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A MODELING METHODOLOGY

A.1 Notation
Throughout the paper and suppplemental material, we use the following notation.

Indices:

! Individuals (up to " , in set I)
# Racial Group (up to $, in set G)
% Congressional Districts (up to &, in set J )
' Cells for demographic variables × geography (in set S)
( MCMC posterior samples (up to ))

Variables and Constants:

" Population size
* Sample size of respondents
+ Vote for Republican Presidential candidate (binary)
, , - Covariates

Quantities of Interest:

. The Republican voteshare in a given geography or race
/ Estimated probability at the cell-level, from a logit regression of +
0 A correction factor on the logit scale to better estimate .
1 Fraction of the variation in . explained by components

Parameters:

2 Random effect intercepts
3 Coefficients on demographic variables, random slopes

42, 52 Variance governing random effects
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A.2 About the Cooperative Congressional Election Study
We use the CCES because it is the only survey dataset whose microdata is publicly avail-
able, has sufficient coverage of all 435 congressional districts, measures validated vote, and
includes geographic indicators for those districts in its public use file. The CMPS, a multi-
lingual survey, imposes a three-year lag on the public release of the data. The face-to-face
sample of the American National Election Study (ANES) cannot sample all districts. In its
worst year, only one percent of the ANES sample came from a competitive open-seat con-
gressional district (Stoker and Bowers 2002). Exit polls have selection issues in the opposite
direction: they oversample battleground districts with more media interest. That explains
why earlier survey studies of vote choice by race have only produced state-level estimates.

Like most modern internet surveys, the CCES is partly on an opt-in sample, so it provides
reliable inferences only with appropriate adjustments after data collection, such as calibra-
tion and post-stratification (Rivers 2007). The CCES takes a larger pool of respondents from
an online panel, and then prunes the respondents so that it matches the demographics of the
adult population at the state level. Its poststratification weights correct for any remaining im-
balances at the state level. The estimated vote for statewide elections is about 2-3 percentage
points in root mean square error (Ansolabehere and Rivers 2013).

The Presidential vote question is worded:

``For whom did you vote for President of the United States?''

• Donald Trump (Republican)
• Hillary Clinton (Democrat)
• Gary Johnson (Libertarian)

• Jill Stein (Green)
• Evan McMullin (Independent)

Table A.1 specifies how we bin and categorize the demographic variables in the CCES.
The race and ethnicity question, in particular, is worded in the following way:

``What racial or ethnic group best describes you?''

• White
• Black or African-American
• Hispanic or Latino
• Asian or Asian-American

• Native American
• Middle Eastern
• Mixed Race
• Other

And for those who do not respond “Hispanic or Latino”, the CCES asks a follow-up
question,
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``Are you of Spanish, Latino, or Hispanic origin or descent?''

• Yes
• No

As explained in the main text, if a respondent answers Hispanic on either of the two
questions, we label that respondent as Hispanic. Non-Hispanics are then coded as Whites,
Blacks, or Others according to their responses in the first question. The “Other” category
encompasses all categories other than White, Black, and Hispanic.

Table A.1 – Demographic covariates for vote-choice model. We use race, education,
age group, and sex as well as Trump’s voteshare to predict the vote choice.

Race Education Age Sex
White High School or Less 18-24 Female
Black Some College 25-34 Male

Hispanic 4-Year College 35 - 44
Other Post-graduate 45 - 64

65 +

A.3 Implementation of Hierarchical Regression
Functional form The model specification we described in Section translates to, in R no-
tation,

Y = (1 + race * educ + age + sex | division / state / cd) +

race + pct_white + race_B:cd_pct_B + race_H:cd_pct_H + race_O:cd_pct_O +

s(pct_trump)

as a logit regression, where

• Y is a binary variable indicating 1 if the respondent voted for Donald Trump and 0 if
they voted for Clinton,

• (... | division / state / cd) indicates there are random effects by every CD,
which are nested within states, which are in turn nested within Divisions, with the
notation A/B being shorthand for A + A*B,

• (1 + race + ... | ...) indicates there are varying coefficients on race for each
of the random effect intercepts on the right hand side of the bar,
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• race indicates a fixed effect for a national difference between racial groups (as opposed
to those that varying coefficients by geography), and is an individual level categorical
variable (taking on four levels, with White being the baseline),

• race_B:cd_pct_B indicates that an indicator variable for whether the respondent is
Black (race_B) is interacted with the estimated percent of that individual’s district
that is Black (cd_pct_B), with H indicating Hispanics and O indicating the Other racial
group, and

• s(pct_trump, ...) indicates a flexible spline of Trump’s voteshare in each con-
gressional district. Daily Kos estimates this information from precinct results assign-
ing them to their congressional district, and thus this quantity is known almost exactly
(Daily Kos 2021).

Prior Specification Counter to the intuition that less informative priors imply more flex-
ible values, Figure A.1 shows that less informative priors actually imply more opinionated
predicted outcomes (Gelman et al. 2020). To obtain a prior predictive distribution, we sam-
pled only from the prior with the data matrix structure following the terms in the model. A
Normal(0, 52) prior for all random effects and intercepts, typically considered an uninforma-
tive prior, has enough of a heavy tail that compounds into the large absolute values on the
logit scale when combined in dozens of linear combinations. That implies a separation into
0 and 1 on the probability scale shown in the figure, which we believe is too extreme a prior.

In our specifications, we choose a Normal(0, 12) prior. This prior creates enough mass
at all values of the support of the outcome (Figure A.1). It has two modes at 0 and 1, but we
are willing to accept this as saying that some demographic cells may have a high probability
of voting Republican or Democrat.

For the correlation matrix between the geographic random effects, we used an LKJ cor-
relation matrix with a parameter of 1 (default in the package), similar to a flat prior in other
classes of priors.

Sampling We estimate samples with 4 chains, using the Hamilton Monte Carlo in Stan.
Each chain contains 1000 burn-in samples which are discarded followed by 1000 samples
that are used. These 1000 samples are then thinned by 2 to result in 500 samples. Across 4
chains, we are left with 2000 retained samples.
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Figure A.1 – Implication of Different Prior Specifications on Prior Predictive Out-
come. A fraction of the predictive distribution sampled only from the input prior distri-
bution. Input priors vary in the standard deviation of the Normal and facets are arranged
from a tight prior of Normal(0, 0.01) to a less informative prior of Normal(0, 5).
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A.4 Connections with Ecological Inference Estimators
Here we show that our survey-based approach can reduce to the same estimator as a ecological
inference (EI) estimator with linear contextual effects. Linear contextual effects are difficult
to model in EI, but easier in individual-level data in surveys. This section also serves as a
more careful explanation of how partial pooling works in our main model.

