
APPENDIX (For Online Publication)

List of F	figures
A1	Donor-funded politician on deforestation: Non-parametric DiD iii
A2	Mediation analysis iv
A3	Mediation: Sensitivity analysis
A4	Different bandwidth sizes: Donor funded politician and fire intensity vi
List of T	Tables
A1	More stringent donor-funded politician definition vii
A2	Mayors with deforestation-related donors and deforestation: OLS viii
A3	Difference between RD sample and rest of the country ix
A4	Donor funded politician and deforestation during term in office: Cubic polynomial \mathbf{x}
A5	Donor funded politician and deforestation: OLS xi
A6	Donor funded politician and deforestation by year of government: Quadratic Poly-
	nomial xii
A7	Donor funded politician and contracts: Quadratic polynomial \mathbf{xii}
A8	Donor funded politician and avg. value of infrastructure contracts per year \dots xiii
A9	Donor funded politician and infrastructure contracts by relation to defore station $$. $$ xiii $$
A10	Heterogeneous Effects: Armed Conflict: Quadratic Polynomial xiv
A11	Donor funded politician and fire intensity: Quadratic polynomial ${\bf xiv}$
A12	Donor funded politician and fire intensity by year of government $\ \ldots \ xv$
A13	Donor funded politician and agro-cattle firms entry by year xv
A14	Donor funded politician and agro-cattle firms entry by year: Quadratic polynomial xvi
A15	Alternative outcomes and sources
A16	Donor funded politician and deforestation during term in office: Adding covariates xvii
A17	Heterogeneous effects by state presence controlling for agricultural pressure xviii
A18	Donor funded politician and deforestation during term in office: Using different
	weights

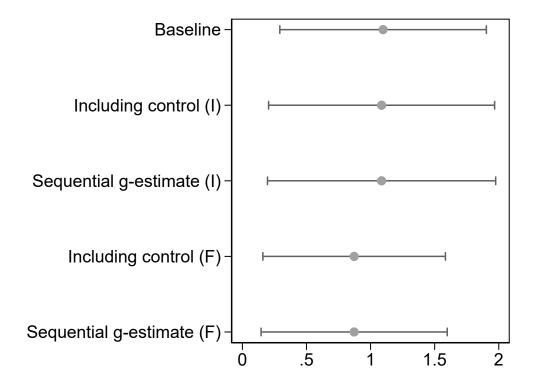

A19	Heterogeneous effects by agricultural presence xix
A20	Right-wing politician and deforestation during term in office xix
A21	Heterogeneous effects by candidate characteristics
A22	Politically experienced politician and deforestation during term in office $\dots \dots xxi$
A23	Heterogeneous Effects: State Presence - Quadratic Polynomial $\ \ldots \ xxi$
A24	Donor funded politician and infrastructure contracts by year of government: Quadratic polynomial
A25	Donor funded politician and fire intensity by year of government - Quadratic poly-
	nomial
A26	Heterogeneous effects: Guerrilla presence and ceasefire
A27	Descriptive statistics for donor-funded politicians
A28	Private donations and deforestation: OLS
A29	Heterogeneous effects by deforestation on future electoral outcomes \mathbf{xxiv}
A30	Donor funded politician and deforestation during the previous term in office $\mathbf{x}\mathbf{x}\mathbf{v}$
A31	Donor funded politician and deforestation during term in office: Full model $ \ldots xxv $
A32	Donor funded politician and fire intensity: Full model $\ \ldots \ \ldots \ \ldots \ xxvi$
A33	Summary Table Figure 4

Figure A1: Donor-funded politician on deforestation: Non-parametric DiD

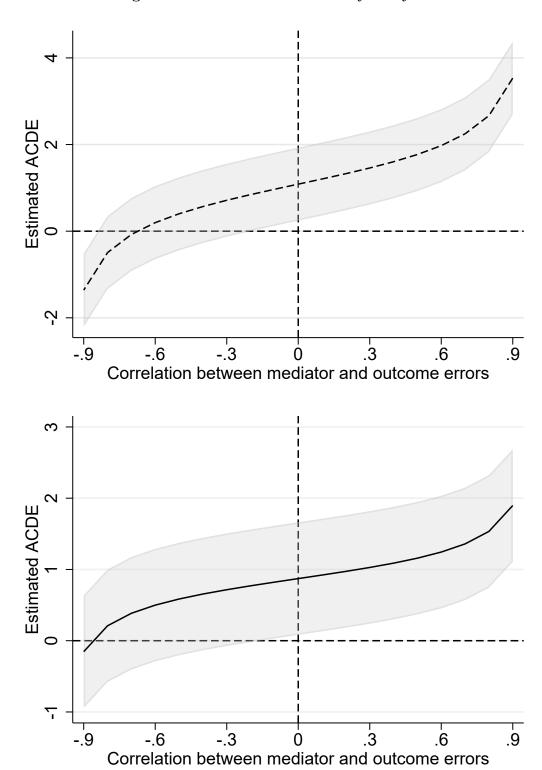

Note: We perform a non-parametric difference-in-differences interacting the treatment by the year dummy. 90% confidence intervals. The year zero represents the first year of government and the year -1, is the election year. We use the full sample 408 of races between donor-funded and non-donor-funded top candidate.

