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1 Integrating dataset uncertainty

The analyzed dataset contains 7520 stamps collected from Dressel 20 am-
phorae found in Monte Testaccio. The exact alphabetic code of 5743 is fully
readable, while 1777 stamps contain codes where part of the information has
been lost to erosion or fragmentation. The lost fragments have been defined
with simple regular expressions of two types: a) a single missing character
(symbol ”.”) and b) a group of 1 or more characters that cannot be read
(symbol "+7).

These incomplete stamps form a substantive corpus of evidence that
should be added to the analysis. The uncertainty has been integrated us-
ing a probabilistic approach. First, for each incomplete stamp a list of
candidates is created with all the complete stamps matching the regular ex-
pression. Second, a Monte Carlo simulation is executed to randomly assign
one of the candidates each incomplete stamp. Third, the aggregation of the
complete and the reconstructed stamps is used as final dataset. The method
is summarized as follows:

1. Initialize set C' containing all complete codes, set U with the incom-
plete stamps, and the final set R as empty

2. For each incomplete stamp S in dataset U:

(a) Create alist L of possible candidates from C' matching the regular
expression contained in S

(b) If L is empty then add S to R

(c) If L is not empty then with uniform probability select one com-
plete stamp L; from L and add it to R

3. Create the final dataset F' = U(C, R)



The method is illustrated by two examples in Figure
Results show that the outcome of different Monte Carlo runs generate
similar datasets with some degree of variability, as can be seen in Figure
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Figure 1: Examples of regular expressions used in the reconstruction algo-
rithm. In the first case the last letter was unreadable while in the second
case it is not even clear if there were one or more letters. Three candidates
have been identified for both cases and each of the incomplete stamps will
be assigned as one of them with P = 1/3.

We have also assessed the impact of the integrated uncertainty by repli-
cating the analysis with different datasets. Table [1| shows DIC values com-
puted just using the dataset C of complete codes. The order of preference
of the four models is the same while the distance between M/ and the rest
has increased.

Table 1: DIC measures using the dataset of complete codes and discarding
the entire set of incomplete stamps.
Model Mean Deviance Penalty Penalized deviance ADIC

M1 14158 1.026 14159 10447
M2 6290 1.113 6291 2579
M3 5327 1.988 9329 1617
M4 3711 1.015 3712 0

Figure [3] displays density estimates of DIC values for 100 different runs
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Figure 2: Sample of stamps from 3 different Monte Carlo runs. The fre-
quency of 9 representative codes is shown for illustrative purposes.



integrating reconstructed stamps with the previously defined Monte Carlo
method. This test shows how variation in the final measure is always lower
than 2% and the order of preference is constant. The best model M/ is
the one with highest sensitivity to the uncertainty of the dataset. Slight
variations on the frequency distribution have higher impact on the fat tail
of the power-law than on the rest of models.
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Figure 3: Kernel Density Estimates of penalized DIC for each model.

2 Markov Chain Monte Carlo execution

Table [2] summarizes the parameters of the MCMC used to compute the
posterior distributions.



Table 2: Parameters for the Markov Chain Monte Carlo simulation

Parameter Value
Number of chains 3
Burn-in period 500
Number of iterations 15500
Thinning 1