In the following, let % index districts. For simplicity, we assume that each district has two
groups, # ∈ {6,7} (Black voters and White voters). The discussion below applies to the
case of multiple groups with additional notation.

Survey Estimator Small area estimation (SAE) uses the survey data and constructs esti-
mators by partially pooling information across areas to reduce variance. We first define the
direct estimator for the Black in district % as

.̂dir6 % =
1
*6 %

∑
!∈8! "

+!

where+! is the survey outcome for unit !, 86 % denotes the set of sampled respondents in district
% who belong to group 6, and *6 % is the sample size of this group. We define the direct
estimator for the White .̂7 % similarly. Under the standard assumptions, the direct estimator
is unbiased and approximately normal .̂# % ·∼ N(0, 52

#/*# % ). This estimator is prohibitively
high-variance because typically *# % is small.

The regression-based SAE estimator in its simplest form can be characterized as coming
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from the following random effects equation

.# % = 9# + 0#,% + :# % , :# % ∼ N(0,42
# ) (5)

where : is a error term, 9# is a fixed effect for race and ,% is the proportion Black. The
variable , can include other district level variables, but we focus on the proportion Black for
a simpler comparison with EI. Note that the main model we estimate in our article is more
complex than this, by using varying slopes to effectively estimate demographic subgroups
(e.g. individual education and gender) that comprise the population subgroup S6 % .

The pooling model in Equation (5) models the heterogeneity of the voting behavior of
each group as a function of the proportion Black. If the voting behavior of the black voters
is uncorrelated with the racial composition, we would have 06 = 0. As we discuss below, the
ecological inference model does require that the proportion Black and the voting behavior be
uncorrelated at the precinct level, and it must hold for the both racial groups simultaneously
06 = 07 = 0. In contrast, the modeling approach for SAE in Equation (5) allows for 06 ≠ 0.
This implies that if the White voters in a majority-White district and the White voters in
a minority-White district have different voting behavior, the model is able to capture the
heterogeneity as long as it is a function of ,% included in the model.

Furthermore, the formula in (5) clarifies that two groups 6 and 7 have different sets
of coefficients {96, 06} and {97 , 07 }. This implies that heterogeneity of the Black voters
and that of the White voters are allowed to be different. For example, Black voters in a
majority-White district might behave differently from Black voters in a minority-majority
district, while White voters might be more homogeneous across districts. In such a case, we
would have a large value of 06 so that .6 % varies across districts, while a slope for the White
voters might be small 07 to reflect their homogeneous behaviors.

The estimator of .̂SA# % is a partial pooling estimator, which takes the form

.̂SA# % = (1 − ;# % ).̂dir# % + ;# % (9̂# + 0̂#,% )
= .̂dir# % + ;# % [(9̂# + 0̂#,% ) − .̂dir# % ]

(6)

where ;# % = 4−2
# /(4−2

# + 5−2
# % *# % ) is the relative weight placed on the indirect estimator (i.e.,

away from the direct estimator). We therefore see that the partial pooling places more weight
on the direct estimator as its sample size *# % increases, and places less weight as the variance
of the random effect 42

# increases.
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The coefficients 9# and 0# are estimated by regressing .̂dir# % on ,% ,

min
9#,0#

&∑
%=1

[
.̂dir# % − (9# + 0#,% )

]2 (7)

The formula in Equation (6) shows that the bias of .̂SA# % is a function of how far the truth
.# % is from the predicted value based on the pooling model,

Bias(.̂SA# % ) = ;# %![(9̂# + 0̂#,% ) − .# % ]
*# "→∞
−−−−−−→ 0. (8)

This shows that the bias of the SAE estimate for Black voters in district % tends to be large
when the predicted value 9̂6 + 0̂6,% is far from the truth. For example, the prediction might
be inaccurate when the proportion Black ,% explains only a fraction variation of .# % across
districts. This is because with large unexplained variance, two districts with similar charac-
teristics ,% ≈ ,% ′ tend to have different voting preferences .# % ≠ .# % ′ . We can reduce the
magnitude of the bias by including additional variables at the district level, in addition to the
proportion Black. In our main specification of this article we include the Trump vote share at
the district level as another covariate in the pooling model, and further include varying slopes
for education, sex, and age group for each district random effect. We also note that the spec-
ification of the pooling can be flexible and need not be linear. In fact, our main specification
includes the Trump vote share via a cubic spline.

In another extreme when *# % → 0, the SAE approach allows the estimate to reduce to

.̂SA7 % → 9̂7 + 0̂7 ,%
.̂SA6 % → 9̂6 + 0̂6,% .

(9)

In other words, our model estimates group behaviors such that estimates vary with the contex-
tual variable of racial composition, even with very small samples. As *# % becomes smaller,
the small area estimator is pulled towards the national race coefficient 9#, representing other
people of the same race in different areas. But it is also pulled towards 0,% , the group-specific
estimate for people who live in areas with a similar racial composition ,% .

EI Estimator On the other hand, consider an ecological inference (EI) for the same quantity
of interest, .# % with # ∈ {6,7}. The EI uses data at the level of precincts, which we denote
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ℎ ∈ {1, . . . ,=}. We start from the accounting identity:

.%ℎ = .6 %ℎ,%ℎ + .7 %ℎ (1 − ,%ℎ)

where .%ℎ is the aggregate vote share at precinct ℎ in district % , ,%ℎ is the proportion Black
of the precinct, and .6 %ℎ is the unobserved race-specific vote share at the precinct level for
Black voters.

The simple form of ecological regression relies on what is known as the constancy equa-
tion. Goodman showed that for the EI estimators .̂EI7 % and .̂

EI
6 % to be unbiased, the precinct level

race-specific vote share and the proportion Black need to be uncorrelated, Cov(.6 %ℎ, ,%ℎ) =
Cov(.7 %ℎ, ,%ℎ) = 0 which assumes that Cov(.6 %ℎ, ,%ℎ) = Cov(.7 %ℎ, ,%ℎ) = 0.