Figure A2: Mediation analysis

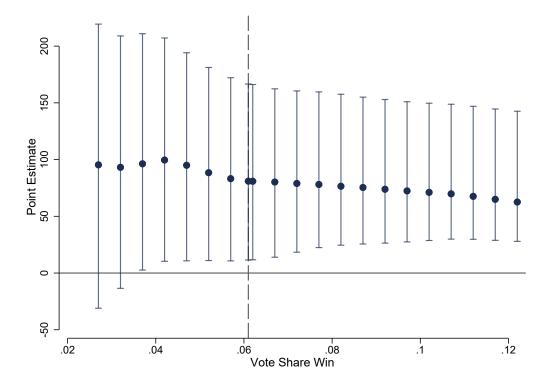

Note: This figure presents the mediation analysis for expenditures in infrastructure and fires. Baseline presents the point estimate and the 95% confidence interval for our baseline specification from column 1 Table 3. Including control (I) presents the point estimate and the 95% confidence interval for the main specification but adding the hyperbolic sine transformation of the average value of expenditures on infrastructure after the election as a control. Sequential g-estimate (I) presents the point estimate and the 95% confidence interval for the sequential g-estimate suggested by Acharya, Blackwell and Sen (2016) using as a mediator the hyperbolic sine transformation of the average value of expenditures on infrastructure after the election. Including control (F) presents the point estimate and the 95% confidence interval for the main specification but adding the number of fires after the election as a control. Sequential g-estimate (F) presents the point estimate and the 95% confidence interval for the sequential g-estimate suggested by Acharya, Blackwell and Sen (2016) using as a mediator the number of fires after the election. In the case of the Sequential g-estimate (I), we construct the confidence intervals using a non-parametric bootstrap procedure that includes the two estimation stages as suggested by the authors.

Figure A3: Mediation: Sensitivity analysis

Note: This figure presents the sensitivity analysis for the mediation analysis for expenditures on infrastructure (Panel A) and fires (Panel B) as suggested by Acharya, Blackwell and Sen (2016). We construct the confidence intervals using a non-parametric bootstrap procedure that includes the two estimation stages as suggested by the authors.

Figure A4: Different bandwidth sizes: Donor funded politician and fire intensity

Note: Estimates of average treatment effects at the cut-off, using triangular kernel weights. Optimal MSE bandwidths displayed in the dotted line. Following Cattaneo, Idrobo and Titiunik (2020), we display estimates between half and double the optimal bandwidth. Robust 90% confidence intervals estimated following Calonico, Cattaneo and Titiunik (2014).

Table A1: More stringent donor-funded politician definition

	(1)	(2) (3) Share privately funded	(3)ely funded $>$	(4)	(5) Donc	(7) Oonors >	(8) Donations	(9) sions >
	2%	10%	15%	20%	2	4	3	5
Donor Funded	1.071***	0.954**	0.937**	1.135**	1.032**	1.075**	1.166***	1.016**
Robust p-value CI 95%	0.009 $[0.306, 2.185]$	0.023 $[0.153, 2.100]$	0.045 $[0.027, 2.254]$	0.023 $[0.185, 2.465]$	0.012 $[0.268, 2.155]$	0.035 $[0.087, 2.427]$	0.006 $[0.385, 2.319]$	0.048 $[0.010, 2.366]$
Observations	394	370	324	293	388	278	371	270
Bandwidth obs.	135	121	106	94	131	96	118	83
Mean	1.182	1.182	1.182	1.182	1.182	1.182	1.182	1.182
Effect Mean(%)	90.61	80.71	79.27	96.02	87.31	90.95	98.65	85.96
Bandwidth	0.042	0.040	0.038	0.039	0.043	0.044	0.041	0.041
(Local) polynomial order	1	1	1	Π	1	1	1	1

15% (column 3), and 20% (column 4). Columns 5 and 6 define donor-funded politician based on receiving donations from at least 2 (4) private donors, while columns 8 and 9 define it based on receiving 3 (5) donations. 95% robust confidence intervals and robust p-values are computed following Calonico, Cattaneo and Titiunik (2014). Bandwidth obs. denotes number of observations in the optimal MSE bandwidth. The Effect Size (%) is computed as the point estimate Note: All columns present the local linear estimates of average treatment effects at cut-off estimated with triangular kernel weights and optimal MSE bandwidth. Columns 1 to 4 define donor funded politicians if they share of the budget privately funded was higher than 5% (column 1), 10% (column 2), over the mean x 100. *** p<0.01, ** p<0.05, * p<0.1.

