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The method is illustrated by two examples in Figure 1.
Results show that the outcome of different Monte Carlo runs generate

similar datasets with some degree of variability, as can be seen in Figure 2.

Figure 1: Examples of regular expressions used in the reconstruction algo-
rithm. In the first case the last letter was unreadable while in the second
case it is not even clear if there were one or more letters. Three candidates
have been identified for both cases and each of the incomplete stamps will
be assigned as one of them with P = 1/3.

We have also assessed the impact of the integrated uncertainty by repli-
cating the analysis with different datasets. Table 1 shows DIC values com-
puted just using the dataset C of complete codes. The order of preference
of the four models is the same while the distance between M4 and the rest
has increased.

Table 1: DIC measures using the dataset of complete codes and discarding
the entire set of incomplete stamps.

Model Mean Deviance Penalty Penalized deviance ∆DIC

M1 14158 1.026 14159 10447
M2 6290 1.113 6291 2579
M3 5327 1.988 5329 1617
M4 3711 1.015 3712 0

Figure 3 displays density estimates of DIC values for 100 different runs
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Figure 2: Sample of stamps from 3 different Monte Carlo runs. The fre-
quency of 9 representative codes is shown for illustrative purposes.
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integrating reconstructed stamps with the previously defined Monte Carlo
method. This test shows how variation in the final measure is always lower
than 2% and the order of preference is constant. The best model M4 is
the one with highest sensitivity to the uncertainty of the dataset. Slight
variations on the frequency distribution have higher impact on the fat tail
of the power-law than on the rest of models.
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Figure 3: Kernel Density Estimates of penalized DIC for each model.

2 Markov Chain Monte Carlo execution

Table 2 summarizes the parameters of the MCMC used to compute the
posterior distributions.
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Table 2: Parameters for the Markov Chain Monte Carlo simulation
Parameter Value

Number of chains 3

Burn-in period 500

Number of iterations 15500

Thinning 1
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