This constancy assumption implies that

!(.%ℎ |,%ℎ) = .6 % ,%ℎ + .7 % (1 − ,%ℎ)
= .7 % + (.6 % − .7 % ),%ℎ

where .6 % = !(.6 %ℎ) and .7 % = !(.7 %ℎ).
Under these conditions, we can derive the EI estimator .̂EI# % with a least squares regression:

min
2,3

=∑
ℎ=1

[
.%ℎ − (2 + 3,%ℎ)

]2
, (10)

and we obtain
.̂EI7 % = 2̂, and .̂EI6 % = 2̂ + 3̂. (11)

The constancy assumption made in the above clearly satisfies this condition.
Put another way, estimates will be biased if either of the racial groups’ heterogeneity is

explained by the racial composition. The survey-based small area estimates can account for
heterogeneities across racial groups and districts by adjusting district-level covariates and al-
lowing for race-specific coefficients, whereas the traditional EI in its simplest form cannot
run with contextual effects and assumes away heterogeneities. Although linear contextual
models have been proposed in ecological inference (Przeworski 1974), estimation of these
models remain largely intractable because of under-identification (Ansolabehere and Rivers
1995). This problem arises because EI uses only the aggregate (i.e., not race specific) out-
come. The SAE approach avoids the problem by utilizing the race specific direct estimators
which are only available in the survey.
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A.5 Population Statistics for Target Estimation
First, the population demographics come from the American Community Survey. We obtain
the estimated adult population for each of the 160 cells implied by the crossed-combination
of the demographics in the CCES, for each of the 435 congressional districts. For 2016, the
[age × sex × education × CD] distribution uses 2016 1-year ACS estimates. The [race ×
CD] distribution uses the 2014-2018 5-year ACS estimates. We used the 5-year ACS only for
race because the 2016 1-year ACS estimates estimated 0 people of racial minorities in some
congressional districts such as the at-large district of Wyoming.

Second, we separate these counts into voters and non-voters, by estimating the probability
of turnout for each cell. Therefore, we further partition our 70,000-cell ([160 × 435]) table
into a [160 × 435 × 2] table and then take only the half that represents the voting population.
Our synthetic target updates the distribution of voters so that the turnout rate matches the
turnout as a proportion of the voting age population at each congressional district.

A.6 Survey-assisted Synthetic Target Estimation
Here we formalize our procedure for estimating a high dimensional target distribution for
poststratification. The methods discussed are implemented in the synthjoint package.

Motivation In this subsection, we describe our method for quickly integrating marginal
and partial joint distributions with the assistance of an individual-level survey dataset. The
general idea is to estimate the conditional distribution in the survey data via regression, while
constraining the parameters so that a predicted marginal distribution matches the population
marginal distribution. We work with multinomial logit regressions because most survey out-
comes such are categorical instead of continuous.

Let X denote a set of variables that we have access to the joint distribution in the popu-
lation, and let - denote a variable that we only get to know the marginal distribution in the
population. The goal is to estimate the joint distribution >(X, -).

Suppose that we have survey sample where we observe the joint distribution >(X, - | 8 =

1) where 8 = 1 indicates that the distribution is conditional on the survey sample. Unless the
survey data is constructed via random sampling from the population, the joint distribution
conditional on 8 = 1 does not match the joint distribution of interest, >(X, - | 8 = 1) ≠

>(X, -).
The idea behind our approach is to estimate the conditional distribution of - given X
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from the survey and estimate >(- | X). Because >(X, -) = >(- | X)>(X), we can obtain
the target joint distribution by estimating the conditional distribution of - given X. In our
setting, >(X) is already observed in the population.

If we could assume that -⊥⊥ 8 | X, we would have that

>(- | X) = >(- | X, 8 = 1).

Thus, estimating the relationship between - and X in the survey data will provide an unbiased
estimate of the joint distribution >̂(- ,X) = >̂(- | X, 8 = 1)>(X). However, the conditional
independence assumption is not appropriate when we want to weight on - . Conditional
independence would imply that accounting for - in the weighting is unnecessary.

Proposed approach Instead of imposing the conditional independence assumption to ob-
tain the conditional distribution >(- | X), we propose to find a probability distribution that
satisfies the following equality constraint:

∫
>(- ,X)?X =

∫
>3 (- | X, 8 = 1)>(X)?X,

which implies that marginally the predicted distribution >3 (- | X, 8 = 1) matches the
marginal population target >(-). This differs from the approach in Kastellec et al. (2015)
and the second proposal in Leemann and Wasserfallen (2017), which both estimate the first
term on the right hand side but do not enforce a constraint.

Note that the above constraint does not immediately imply that >(- | X) = >(- | X, 8 =

1). However, even when the conditional independence assumption does not hold, the above
constraint incorporates the population information.

Finally, we estimate >(- | X, 8 = 1) from the survey data such that the above constraint
is satisfied.

Data generating process We consider a case where - is categorical, so that >(- | X, 8 =

1) can be modeled by the multinomial logit. Let -! ∈ {1, . . . ,@} denote the “marginal”
variable for unit ! in the survey sample. Then, the multinomial regression is specified as

Pr(-! = A | X!, 8! = 1) =
exp(β*

A X̃!)∑@
A ′=1 exp(β*

A ′X̃!)
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where we set β1 = 0 for identification. Here, X̃! includes the intercept as well as interaction
terms between variables.

Estimation with exact constraints Now, we could estimate β by maximum likelihood, but
we wish to impose the constraint from the observed marginal distribution as discussed above.
Specifically, we impose the following

Pr(- = A)︸!!!!!!︷︷!!!!!!︸
population dist.

= !X∼>(X)

{
exp(β*

A X̃!)∑@
A ′=1 exp(β*

A ′X̃!)

}

where the expectation on the right hand side is over the population distribution of X.
Therefore, we can estimate β by incorporating the additional moment condition. In prac-

tice, we can estimate the parameter by constrained optimization. Let L* (β) denote the log-
likelihood function of the multinomial logit, such that

L* (β) ≡ log ℓ* (β), ℓ* (β) =
*∏
!=1

@∏
A=1

{
exp(β*

A X̃!)∑@
A ′=1 exp(β*

A ′X̃!)

}1{-$=A}

where the product is over respondents in the survey data.
We then obtain the estimate by solving the following constrained optimization:

maximize L* (β)
subject to g(β) = 0

where

#A (β) = Pr(- = A) = !X∼>(X)

{
exp(β*

A X̃!)∑@
A ′=1 exp(β*

A ′X̃!)

}

Estimation for exact constraints with Polya Gamma augmentation We first show that
we can find a solution to the above problem by the EM algorithm. In this paper we will not use
this exact algorithm and instead approximate it with an additional layer of optimization, but
the general form of the procedure is still useful to outline and will be used in the initialization
step of our actual algorithm.