Table A2: Mayors with deforestation-related donors and deforestation: OLS

	(1) Full-	(2) term	(3) 1st	(4) year	(5) 2nd	(6) year	(7) 3rd	(8) year	(9) 4th	(10) year
Deforestation-related donor	0.472 (0.376)	0.445 (0.381)	0.169** (0.071)	0.164** (0.070)	0.162 (0.126)	0.159 (0.131)	0.054 (0.097)	0.048 (0.097)	0.086 (0.158)	0.075 (0.157)
$Added\ Covariates:$										
Right-wing		-0.463 (0.435)		-0.089 (0.064)		-0.042 (0.107)		-0.120 (0.091)		-0.212 (0.232)
Political experience		-0.155 (0.427)		-0.034 (0.065)		0.056 (0.112)		-0.092 (0.098)		-0.085 (0.195)
Observations	67	67	67	67	67	67	67	67	67	67
Politician characteristic	No	Yes	No	Yes	No	Yes	No	Yes	No	Yes
R-squared Mean DV	0.026 1.371	$0.050 \\ 1.371$	0.108 0.241	0.139 0.241	0.041 0.329	0.047 0.329	$0.005 \\ 0.252$	$0.046 \\ 0.252$	0.004 0.549	0.031 0.549

Note: This table presents an OLS regression of Mayors with deforestation-related donors and deforestation. To explore the mechanism of the main result, this table focuses on the donor-funded mayors within the optimal bandwidth (0.041) of the main result of Table 3 Column (1), which are 73 (but for only 67 we found any information on at least one of their donors). Deforestation-related donor is a dummy that takes the value one if the mayor was funded by at least one deforestation-related donor. We define deforestation-related donor by conducting an online search for each of the donors' names (with IDs) in an effort to establish where they work or used to work, including businesses they may own or have owned. (In the replication materials we are unable to disclose individuals' names or IDs.) First, we searched in the chamber of commerce business registration online directory to check if the donors were owners of a business. When the business was found, we assigned the standardized sector code available there. When there was no information in the chamber of commerce dataset, we searched extensively online for where donors used to work, currently work, or businesses they own or owned. When information was found, we assigned the standardized sector code(s) based on the description of the work or business found. Once we had sector codes for donors' previous work or business, we then coded sectors for whether they are potentially related to deforestation. To fit with sectors considered in the manuscript, we take two sectors of the economy as being potentially related to deforestation: (1) "Agriculture, livestock, hunting and related service activities", and (2) "Civil engineering works." For those mayors for whom we could find at least some donor information, we then coded whether they had a donor with a previous connection to a sector related to deforestation. Availability of information make it impossible to code all donors in the data, (we were only able to find information on 384 of the 818 different private donors, due to the lack of information in the context). This represents a very limited degree of coverage, and it is unlikely that the data were are able to uncover represents a random sample. Moreover, the small sample size of identified Mayors with deforestation-related donors (19 out of 67) means that we are likely to be under-powered. Even columns add as controls politician characteristics such as political ideology and political experience. Robust standard errors are presented in parenthesis. *** p<0.01, ** p<0.05, * p<0.1.

