[Supplementary material]

A jade parrot from the tomb of Fu Hao at Yinxu and Liao sacrifice of the Shang Dynasty

Rong Wang^{1,*}, Chang-sui Wang² & Ji-gen Tang³

 ¹ Department of Cultural Heritage and Museology, Fudan University, 220 Handan Road, Shanghai 200433, P.R. China
 ² Department of Archaeology and Anthropology, University of Chinese Academy of Science, 19 A Yuquan Road, Beijing 100049, P.R. China
 ³ Institute of Archaeology, Chinese Academy of Social Sciences, 27 Wangfujing Street, Beijing 100710, P.R. China
 * Author for correspondence (Email: wangrong@fudan.edu.cn)

Received: 11 December 2016; Accepted: 8 March 2017; Revised: 26 March 2017

Samples	Amount of iron/colour	Temperature (°C)	Holding time/heating equipment	Change of colour & structure	Experimenter
Actinolite with 3.73% water	6.56%; green	400~600 800 950	Not marked	400~500°C: colour changed from green to brown, 1.68% of water loss at 400°C and Fe ²⁺ started to oxidise; 600°C: from brown to dark brown, and oxidisation of Fe ²⁺ completed; 800°C: 2.42% water loss; 950°C: 3.64%-3.73% water loss, and full phase transition of actinolite.	Belyankin & Donskaya (1939)
Taiwan nephrite cat's eye	3.0–3.5%; greenish-yellow	700 860	4 hours; electric kiln heating	700°C: colour changed from greenish yellow to yellow, structural water lost, and the mass decreased from 0.595g to 0.585g; 860°C: black and opaque, Fe^{2+} oxidised into Fe^{3+} , and the mass increased to 0.594g.	Tan <i>et al</i> . (1978: 35–36)
Smoothly polished New Zealand nephrite, 20 × 20 × 8mm	W301 green; W302 yellow to green; W106 olive green; W103 olive	300 650 1000	Air heating; electric kiln heating	 300°C: colour started to change; 650°C: evident change in colour and increase in hardness; Above 650°C: moved to electric-kiln heating, the characteristics of different samples are as below: 1. Structure of the high-quality tremolite W301 was 	Beck (1981)

Table S1. Heating experiments on nephrite (tremolite-actinolite)

				destroyed when it was heated to 1000°C. It had cracks and	
				the colour changed to an opaque greyish-white. 2. The	
				oxidised nephrite W302 grading from yellow to green	
				turned reddish brown when it was heated to 650°C,	
				grading darker towards the end that coincided with green	
				in the unheated portion. 3. The softer olive-green	
				semi-nephrite W106 had a typical dark outer skin when it	
				was heated to 650°C; when heated to 1000°C, it was rusty	
				colouring externally and opaque grey internally, with	
				structured destroyed by crazing. 4. The olive oxidised	
				outer skin of tremolite W103 continued to be oxidised	
				and turned black to brown when heated to 650°C for 1	
				hour, while the dark-green inner portion changed to	
				brown or silvery whitish-green. Particularly, the cracks	
				caused by heating were circular feathered.	
			650°C for 1	650°C for 1 hour: brownish black;	
Liangzhu	Fe/(Fe+Mg)	650	hour; 950°C	950°C for 5 hours: faded, whitened and the	$W_{\rm op}$ (1004)
tremolite Bi	=8.24;	950	for 5 hours;	semi-transparency evidently decreased; during the	Wen (1994)
(destroyed)	yellowish-green		electric kiln	heating process, Fe/(Fe+Mg) decreased gradually from	

unearthed from			heating	8.24 (unheated) to 7.25 (650°C) and 5.24 (950°C).	
Fanshan					
(M20:184)					
Liangzhu actinolite jade <i>Bi</i> (destroyed) unearthed from Sidun,	Iron amount unknown; dark green with greyish-white	400~500 1000	Electric kiln heating	400°C∼500°C: surface turned brownish dark; 1000°C: surface turned reddish-brown.	Zheng (1996)
Changzhou (M3:59)					
Hetian nephrite	Iron amount unknown; bluish-white	1100	0.5 hour; electric kiln heating	Full whitened or ivory coloured (white with little red) material, with glassy lustre, which could originate from new minerals or glass. Small black fractures were visible under magnification, tremolite had already transformed to diopside.	Tan <i>et al.</i> (1998)
Tremolite	Iron amount unknown ; cyan	700 1100	4 hours; electric kiln heating	700°C: slightly whitened on the surface, part of it looked like black patina, but phase transition did not happen; 1100°C; the outer skin was white, with many fractures, part of the tremolite had transformed to diopside.	Yu & Tan (1998)