Suppose that we fix parameters β−A , and try to estimate βA (coefficients for the Ath cate-
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gory). By the EM algorithm derived in Yamauchi (2021), we have the following M-step,

maximize CA (βA )
subject to #A (βA ) = 0

where the objective function is quadratic in βA after conditioning on the augmented Polya-
Gamma random variable D.

CA (βA ) = −1
2β

*
A (S + !−1

0 )βA + β*
A (X̃*d + !−1

0 µ0)

where S = X̃*diag({D!A }*!=1)X and ?! = ![D!A ] log
(∑

A ′=A 3
*
A ′X̃!

)
+ (-!A − 1/2).

We can obtain the update by considering the Lagrangian

E (βA , F) = CA (βA ) + F#A (βA ).

The optimality conditions require we solve for
[

G
Gβ%

E (βA , F)
G
GF E (βA , F)

]
= ∇E (βA , F) = 0

where each component of the gradient is

G

GβA
E (βA , F) = −(S + !−1

0 )βA + (X̃*d + !−1
0 µ0) + F

G

GβA
#A (βA ),

G

GF
E (βA , F) = CA (βA ) + #A (βA ).

With these gradient functions, we update the estimate of β̃A = (βA , F) with the Newton-
method, so that at iteration (H + 1),

β̃(H+1)
A = β̃(H)

A +
(
∇2E (β(H)

A , F(H))
)−1

∇E (β(H)
A , F(H))

We then implement the E-step by evaluating ![D!A ], which follows directly from the mean
of a Polya-Gamma random variable,

![D!A ] =
1

2Î!A
tanh(Î!A/2)
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where Î!A = β*
A X̃! − log

∑
A ′≠A exp(β*

A ′X̃!).

Relaxing the exact constraint The exact constraint #(β) = 0 can lead to unstable estimates
when the population distribution and survey data are quite different. In practice, therefore,
we do not use the full EM algorithm described above. We instead run a version relaxing
the constraint with a slack parameter : . Instead of setting the constraint function # to 0, we
reformulate the question as

maximize L* (β)
subject to ‖g(β)‖1 ≤ : (12)

where the constraint bounds the total variation distance between the predicted marginal dis-
tribution of - and the population distribution. : is therefore the sum of absolute deviations
on the probability scale. Because the fraction of categories must sum to 1, this deviation is
bounded between 0 and 2.

We solve this optimization problem by entering its Lagrangian in R’s coordinate-wise
optimization routine which is common, but with a novel initialization step: As initial values
of β, we estimate the multinomial with no constraints, using the Polya-Gamma augmentation
described in the previous section. The fast estimation of the multinomial model at this stage
substantially reduces the time required for convergence in the coordinate-wise optimization.

Estimating the joint probability After estimating the model parameters β̂ for the condi-
tional distribution, we obtain the population joint probability as

P̂r(- = A ,X = x) =
exp(β̂*

A x̃)∑@
A ′=1 exp(β̂*

A ′x̃)
× Pr(X = x).

A.7 Estimation of Joint Demographic Distributions
In the next two subsections, we document how we implement the synthetic target estimation
algorithm described above. For a poststratification target of the voting age population by
each congressional district, we start with the CCES survey data and ACS summary statistics.
Although the ACS reports summary statistics at the congressional district level of U.S. adults,
it does not report the joint four-way distribution of age, sex, race, and education for each
district. We use the following two partitions of the US adult population in each geographic
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unit:

• Age group by sex by race: Census table B01001, for subtables B, C, D, F, G, H, I, using
variable codes 7–16, 22–31 in each subtable.

• Age group by sex by education: Census table B15001, for variable codes 4–83, exclud-
ing variables 11, 19, 27, 35, 43, 44, 52, 60, 68, 76.

These variable codes are also listed in the ccesMRPprep package, under acscodes_sex_age_educ
and acscodes_sex_age_race.

Calibration occurs at the CD-level. We estimate a outcome-balanced multinomial logit
predicting 4-way categorization of education, such that the weighted proportion of education
in each district matches that of the provided ACS table. The predictive slack in equation (12)
was set to : = 0.01.

The predictors of the education were racial group interacted with age group, and an in-
tercept for sex. Levels of the variable are recoded to be consistent with the CCES survey
data and the ACS, which is described in the main text. In R notation, this amounts to educ
~ race * age + female.

Because not all states and certainly not all districts have enough data points to estimate
this model, we use a grouping of states defined in Figure A.2. For each district % , we fit the
multinomial logit model using all survey responses from the set of states that includes district
% .

A.8 Estimation of a Calibrated Turnout Model
We start with the 4-way demographic table from above and wish to estimate the turnout rate
in each covariate set '. We again use the CCES, where turnout is 1 if the voter matches to
the Catalist voter file in the state and 0 otherwise. This validated vote variable is a standard
variable in the public release of the CCES. We use the outcome-balancing multinomial logit
predicting a binary variable for turnout, such that the weighted turnout rate in the CD is equal
to the observed turnout as a population of the Voting Age Population in the CD. We use the
highest office turnout and VAP statistics reported by Daily Kos (2021). We set the predictive
slack in equation (12) to : = 0.001.

The turnout model takes the form turnout ~ race * age + female + educ. Be-
cause the contribution of these variables may differ by area, we estimate these models state
by state. Because some states’ samples have insufficient observations to fit this model, we
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again fit the multinomial logit model using all survey responses from the set of states in Figure
A.2 that includes the state in question.

A.9 Grouping of States
In survey-assisted synthetic target estimation, it becomes necessary to group small states to-
gether or group a small state into a large state so there is sufficient data. We therefore use
survey data from the groupings shown in Figure A.2 to estimate district-specific or state-
specific targets.

Figure A.2 – Groupings of states for estimates of sufficient sample size.

AK−ID−KS−NE−ND−OK−MT−SD−WY

AL−AR−LA−MS

AZ−CO−NM−NV−UT

CA

CT−MA−RI−ME−NH−VT

DE−MD−VA

FL

GA

HI−OR−WA

IA−IL

IN−OH−MO

KY−TN−WV

MI−MN−WI

NJ

NY

PA

SC−NC

TX

We grouped states based on geographic proximity and political patterns to group states.
Changing the groupings to smaller geographies and simpler regression models changed final
estimates by 1-2 percentage points in the average district, for each race.

The hierarchical modeling that is used in the main CCES specification can in theory be
used to overcome such small sample problems. The reason why we group states in this prepa-
ration stage only is because the outcome balancingmultinomial model does not partially pool,
and limited by the interactions that exist in the data.