Table A3: Difference between RD sample and rest of the country

	(1) In sa	(2) ample	(3) Rest of t	(4) he country	(5)	(6)	
	Mean	Std. Dev.	Mean	Std. Dev.	p-value difference	Standardize difference	
A. Individual covariates							
Women	0.136	0.344	0.093	0.290	0.115	0.137	
Age	43.492	9.328	45.057	9.782	0.092	-0.164	
Black	0.079	0.271	0.041	0.199	0.057	0.160	
Indigenous background	0.111	0.316	0.111	0.315	0.997	-0.000	
Left-wing party	0.053	0.225	0.024	0.154	0.060	0.149	
Right-wing party	0.152	0.360	0.252	0.434	0.011	-0.252	
Sanctioned before	0.038	0.192	0.026	0.160	0.451	0.065	
Has political experience	0.348	0.478	0.371	0.483	0.621	-0.046	
Panel B. Policy Outcomes							
Total income Y(COP M)	19666.964	20772.217	51057.283	386424.333	0.351	-0.115	
Land taxes (%Y)	3.508	3.890	3.941	4.803	0.321	-0.099	
Industry (%Y)	3.054	6.380	3.413	5.907	0.518	-0.058	
Funct. expen. (%Y)	13.030	5.259	13.316	5.006	0.541	-0.056	
Investment (%Y)	86.970	5.259	86.684	5.006	0.541	0.056	
(~` ′	11.239	10 100	11 900	0.500	0.994	-0.013	
Deficit (%Y)	11.239	10.189	11.369	9.508	0.884	-0.013	
,			11.309	9.508	0.884	-0.013	
Panel C. Other municipality socio-eco			11.369	1193.095	0.036	-0.013	
Panel C. Other municipality socio-eco Altitude (meter)	nomic chara	cteristics					
Panel C. Other municipality socio-eco Altitude (meter) Area in square km	nomic chara	cteristics 899.361	1186.192	1193.095	0.036	-0.214	
Panel C. Other municipality socio-eco Altitude (meter) Area in square km Distance department capital	960.114 772.886	899.361 1488.967	1186.192 892.197	1193.095 3142.693	0.036 0.668	-0.214 -0.049	
Panel C. Other municipality socio-eco Altitude (meter) Area in square km Distance department capital Distance to Bogota	960.114 772.886 84.502	899.361 1488.967 54.130	1186.192 892.197 77.844	1193.095 3142.693 56.357	0.036 0.668 0.202	-0.214 -0.049 0.121	
Panel C. Other municipality socio-eco Altitude (meter) Area in square km Distance department capital Distance to Bogota Literacy rate	960.114 772.886 84.502 338.659	899.361 1488.967 54.130 201.668	1186.192 892.197 77.844 316.599	1193.095 3142.693 56.357 187.932	0.036 0.668 0.202 0.211	-0.214 -0.049 0.121 0.113	
Panel C. Other municipality socio-eco Altitude (meter) Area in square km Distance department capital Distance to Bogota Literacy rate Rurality index (0-1)	960.114 772.886 84.502 338.659 83.997	899.361 1488.967 54.130 201.668 7.463	1186.192 892.197 77.844 316.599 83.881	1193.095 3142.693 56.357 187.932 8.631	0.036 0.668 0.202 0.211 0.883	-0.214 -0.049 0.121 0.113 0.014	
, ,	960.114 772.886 84.502 338.659 83.997 0.539	899.361 1488.967 54.130 201.668 7.463 0.219	1186.192 892.197 77.844 316.599 83.881 0.567	1193.095 3142.693 56.357 187.932 8.631 0.242	0.036 0.668 0.202 0.211 0.883 0.201	-0.214 -0.049 0.121 0.113 0.014 -0.123	
Panel C. Other municipality socio-eco Altitude (meter) Area in square km Distance department capital Distance to Bogota Literacy rate Rurality index (0-1) Unsatisfied basic needs National Parks Area (1,000 sq. hct)	960.114 772.886 84.502 338.659 83.997 0.539 43.599	899.361 1488.967 54.130 201.668 7.463 0.219 17.666	1186.192 892.197 77.844 316.599 83.881 0.567 44.786	1193.095 3142.693 56.357 187.932 8.631 0.242 20.620	0.036 0.668 0.202 0.211 0.883 0.201 0.529	-0.214 -0.049 0.121 0.113 0.014 -0.123 -0.062	
Panel C. Other municipality socio-eco Altitude (meter) Area in square km Distance department capital Distance to Bogota Literacy rate Rurality index (0-1) Unsatisfied basic needs National Parks Area (1,000 sq. hct) CAR office	960.114 772.886 84.502 338.659 83.997 0.539 43.599 0.568	899.361 1488.967 54.130 201.668 7.463 0.219 17.666 2.838	1186.192 892.197 77.844 316.599 83.881 0.567 44.786 0.974	1193.095 3142.693 56.357 187.932 8.631 0.242 20.620 8.070	0.036 0.668 0.202 0.211 0.883 0.201 0.529 0.566	-0.214 -0.049 0.121 0.113 0.014 -0.123 -0.062 -0.067	
