, E. 2017. Unexpectedly early signs of Americans. Nature 544: 420-21. https://doi.org/10.1038/544420a LIU, W., Z. WU, S. PEI, X. WU & C.J. NORTON. 2010. Huanglong Cave: a Late Pleistocene human fossil site in Hubei Province, China. Quaternary International 211: 29-41. https://doi.org/10.1016/j.quaint.2009.06.017 LIU, W., M. MARTINÓN-TORRES, Y. KAIFU, X. WU, R.T. KONO, C.-H. CHANG, P. WEI, S. XING, W. HUANG & J.M. BERMÚDEZ DE CASTRO. 2017. A mandible from the Middle Pleistocene Hexian site and its significance in relation to the variability of Asian Homo erectus. American Journal of Physical Anthropology 162: 715-31. https://doi.org/10.1002/ajpa.23162 MARTINÓN-TORRES, M., X. WU, J.M. DE LA BERMÚDEZ DE CASTRO, S. XING & W. LIU. 2017. Homo sapiens in the Eastern Asian Late Pleistocene. Current Anthropology 58(S17): 434-48. https://doi.org/10.1086/694449 ROSENBERG, K.R., L. ZUNE & C.B. RUFF. 2006. Body size, body proportions and encephalization in a Middle Pleistocene archaic human from northern China. Proceedings of the National Academy of Sciences of the USA 103: 3552-56. https://doi.org/10.1073/pnas.0508681103 SHEN, G., W. WANG, Q. WANG, J. ZHAO, K. COLLERSON, C. ZHOU & P.V. TOBIAS. 2002. Useries dating of Liujiang hominid site in Guangxi, southern China. Journal of Human Evolution 43: 817-29. https://doi.org/10.1006/jhev.2002.0601

Commented [MJ1]: Found one we both missed. But your formatting has done something here and I cannot for the life of me get this into lower case. I am leaving this for you to do.

Commented [MJ2]: Can't change colour back to black – I leave that to you

SHEN, G., H. CHENG & R.L. EDWARDS. 2004a. Mass spectrometric U-series dating of New Cave at Zhoukoudian, China. Journal of Archaeological Science 31: 337-42. https://doi.org/10.1016/j.jas.2003.09.004 SHEN, G., X. GAO, J.X. ZHAO & K.D. COLLERSON. 2004b. U-series dating of locality 15 at Zhoukoudian, China, and implications for hominid evolution. Quaternary Research 62: 208-13. https://doi.org/10.1016/j.yqres.2004.06.004 SHEN, G., X. GAO, B. GAO & D.E. GRANGER. 2009. Age of Zhoukoudian Homo erectus determined with ²⁶Al/¹⁰Be burial dating. Nature 458: 198-200. https://doi.org/10.1038/nature07741 SHEN, G., Y. FANG, J.L. BISCHOFF, Y.-X. FENG & J.-X. ZHAO. 2010. Mass spectrometric Useries dating of the Chaoxian hominin site at Yinshan, eastern China. Quaternary International 211: 24-28. https://doi.org/10.1016/j.quaint.2009.02.020 SHEN, G., X. WU, Q. WANG, H. TU, Y.-X. FENG & J.-X. ZHAO. 2013. Mass spectrometric Useries dating of Huanglong Cave in Hubei Province, central China: evidence for early presence of modern humans in Eastern Asia. Journal of Human Evolution 65: 162-67. https://doi.org/10.1016/j.jhevol.2013.05.002 SUN, X., S. YI, H. LU & W. ZHANG. 2017. TT-OSL and post-IR IRSL dating of the Dali Man Site in central China. Quaternary International 434: 99-106. http://dx.doi.org/10.1016/j.quaint.2015.05.027 SUTTON, M.Q., J. PARKINSON & M.D. ROSEN. 2019. Observations regarding the Cerutti Mastodon. PaleoAmerica: https://doi.org/10.1080/20555563.2019.1589409 WU, X., R. HOLLOWAY, L.A. SCHEPARTZ & S. XING. 2011. A new brain endocast of Homo erectus from Hulu Cave, Nanjing, China. American Journal of Physical Anthropology 145: 452-60. https://doi.org/10.1002/ajpa.21527