A.10 How Modeling Choices Affect Estimates
Figure A.3 shows how our estimates change by the degree of calibration. Here the hierar-
chical model and the post-stratification are held fixed, but the post-MRP calibration changes.
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The graph shows that calibration changes point estimates by around 5-7 percentage points
for White and Hispanic voters. Two-way calibration changes the one-way calibration by al-
most linearly shifting White voters to be more Republican and Hispanic voters to be less
Republican in this case. In practice, we implement the two calibrations in the calibration step
simultaneously, instead of one calibration after another.

Figure A.3 – Consequences of Calibration. Each row of three scatter plots show the
differences in final point estimates depending on the level of calibration discussed in the
paper. (1) MRP estimates without any calibration, (2) MRP estimates with a one-way
calibration to district-level voteshare, and (3) MRP estimates with a two-way calibration
developed in this paper to district-level voteshare and a national vote by race constraint.
Statistics show the root mean square difference (RMSD) and mean difference.
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B ADDITIONAL ANALYSES

B.1 Asian Americans
In our main analysis, we focus on Black and Hispanic voters and do not separate out Asian
American voters from remaining Other racial minorities. The CCES and ACS does record
Asian American as a response option in their data and it is possible to construct a hierar-
chical model that makes this distinction. However, the synthetic joint population estimation
currently cannot model separate population counts for Asian Americans because its popula-
tion is heavily concentrated in a handful of states.

In this section, we analyze the Asian American vote separately but only using data from
the states in which a sufficiently large fraction of the population are Asian Americans. Figure
B.1 shows point estimates and compares them with the other three racial groups.

Figure B.1 – Comparison of Asian American voting estimates in select states. We
estimated joint poststratification tables separating out Asian Americans from the other
races, in states with at least 10 percent of Asian American adults. Those states are
California, Washington, Hawaii, and New Jersey. Respondents from those four states
are used in estimation. Only CDs with an estimated 10 percent of more of the electorate
being Asian American are shown.

White Black Hispanic Asian

10% 20% 30% 40% 50% 60% 70% 80% 90%

Trump Vote
within Race
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Table B.1 – Comparison of Survey Estimates. All estimates show two party Repub-
lican vote in the Presidential election. Exit Polls use the National Election Poll (as
published in CNN). Catalist refers to Catalist’s MRP estimates. LD refers to Latino
Decisions and the American Election Eve Poll. CMPS refers to the Collaborative Multi-
Racial Post-Election Survey. See Appendix C.4 for standard errors for estimates in this
paper.

2016 2020
Republican

vote
among This Paper Exits Catalist LD CMPS This Paper Exits Catalist LD CMPS

National
White 59 61 59 57 57 59 56 58 52
Black 7 8 7 5 10 12 10 9 10

Hispanic 30 30 29 19 19 38 33 36 28 23

Wisconsin
White 54 56 54 53 53 53 57
Black 4 6 8 8 8 10 5

Hispanic 30 35 34 10 33 38 44 22

Florida
White 63 67 62 63 57
Black 7 9 10 10 9

Hispanic 39 36 32 47 46 39

Texas
White 71 73 66 67 66
Black 7 12 9 9 10

Hispanic 38 36 17 43 41 30

Note: Numbers are taken from the National Exit Polls listed by CNN (2016, 2020), Catalist
website, Latino Decisions website (2016, 2020), Collaborative Multiracial Post-election
Survey (2016, 2020). Blank cells indicate the survey has not publicly released an estimate.

B.2 Comparison with Other Surveys
Table B.1 compares the estimates from other sources of data. These differences could be
due to simple random sampling error, differences in turnout estimation, timing of the survey,
differences in how racial groups are defined, and survey coverage. We do not have access to
the raw data or methodology of all other surveys to conduct a full-fledged comparison.

One discrepancy that stands out is that the estimates by Latino Decisions (LD) and CMPS
of the Hispanic vote are more Democratic than the other surveys by double digits. Barreto,
Reny, and Wilcox-Archuleta (2017) discussed some reasons for why this might be the case.
Discussing the Exit Poll, they point out that a bad selection of precincts to poll might have
biased the estimates, and they also question whether the Exit Poll’s composition of the His-
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panic respondents is consistent with the Census. These two critiques would apply less to an
online survey like the CCES that is then weighted to Census composition figures. A third
potential reason is the lack of the Spanish language option in the CCES. A fourth potential
reason is that LD and CMPS could be using a different definition of Latinos and recruitment
method than the CCES or Exit Polls.

Barreto, Reny, and Wilcox-Archuleta (2017) use precinct-level data as suggestive evi-
dence that the Hispanic Republican vote is much lower than what the Exit Poll has reported.
The thrust of such evidence is a homogeneous precinct analysis. Focusing on NewYork state,
for example, Barreto (2016) shows that precincts in which over 80 percent of the electorate
are estimated to be Hispanic often reported a Clinton vote of over 90 percent. The implication
is that the Exit Poll’s estimates of a 23 percent Trump vote among New York Hispanics is
unreasonable. However, our validation analysis in Florida suggests that ecological inference
may be underestimating the true Republican vote among Hispanic voters. Because our study
provides district level estimates below the state-level, we can provide a suggestive test of this
independence assumption.

B.3 Details on Florida Validation Analysis
Data We use Catalist’s cleaned voterfile query tool to extract precinct-level aggregates and
joint counts of race and party registration. In September 2021, we queried the number of
voters (registered in Florida) who voted in the 2016 Presidential Election (wherever they
were in 2016). Catalist assigns these voters to the precinct that they are registered in at the
time of the query. The race and party registration data are information as of the time of the
query as well (not the time of the 2016 election).

After assigning congressional districts to split precincts, we are left with precincts com-
prising 8.3 million voters. There were 9.4 million votes in the 2016 election. Some of the
drop in population is due to the snapshot of the voterfile being pulled not being accurate. We
sample 10,000 posterior iterations for each congressional district.

To evaluate the validity of the EI method, we take the actual share of each racial group
in each district that are Republican from the same precinct-level dataset. Separately, we
purchased a CD-level dataset from Catalist that records the counts of each race and party reg-
istration of 2016 voters by their 2016 districts. Because we do not want to attribute errors in
EI to discrepancies between our precinct data query and the ground truth, we evaluate the EI
estimates based on the ground truth calculated from the same precinct dataset and evaluate the
MRP estimates based on the ground truth based on the more accurate counts purchased from
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Catalist. The two CD-level ground truth measures are correlated at 0.97 for White voters,
0.98 for Hispanic voters, and 0.89 for Black voters.