Panel C. Other municipality socio-eco Altitude (meter) Area in square km Distance department capital Distance to Bogota Literacy rate Rurality index (0-1) Unsatisfied basic needs National Parks Area (1,000 sq. hct) CAR office Distance to CAR office	960.114 772.886 84.502 338.659 83.997 0.539 43.599 0.568 0.136	899.361 1488.967 54.130 201.668 7.463 0.219 17.666 2.838 0.344	1186.192 892.197 77.844 316.599 83.881 0.567 44.786 0.974 0.143	1193.095 3142.693 56.357 187.932 8.631 0.242 20.620 8.070 0.351	0.036 0.668 0.202 0.211 0.883 0.201 0.529 0.566 0.827	-0.214 -0.049 0.121 0.113 0.014 -0.123 -0.062 -0.067 -0.020	
Panel C. Other municipality socio-eco Altitude (meter) Area in square km Distance department capital Distance to Bogota Literacy rate Rurality index (0-1) Unsatisfied basic needs National Parks Area (1,000 sq. hct) CAR office Distance to CAR office Comptroller general offices	960.114 772.886 84.502 338.659 83.997 0.539 43.599 0.568 0.136 32.836	899.361 1488.967 54.130 201.668 7.463 0.219 17.666 2.838 0.344 28.405	1186.192 892.197 77.844 316.599 83.881 0.567 44.786 0.974 0.143 29.426	1193.095 3142.693 56.357 187.932 8.631 0.242 20.620 8.070 0.351 33.126	0.036 0.668 0.202 0.211 0.883 0.201 0.529 0.566 0.827 0.260	-0.214 -0.049 0.121 0.113 0.014 -0.123 -0.062 -0.067 -0.020 0.111	
Panel C. Other municipality socio-eco Altitude (meter) Area in square km Distance department capital Distance to Bogota Literacy rate Rurality index (0-1) Unsatisfied basic needs National Parks Area (1,000 sq. hct) CAR office Distance to CAR office Comptroller general offices Attorney general offices	960.114 772.886 84.502 338.659 83.997 0.539 43.599 0.568 0.136 32.836 0.053	899.361 1488.967 54.130 201.668 7.463 0.219 17.666 2.838 0.344 28.405 0.334	1186.192 892.197 77.844 316.599 83.881 0.567 44.786 0.974 0.143 29.426 0.695	1193.095 3142.693 56.357 187.932 8.631 0.242 20.620 8.070 0.351 33.126 6.890	0.036 0.668 0.202 0.211 0.883 0.201 0.529 0.566 0.827 0.260 0.285	-0.214 -0.049 0.121 0.113 0.014 -0.123 -0.062 -0.067 -0.020 0.111 -0.132	
Panel C. Other municipality socio-eco Altitude (meter) Area in square km Distance department capital Distance to Bogota Literacy rate Rurality index (0-1) Unsatisfied basic needs National Parks Area (1,000 sq. hct) CAR office Distance to CAR office Comptroller general offices Attorney general offices Paramilitary attacks	960.114 772.886 84.502 338.659 83.997 0.539 43.599 0.568 0.136 32.836 0.053 0.894	899.361 1488.967 54.130 201.668 7.463 0.219 17.666 2.838 0.344 28.405 0.334 1.792	1186.192 892.197 77.844 316.599 83.881 0.567 44.786 0.974 0.143 29.426 0.695 4.560	1193.095 3142.693 56.357 187.932 8.631 0.242 20.620 8.070 0.351 33.126 6.890 41.051	0.036 0.668 0.202 0.211 0.883 0.201 0.529 0.566 0.827 0.260 0.285 0.305	-0.214 -0.049 0.121 0.113 0.014 -0.123 -0.062 -0.067 -0.020 0.111 -0.132 -0.126	
Panel C. Other municipality socio-eco Altitude (meter) Area in square km Distance department capital Distance to Bogota Literacy rate Rurality index (0-1) Unsatisfied basic needs National Parks Area (1,000 sq. hct) CAR office Distance to CAR office Comptroller general offices Attorney general offices Paramilitary attacks Guerilla attacks	960.114 772.886 84.502 338.659 83.997 0.539 43.599 0.568 0.136 32.836 0.053 0.894 1.394 0.652	899.361 1488.967 54.130 201.668 7.463 0.219 17.666 2.838 0.344 28.405 0.334 1.792 7.212	1186.192 892.197 77.844 316.599 83.881 0.567 44.786 0.974 0.143 29.426 0.695 4.560 1.271	1193.095 3142.693 56.357 187.932 8.631 0.242 20.620 8.070 0.351 33.126 6.890 41.051 10.141	0.036 0.668 0.202 0.211 0.883 0.201 0.529 0.566 0.827 0.260 0.285 0.305 0.893	-0.214 -0.049 0.121 0.113 0.014 -0.123 -0.062 -0.067 -0.020 0.111 -0.132 -0.126 0.014	