Hetian nephrite	Low iron	500~ 1100 (increasing every 100°C) 500	24 hours at oxidising atmosphere; electric kiln heating	Once heated, the organic materials imbedded in crevices on the surface were carbonised and part of the sample turned olive black, while the majority of the sample turned lighter and became light yellowish-grey; 800°C: the sample was totally opaque, but the polished surface was not destroyed; above 800°C: the carbonised material gradually vaporised which led to the olive black area fading (olive black—dark yellowish brown (900°C)—light yellowish-brown (1000°C)—light orange (1100°C)); while majority area changed from light yellowish-grey to white (1100°C). At this stage, phase transition happened. The hardness slightly increased. The diopside came into being at 900°C. Above 900°C, the sample was very fragile and the hardness could not be measured. At 1000°C, the hydroxyl peaks totally disappeared.	Douglas (2001)
Tremolite	Iron amount unknown; green	650 850	1 hour; electric kiln heating	500°C: no visible change with the colour; 650°C: the colour whitened slightly, but the surface was still smooth; 850°C: the colour was darker, there were a few short and	Yu et al. (2006)

		1050		narrow fractures, but the sample was still tremolite at this stage. 1050°C: the appearance was reddish brown (predicted to be caused by the oxidisation of iron), and the colour was lighter; there were more cracks and their width and depth were larger; hydroxyl peaks totally disappeared, and the sample transformed to diopside.	
Tremolite Actinolite	Iron amount unknown; tremolite—white and bluish-white, actinolite—green	700 900	Electric kiln heating	Around 700°C: the white and bluish-white tremolite with low iron lost transparency and changed to light whitish grey in colour; around 900°C: turned light yellowish-white, and the colour was like ivory or chicken-bone white. After heating, actinolite with high-iron contents turned black first and then faded gradually. At around 700°C, they turned dark brown or dark yellowish-brown. No colour change happened with further heating.	Jin <i>et al.</i> (2007: 375–76)
Tremolite	Iron amount unknown; green	500~ 1200 (increasing every 100°C)	3 hours; electric kiln heating	500°C: no change with colour and glossiness; 600°C: the colour turned white slightly; 700°C: some dark spots and white areas appeared on the surface, and the glossiness decreased; 800°C: the white areas gradually became	Zhang (2011: 46– 49)

larger and larger. They were banded and spread over the
surface; 900°C~1200°C: the colour turned whitish yellow
totally and the sample phase transferred to Ca-Mg
pyroxene. 1200°C: hydroxyl peaks totally disappeared
and the phase transition completed.

References

BECK, R.J. 1981. A new development in understanding the prehistoric usage of nephrite in New Zealand, in F. Leach & J. Davison (ed.) *Archaeological studies of Pacific stone resources*: 21–9. Oxford: British Archaeological Reports.

BELYANKIN, D.S. & E.V. DONSKAYA. 1939. Thermo-optical investigation of actinolite. *Academic Science. Union of Socialist Soviet Republics Bullet* 1: 95–104.

DOUGLAS, J.G. 2001. The effect of heat on nephrite and detection of heated Chinese jades by X-ray diffraction (XRD) and Fourier-transform infrared spectroscopy (FTIR). *Conference on Archaic jades across the Taiwan Strait*: 543–54. Taipei: Taiwan University Publications Committee.

JIN Z.C., G.D. XU, Y.L. HE & J.G. TANG. 2007. A geoarchaeological study on the excavated jades from the tomb of M54, in Institute of Archaeology, Chinese Academy of Social Sciences (ed.) *Report on the excavations at Huayuanzhuang locus east in Anyang*: 345–87. Beijing: Science.

TAN, L.P., C.W. LEE, C.C. CHEN, P.L. TIEN, P.C. TSUI & T.F. YUI. 1978. *A mineralogical study of the Fengtien nephrite deposits of Hualien, Taiwan*. Taipei: National Science Council Special Publication.

TAN, L.P., X.H. QIAN, S.B. LIN, H.M. TANG & B.S. YU. 1998. Soak-induced colour of archaic jades. *Chinese Archaic jades: carving techniques and mineral identification*: 147–60. Taipei: The Earth.

WEN, G. 1994. Archaic jades (8): archaic jades of chicken-bone white and ivory-white. *The National Palace Museum Monthly of Chinese Art* 12(2): 116–29.

YU, B.S. & L.P. TAN. 1998. Archaized experiment on nephrite and serpentine, in *Chinese Archaic jades: carving techniques and mineral identification*: 173–81. Taipei: The Earth.

YU, B.S., J.L. LIU & K.Z. HUANG. 2006. Archaized experiment on nephrite through heat treatment and the Raman spectra. *The Eighth Symposium on Resources and Environment*: 55–64. Taiwan: Hualian.

ZHANG, Y.N. 2011. The study on fake methods of white soak-induced color of

ancient jade. Unpublished MA dissertation, China University of Geosciences. ZHENG, J. 1996. An appraisal report of the Liang Zhu culture jade articles unearthed from Sidun relics. *The light of Oriental civilization: collection of papers for the* 60th *anniversary of the Liangzhu culture finding* (1936–1996): 432–41. Haikuo: Hainan International Publishing Center.