Setting Florida and North Carolina are the only two states that ask voter registrants to iden-
tify with both a party and a racial group, and makes this information, along with precinct and
turnout information, public in their voterfile. Therefore, the proportion of voters in a spe-
cific district and of a specific race who register with the Republican party is known precisely
through an administrative dataset. We therefore conduct a validation of our MRPmethod and
ecological inference (EI) where the quantity of interest is

Pr(Registration = Republican | Race #, District % , Turnout),

that is, the proportion of the electorate in district % with racial identification # that is registered
for the Republican party.

MRP methodology The CCES includes a variable for party registration that comes directly
from the Catalist voter file match. In other words, in the CCES party registration is observed
without error. We estimate a MRP model predicting party registration in Florida with the
same methods described in this paper with a few differences. First, we estimate the model
only on Florida data, since not all states have party registration on the voter file. We also
evaluated an MRP estimate with only one-way calibration to district geography rather than
a two-way calibration. The error rate increases for White voters, but the MRP error rate for
Hispanic and Black voters are still lower than that for EI.

Ecological Inference in Practice This setting is a favorable data setting for ecological in-
ference of racial polarized voting than the modal case. The registered race and the party
registered race is exactly known in this voter file data. In 48 other states, this data is unob-
served. In all but six southern states, analysts use Census estimates the composition of each
race in the (citizen) voting age population as their measure of race at the precinct level, or
they use a race classification estimator such as Bayesian-Improves Surname Geocoding to
predict race within the voter file. Party registration is only available in 31 states as well.

B.4 Comparison with Ecological Inference in 50 States
We next extend our comparison between our survey-based method and EI to other states,
beyond where validation data is available. We use Census and election results data at the
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Figure B.2 – Comparison of MRP and Ecological Inference Estimates. Both model
predicts the proportion of each racial group electorate in each congressional district that
voted for the Republican Presidential candidate in 2020. Statistics in each facet show root
mean square difference (RMSD) and mean difference between EI and MRP estimates.
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precinct-level which are then assigned to districts as of 2020. We use the combined file from
McCartan et al. (2022), which incorporates election data and shapefiles from Voting and
Election Science Team (2020) with Census demographics. We compare our method’s and
EI’s estimate for the 2020 election instead of the 2016 election, because the 2020 election is
done closer to the 2020 decennial Census that provided the racial composition information
used for EI. Our comparison covers 435 districts in all 50 states.

We take racial compositions within the Voting Age Population (VAP). This is different
from the Citizen Voting Age Population or the turnout population, but the decennial Census
does not ask citizenship and standard ecological inference must rely on such incomplete data.
Within each congressional district, we take 5000 thinned draws from the 4 by 2 ecological
inference estimates, estimated the same way as Appendix B.3.

Figure B.2 compares estimates of Trump vote share for White, Black and Hispanic voters
in a congressional district, with EI estimates on the x-axis and our 2020MRP estimates on the
y-axis. Among White voters, MRP often produces lower estimates of Republican voteshare
than EI with an average discrepancy of 12 percentage points in root mean square difference.
Among Hispanic voters, we find the opposite, where MRP often produces higher estimates
of Republican voteshare than EI. The discrepancy here is even larger, about 23 percentage
points. Hispanic estimates have more uncertainty in them due to small subgroup samples,
but even accounting for the standard errors of both the MRP and EI estimates, the difference
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Figure B.3 – MRP and EI Differences by Group Size and Homogeneity. The top
graph plots the raw difference between district-group level MRP and EI estimates on the
y-axis, and the district level group size on the x-axis, for White, Black, and Hispanic
voting populations. The bottom graph plots the t-statistic for district-group’s MRP and
EI estimates on the y-axis, against the percent of homogeneous precincts (precincts with
or greater than 90 percent of a group voting population) in that district on the x-axis.
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is statistically significant at a 0.01 level in 52 percent of the districts under consideration.
States with large Hispanic voting populations have much smaller differences between

MRP and EI estimates of Republican voteshare. The RMSD for Hispanic MRP and EI esti-
mates is between 11 and 16 percentage points in Southwestern states like Arizona, California,
and Texas. In states with small Hispanic voting populations like Alabama and Mississippi,
the discrepancy is above 40 percentage points.

Similarly, states with larger Black voting populations demonstrate smaller differences
between MRP and EI estimates of Republican voteshare. In Southern states like Alabama,
Florida, and Georgia, the RMSD for Black MRP and EI estimates is between 6 and 10 per-
centage points. However in Southwestern states like Arizona, California and Colorado, the
RMSD is between 20 and 24 percentage points. Overall, EI estimates Black voters to be 14
percentage points more Republican than MRP estimates.

Figure B.3 plots the differences between MRP and EI estimates against district-group
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Table B.2 – MRP and EI White - Non-White Racial Gap. Each column represents
summary statistics of MRP and EI reliant estimates of the White - non-White racial gap
(Equation (1)) using the point estimates from Figure B.2.

Statistic MRP EI
Minimum 0.04 -0.28
District in 25th Percentile 0.14 0.28
Median District 0.22 0.43
Mean district 0.24 0.41
National Gap 0.29 0.42
District in 75th Percentile 0.30 0.57
Maximum 0.65 0.86
Standard deviation 0.12 0.23

level demographics. The top graph demonstrates that differences between MRP and EI esti-
mates decrease towards zero as the size of a group voting population increases. The bottom
graph plots the relationship between the t-statistic of the difference measuring the difference
between MRP and EI estimates for a district, against a district’s percent of homogeneous
precincts. Estimates for a group differ most when that group has little to no homogeneous
precincts. For Black and Hispanic populations, the difference betweenMRP and EI estimates
decreases as their percentage of homogeneous precincts increases.

In contrast, MRP and EI differences grow larger as the percentage of homogeneously
White precincts increases. In these districts with large White populations, an increasing per-
centage of homogeneously White precinct amounts to an increasingly large number of White
voters, which may introduce greater variance in preferences.

The differences between MRP and EI estimates shown in Figure B.2 lead to different
estimates of the racial gap. EI estimates White voters to be more cohesively Republican and
Hispanic voters to be more cohesively Democratic, leading to larger estimates of the White
- non-White racial gap. Table B.2 compares summary statistics on the absolute difference
between White and non-White estimates of Trump voteshare. EI produces larger racial gap
estimates than MRP across nearly all summary statistics. The median White - non-White
racial gap is 22 percentage points under MRP, but 43 percentage points under EI.
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C ADDITIONAL ESTIMATES AND STANDARD ERRORS

C.1 Additional Estimates
A table of estimates for each district and race in 2016 and 2020 are provided in our APSR
Dataverse repository. A copy of the data is also deposited in a separate Dataverse repository,
https://doi.org/10.7910/DVN/MAZNJ6 (Kuriwaki et al. 2023), for post-stratification tables be-
yond the scope of years in this study.