Panel C. Other municipality socio-eco Altitude (meter) Area in square km Distance department capital Distance to Bogota Literacy rate Rurality index (0-1) Unsatisfied basic needs National Parks Area (1,000 sq. hct) CAR office Distance to CAR office Comptroller general offices Attorney general offices Paramilitary attacks Guerilla attacks Panel D. Other potential explanations	960.114 772.886 84.502 338.659 83.997 0.539 43.599 0.568 0.136 32.836 0.053 0.894 1.394 0.652	899.361 1488.967 54.130 201.668 7.463 0.219 17.666 2.838 0.344 28.405 0.334 1.792 7.212	1186.192 892.197 77.844 316.599 83.881 0.567 44.786 0.974 0.143 29.426 0.695 4.560 1.271	1193.095 3142.693 56.357 187.932 8.631 0.242 20.620 8.070 0.351 33.126 6.890 41.051 10.141	0.036 0.668 0.202 0.211 0.883 0.201 0.529 0.566 0.827 0.260 0.285 0.305 0.893	-0.214 -0.049 0.121 0.113 0.014 -0.123 -0.062 -0.067 -0.020 0.111 -0.132 -0.126 0.014	
Area in square km Distance department capital Distance to Bogota Literacy rate Rurality index (0-1) Unsatisfied basic needs National Parks Area (1,000 sq. hct) CAR office Distance to CAR office Comptroller general offices Attorney general offices Paramilitary attacks Guerilla attacks Panel D. Other potential explanations Deforestation during previous term	960.114 772.886 84.502 338.659 83.997 0.539 43.599 0.568 0.136 32.836 0.053 0.894 1.394 0.652	899.361 1488.967 54.130 201.668 7.463 0.219 17.666 2.838 0.344 28.405 0.334 1.792 7.212 2.268	1186.192 892.197 77.844 316.599 83.881 0.567 44.786 0.974 0.143 29.426 0.695 4.560 1.271 0.602	1193.095 3142.693 56.357 187.932 8.631 0.242 20.620 8.070 0.351 33.126 6.890 41.051 10.141 2.066	0.036 0.668 0.202 0.211 0.883 0.201 0.529 0.566 0.827 0.260 0.285 0.305 0.893 0.800	-0.214 -0.049 0.121 0.113 0.014 -0.123 -0.062 -0.067 -0.020 0.111 -0.132 -0.126 0.014 0.023	
Panel C. Other municipality socio-eco Altitude (meter) Area in square km Distance department capital Distance to Bogota Literacy rate Rurality index (0-1) Unsatisfied basic needs National Parks Area (1,000 sq. hct) CAR office Distance to CAR office Comptroller general offices Attorney general offices Paramilitary attacks Guerilla attacks Panel D. Other potential explanations Deforestation during previous term Disposable Income (mw)	960.114 772.886 84.502 338.659 83.997 0.539 43.599 0.568 0.136 32.836 0.053 0.894 1.394 0.652	899.361 1488.967 54.130 201.668 7.463 0.219 17.666 2.838 0.344 28.405 0.334 1.792 7.212 2.268	1186.192 892.197 77.844 316.599 83.881 0.567 44.786 0.974 0.143 29.426 0.695 4.560 1.271 0.602	1193.095 3142.693 56.357 187.932 8.631 0.242 20.620 8.070 0.351 33.126 6.890 41.051 10.141 2.066	0.036 0.668 0.202 0.211 0.883 0.201 0.529 0.566 0.827 0.260 0.285 0.305 0.893 0.800	-0.214 -0.049 0.121 0.113 0.014 -0.123 -0.062 -0.067 -0.020 0.111 -0.132 -0.126 0.014 0.023	
Panel C. Other municipality socio-eco Altitude (meter) Area in square km Distance department capital Distance to Bogota Literacy rate Rurality index (0-1) Unsatisfied basic needs National Parks Area (1,000 sq. hct) CAR office Distance to CAR office Comptroller general offices Attorney general offices Paramilitary attacks Guerilla attacks Panel D. Other potential explanations	960.114 772.886 84.502 338.659 83.997 0.539 43.599 0.568 0.136 32.836 0.053 0.894 1.394 0.652	899.361 1488.967 54.130 201.668 7.463 0.219 17.666 2.838 0.344 28.405 0.334 1.792 7.212 2.268	1186.192 892.197 77.844 316.599 83.881 0.567 44.786 0.974 0.143 29.426 0.695 4.560 1.271 0.602	1193.095 3142.693 56.357 187.932 8.631 0.242 20.620 8.070 0.351 33.126 6.890 41.051 10.141 2.066	0.036 0.668 0.202 0.211 0.883 0.201 0.529 0.566 0.827 0.260 0.285 0.305 0.893 0.800	-0.214 -0.049 0.121 0.113 0.014 -0.123 -0.062 -0.067 -0.020 0.111 -0.132 -0.126 0.014 0.023	

Note: The first two columns present the basic statistics (mean and standard deviation) of each covariate for the regression discontinuity sample within the optimal bandwidth, while columns 3 and 4 present them for the rest of the country. Column 5 presents the p-value of the differences in means, while column 6 presents the standardized difference between the two groups.

Table A4: Donor funded politician and deforestation during term in office: Cubic polynomial

	(1)	(2)
	Loc. Lin	ear Pol-3
Donor Funded	1.326**	0.989**
Robust p-value	0.025	0.035
CI 95%	[0.164, 2.477]	$[0.071,\ 1.903]$
Previous deforestation		✓
Added Covariates:		
Previous deforestation		0.380***
		(0.050)
Observations	408	408
Bandwidth obs.	274	274
Mean	1.182	1.182
Effect Mean(%)	112.18	83.67
Bandwidth	0.100	0.101
(Local) polynomial order	3	3

Note: Columns 1 and 2 present the cubic estimates of average treatment effects at cut-off estimated with triangular kernel weights and optimal MSE bandwidth. 95% robust confidence intervals and robust p-values are computed following Calonico, Cattaneo and Titiunik (2014). Bandwidth obs. denotes number of observations in the optimal MSE bandwidth. The Effect Size (%) is computed as the point estimate over the mean x 100. Columns (2) and (4) include as covariate the measure of deforestation in the previous term (2008-2011). **** p<0.01, ** p<0.05, * p<0.1.

Table A5: Donor funded politician and deforestation: OLS

Controls used:	(1) Baseline (No controls)	(2) Pre-term deforestation	(3) Politician characteristics	(4) Development characteristics	(5) Forest coverage	(6) Agricultural preasure
Donor Funded	0.428*** (0.095)	0.266*** (0.080)	0.254*** (0.081)	0.222** (0.089)	0.257*** (0.080)	0.276*** (0.080)
Added Covariates:						
Deforestation during previous term		0.398 (0.033)	0.398 (0.033)	0.422 (0.036)	0.402 (0.033)	0.407 (0.033)
Left-wing party			0.520 (0.311)			
Right-wing party			0.011 (0.082)			
Political experience			-0.090 (0.078)			
Sanctioned before			$0.008 \ (0.173)$			
Population density				-0.000 (0.000)		
Rurality index (0-1)				-0.945 (0.264)		
Nighttime lights				-0.295 (0.047)		
Forest coverage					0.004 (0.002)	
Total agricultural production						-192.016 (250.056)
Hectares used for agricultural production						-29.517 (7.754)
Observations R-squared Mean DV	996 0.021 1.137	996 0.312 1.137	995 0.316 1.138	996 0.356 1.137	996 0.315 1.137	996 0.325 1.137

Note: OLS regression for deforestation in the mayor's term. Donor Funded is a dummy that takes the value one if the mayor was donor funded. Column 2 to 6 add as control deforestation in the pre-electoral period. Column 3 adds as controls politician characteristics such as political ideology, political experience, and if the candidate has been previously sanctioned by the comptroller office. Column 4 adds municipality characteristics such as population density, rural population, and nighttime lights. Column 5 adds forest coverage. Column 6 adds the total agricultural production and the hectares use for agricultural production. Robust standard errors are presented in parenthesis. *** p<0.01, ** p<0.05, * p<0.1.

Table A6: Donor funded politician and deforestation by year of government:

Quadratic Polynomial

	(1)	(2)	(3)	(4)
		Year of ge	overnment	
	1	2	3	4
Donor Funded	0.248***	0.253*	0.235	0.520**
Robust p-value	0.008	0.061	0.153	0.043
CI 95%	[0.069, 0.459]	[-0.012, 0.531]	[-0.099, 0.634]	[0.014, 0.966]
Observations	408	408	408	408
Bandwidth obs.	187	198	204	187
Mean	0.211	0.305	0.211	0.455
Effect Mean(%)	117.54	82.95	111.37	114.29
Bandwidth	0.057	0.064	0.068	0.058
(Local) polynomial order	2	2	2	2

Note: Local quadratic estimates of average treatment effects at cut-off estimated with triangular kernel weights and optimal MSE bandwidth. 95% robust confidence intervals and robust p-values are computed following Calonico, Cattaneo and Titiunik (2014). Bandwidth obs. denotes number of observations in the optimal MSE bandwidth. Each column shows the deforestation rate, defined as lost coverage_t/coverage_{election year}, for a given year of government. The Effect size (%) is computed as the point estimate over the mean x 100. *** p<0.01, *** p<0.05, * p<0.1.