The district’s names and descriptions are all as of 2021. The names of the CD come
from the Daily Kos name in August 2019 (Daily Kos 2019). When there was significant
redistricting between the 2016 and 2020 elections, we model the contemporaneous districts
and name them separately. Pennsylvania redrew its Congressional districts in 2018, so we
designated districts with the help of Daily Kos and Lara Putnam. The geographic associaton
is shown in Figure C.1 and the names of each district.

Figure C.1 – Location of specific Congressional Districts. The Daily Kos district map
used throughout this paper places congressional districts roughly according to their rel-
ative place in the state. The following figure indicates which districts are placed where.
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C.2 2020 Estimates
While this paper focused on 2016 in the main text, we estimated the same quantities using
the 2020 Presidential election between Donald Trump and Joe Biden. Weighting and calibra-
tion targets were updated to use 2020 statistics. One exception is the voting age population
statistics of the ACS. The ACS has only released experimental data for 2020 because of low
response rates during COVID-19. We instead take the average of 2019 and 2021.

We took the 2016 and 2020 estimates and compared the estimates of each CD-race combi-
nation. That said, these comparisons cannot fully represent the underlying change in a racial
group’s overall voting preferences because of differential turnout.

Table C.1 shows the results of these estimates at the state-level and up. The format mirrors
Table 1 in 2016.

Figure C.2 shows thatWhites and Non-Whites moved in opposite directions, in a direction
that reduced racial polarization. Whites became less supportive of the Republican Presiden-
tial candidate by about 2.5 percentage points and Non-Whites became more supportive by
about 3.5 points. Hispanics moved more than Blacks but both moved in the same direction.
In other words, the difference in Republican vote betweenWhite voters and non-White voters
decreased by over 6 percentage points.

C.3 Racial Gap Estimates
Figure C.3 and Table C.2 show the full distribution and summary statistics of the racial gap
measure discussed inthe main text.

Figure C.4 separates the White - non-White racial gap into the White - Black racial gap
and the White - Hispanic racial gap.



Table C.1 – 2020 Republican Vote by Race and Geography

(a) Region Level

Non-Whites
White All Black Hisp. All

Northeast 48 22 10 29 42
South 66 27 10 44 53

North Central 56 24 9 37 51
West 48 31 12 34 42

National 56 28 10 38 48

(b) Division Level

Non-Whites
White All Black Hisp. All

Northeast
New England 40 25 12 28 38

Middle Atlantic 52 22 9 29 44
South

South Atlantic 62 25 10 43 49
East South Central 73 22 11 60 62
West South Central 69 34 11 44 56

North Central
East North Central 56 21 8 35 50
West North Central 58 32 14 42 55

West
Mountain 56 39 16 40 51

Pacific 43 29 10 32 37
National 56 28 10 38 48

(c) State Level

Non-Whites
White All Black Hisp. All

New England
Connecticut 44 28 15 34 40

Maine 46 33 (12) (38) 46
Massachusetts 36 22 10 22 33

New Hampshire 47 36 (16) (33) 46
Rhode Island 42 28 11 33 40

Vermont 32 22 (8) (24) 32
Middle Atlantic

New Jersey 50 27 11 34 42
New York 49 20 9 26 40

Pennsylvania 56 19 8 32 50
South Atlantic

Delaware 48 22 12 33 41
Florida 62 34 10 46 52
Georgia 70 20 9 45 50

Maryland 46 15 6 25 33
North Carolina 62 24 13 40 51
South Carolina 70 20 10 59 56

Virginia 56 22 9 33 45
West Virginia 72 38 16 (51) 70

East South Central
Alabama 79 22 12 71 63
Kentucky 68 26 11 (48) 63

Mississippi 82 19 13 (73) 59
Tennessee 70 22 7 54 62

West South Central
Arkansas 72 30 12 55 64
Louisiana 79 23 13 61 60
Oklahoma 71 47 14 62 67

Texas 65 35 9 42 53
East North Central

Illinois 50 19 6 32 42
Indiana 62 28 14 42 58

Michigan 55 21 7 40 49
Ohio 59 19 9 (38) 54

Wisconsin 53 27 8 35 50
West North Central

Iowa 56 37 16 46 54
Kansas 61 41 20 51 58

Minnesota 50 25 11 30 46
Missouri 63 26 12 (44) 58
Nebraska 63 41 20 49 60

North Dakota 69 51 (27) (53) 67
South Dakota 64 55 (22) (57) 64

Mountain
Arizona 57 36 15 35 50

Colorado 47 33 15 35 43
Idaho 67 62 (29) 59 66

Montana 59 54 (30) (53) 59
Nevada 55 41 16 50 49

New Mexico 51 39 (19) 40 45
Utah 63 51 (27) 48 61

Wyoming 73 66 (34) 67 73
Pacific

Alaska 58 48 17 46 55
California 42 28 10 31 35

Hawaii 42 31 14 26 35
Oregon 44 32 (9) 33 42

Washington 43 31 10 34 40
National 56 28 10 38 48



Figure C.2 – Changes in Republican vote by racial group, 2016 to 2020. Each point
is our CD-level estimate for a racial group. We exclude CDs in Pennsylvania and North
Carolina because district lines changed between 2016 and 2020 in those states. Summary
statistics show mean change in a pair of CDs without taking the absolute value.
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Figure C.3 – Distribution of CD-level Racial Gap Estimates. A histogram of the
distribution shown in Figure 3.
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Table C.2 – Summary Statistics of CD-level Racial Gap

Statistic 2016 2020
Minimum 0.06 0.04
District in 25th Percentile 0.21 0.14
Median District 0.29 0.22
Mean District 0.30 0.24
National Gap 0.36 0.29
District in 75th Percentile 0.39 0.30
Maximum 0.71 0.65
Standard Deviation 0.13 0.12

Figure C.4 – The White-Black and White-Hispanic Racial Gap. Bars show 80 per-
cent credible intervals. The arrangement of districts follows Figure 3.
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C.4 Standard Errors
Table 1 compares point estimates, but some of the differences between state-level point es-
timates are statistically not distinguishable from 0 because of estimation uncertainty. We
approximate the state-level standard error by taking the standard deviation of the state-level
estimates across the 2000 posterior draws. There are two types of uncertainty that are of in-
terest: the uncertainty implied by the hierarchical regression model, and the uncertainty after
calibration is applied.

The standard error implied by the hierarchical model is the standard deviation of theMRP
estimates before calibration. It reflects the uncertainty in making inferences from the survey
data. These standard errors will likely be large in districts and racial groupswith fewer respon-
dents. It is also smaller than the standard error of simple direct estimates without hierarchical
model with shrinkage. Table C.3(a) uses the standard deviation of these estimates. A value
of 0.05, for example, indicates a frequentist margin of error of about 10 percentage points.

The standard error of the estimates after calibration is important because they are the
final estimates we produce. By design, calibration does reduce the variance of estimates
of homogeneous racial groups. Consider a state (district) such as VT-01 that is 99 percent
White and 1 percent minority. The voteshare in that district is known. The racial homogeneity
allows us to attribute the bulk of the calibration shift in the homogeneous racial group, and
every posterior iteration of this estimate will be drawn to that voteshare target, dramatically
reducing the standard error. In other words, once we know that Trump’s voteshare in VT-
01 was exactly 34 percent, there is little uncertainty that the White vote in Vermont is also
quite close to 34 percent. This idea is consistent with thinking of calibration as a principled
posterior update (Rosenman, McCartan, and Olivella 2023). Table C.3(b) uses the standard
deviation of these estimates.
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Table C.3 – Standard Errors of State-level Estimates. See Appendix C.4 for the
difference between the two specifications.

(a) Implied by Hierarchical Model (b) After Calibration

Non-Whites
White All Black Hisp. All

New England
Connecticut .021 .031 .024 .064 .019

Maine .023 .047 .024 .076 .023
Massachusetts .015 .023 .016 .041 .014

New Hampshire .023 .043 .026 .075 .023
Rhode Island .027 .041 .024 .076 .025

Vermont .03 .044 .019 .068 .03
Middle Atlantic

New Jersey .016 .021 .016 .042 .013
New York .012 .014 .013 .028 .0099

Pennsylvania .011 .014 .013 .046 .01
South Atlantic

Delaware .026 .024 .022 .08 .022
Florida .01 .016 .014 .03 .0092
Georgia .015 .015 .015 .059 .012

Maryland .017 .015 .016 .054 .013
North Carolina .015 .015 .015 .053 .012
South Carolina .019 .019 .021 .071 .016

Virginia .014 .017 .015 .05 .012
West Virginia .021 .026 .029 .082 .02

East South Central
Alabama .02 .017 .018 .078 .016
Kentucky .02 .021 .012 .076 .018

Mississippi .023 .022 .024 .085 .017
Tennessee .017 .015 .014 .068 .015

West South Central
Arkansas .021 .024 .023 .08 .019
Louisiana .019 .024 .028 .069 .016
Oklahoma .02 .03 .023 .077 .018

Texas .012 .019 .014 .029 .011
East North Central

Illinois .013 .015 .014 .034 .011
Indiana .016 .021 .018 .059 .015

Michigan .014 .016 .014 .05 .013
Ohio .012 .014 .015 .051 .011

Wisconsin .016 .023 .015 .057 .015
West North Central

Iowa .019 .04 .031 .08 .018
Kansas .021 .038 .03 .079 .02

Minnesota .017 .028 .021 .058 .016
Missouri .016 .02 .022 .064 .014
Nebraska .022 .041 .032 .083 .021

North Dakota .03 .05 .048 .12 .03
South Dakota .03 .058 .052 .11 .029

Mountain
Arizona .017 .029 .043 .04 .015

Colorado .017 .031 .041 .044 .016
Idaho .025 .054 .081 .086 .025

Montana .029 .056 .074 .11 .028
Nevada .021 .033 .046 .055 .02

New Mexico .024 .042 .062 .055 .025
Utah .023 .044 .063 .065 .022

Wyoming .031 .064 .087 .1 .031
Pacific

Alaska .03 .057 .07 .11 .03
California .011 .015 .026 .023 .0095

Hawaii .03 .052 .051 .077 .033
Oregon .018 .033 .027 .057 .017

Washington .015 .025 .026 .05 .014

Non-Whites
White All Black Hisp.

New England
Connecticut .0069 .024 .024 .053

Maine .0015 .043 .025 .07
Massachusetts .0043 .019 .016 .033

New Hampshire .0021 .04 .029 .071
Rhode Island .0065 .033 .023 .063

Vermont .0043 .039 .019 .057
Middle Atlantic

New Jersey .0077 .015 .016 .033
New York .0053 .01 .012 .021

Pennsylvania .0026 .012 .012 .039
South Atlantic

Delaware .0067 .018 .019 .068
Florida .0056 .011 .013 .023
Georgia .0072 .012 .015 .054

Maryland .0072 .011 .013 .044
North Carolina .0053 .013 .016 .049
South Carolina .0066 .017 .02 .07

Virginia .0056 .013 .014 .043
West Virginia .0027 .027 .034 .081

East South Central
Alabama .008 .019 .023 .072
Kentucky .0025 .02 .014 .074

Mississippi .012 .026 .03 .082
Tennessee .0029 .015 .015 .065

West South Central
Arkansas .005 .022 .025 .076
Louisiana .012 .021 .028 .066
Oklahoma .0044 .025 .026 .074

Texas .007 .011 .015 .019
East North Central

Illinois .0045 .012 .013 .028
Indiana .0027 .02 .021 .058

Michigan .0029 .015 .015 .047
Ohio .0023 .015 .016 .05

Wisconsin .0026 .021 .016 .053
West North Central

Iowa .0031 .037 .035 .078
Kansas .0047 .034 .036 .076

Minnesota .0035 .025 .022 .053
Missouri .0033 .022 .027 .064
Nebraska .0044 .038 .041 .08

North Dakota .0045 .042 .063 .12
South Dakota .0043 .05 .061 .11

Mountain
Arizona .0073 .021 .043 .031

Colorado .0069 .023 .042 .036
Idaho .0048 .049 .094 .083

Montana .0042 .05 .081 .1
Nevada .011 .023 .046 .044

New Mexico .019 .023 .058 .037
Utah .005 .038 .073 .061

Wyoming .012 .058 .11 .1
Pacific

Alaska .013 .041 .072 .1
California .0064 .0072 .021 .013

Hawaii .031 .022 .037 .057
Oregon .004 .027 .025 .049

Washington .004 .02 .024 .043
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