Table A7: Donor funded politician and contracts: Quadratic polynomial

	(1)	(2)	(3)	(4)	(5)	(6)	(7)
		In frastructure		Environ	mental	Mi	ining
	Number	Log Avg. value	Road construction	Number	Log Avg. value	Number	Log Avg. value
Donor Funded	-54.930	1.206**	-0.013	-20.619	0.502	0.278	1.592
Robust p-value	0.373	0.021	0.646	0.446	0.293	0.598	0.111
CI 95%	[-204.554, 76.718]	[0.190, 2.374]	[-0.051, 0.032]	[-101.749, 44.742]	[-0.418, 1.385]	[-0.895, 1.553]	[-0.451, 4.344]
Observations	401	400	401	401	366	401	145
Bandwidth obs.	227	246	219	229	205	268	66
Mean	140.740	4.817	0.015	18.227	3.796	0.974	3.614
Effect Mean(%)	-39.03	120.60	-86.67	-113.12	50.20	28.54	159.20
Bandwidth	0.077	0.089	0.074	0.080	0.076	0.101	0.067
(Local) polynomial order	2	2	2	2	2	2	2

Note: Local quadratic estimates of average treatment effects at cut-off estimated with triangular kernel weights and optimal MSE bandwidth. 95% robust confidence intervals and robust p-values are computed following Calonico, Cattaneo and Titiunik (2014). Bandwidth obs. denotes number of observations in the optimal MSE bandwidth. The average value of contracts was transformed using inverse hyperbolic sine. The contracts are catalogued in each category by analysing their reported object. For columns 1, 3, 4, and 6, the effect size (%) is computed as the point estimate over the mean x 100, while for the rest of the columns is the point estimate x 100. *** p<0.01, *** p<0.05, * p<0.1.

Table A8: Donor funded politician and avg. value of infrastructure contracts per year

		Year of go	overnment	
	1	2	3	4
Donor Funded	0.520	0.484	1.391***	0.760
Robust p-value	0.245	0.252	0.008	0.116
CI 95%	[-0.410, 1.610]	[-0.404, 1.538]	[0.385, 2.597]	[-0.217, 1.968]
Observations	381	386	386	389
Bandwidth obs.	179	195	193	179
Mean	4.203	5.093	5.283	5.508
Effect Mean(%)	12.37	9.50	26.33	13.80
Bandwidth	0.060	0.070	0.068	0.058
(Local) polynomial order	1	1	1	1

Note: Local linear estimates of average treatment effects at cut-off estimated with triangular kernel weights and optimal MSE bandwidth. 95% robust confidence intervals and robust p-values are computed following Calonico, Cattaneo and Titiunik (2014). Bandwidth obs. denotes number of observations in the optimal MSE bandwidth. The average value of contracts was transformed using inverse hyperbolic sine. The contracts are catalogued in each category by analysing their reported object. The Effect size (%) is computed as the point estimate over the mean x 100. *** p < 0.01, ** p < 0.05, * p < 0.1

Table A9: Donor funded politician and infrastructure contracts by relation to deforestation

	(1)	(2)	(3)	(4)
	No deforesto	$ation\ related$	Deforestation for the state of the state o	on related
	Number	Avg. value	Number	Avg. value
Donor Funded	-18.177	0.617*	2.201	0.911*
Robust p-value	0.165	0.077	0.733	0.052
CI 95%	[-54.796, 9.383]	[-0.073, 1.415]	[-11.740, 16.685]	[-0.010, 2.057]
Observations	401	392	401	378
Bandwidth obs.	185	234	211	173
Mean	42.205	5.211	14.365	5.094
Effect Mean(%)	-43.07	11.84	15.32	17.88
Bandwidth	0.059	0.085	0.073	0.059
(Local) polynomial order	1	1	1	1

Note: Local linear estimates of average treatment effects at cut-off estimated with triangular kernel weights and optimal MSE bandwidth. 95% robust confidence intervals and robust p-values are computed following Calonico, Cattaneo and Titiunik (2014). Bandwidth obs. denotes number of observations in the optimal MSE bandwidth. The average value of contracts was transformed using inverse hyperbolic sine. The contracts are catalogued in each category by analysing their reported object. The Effect size (%) is computed as the point estimate over the mean x 100. *** p < 0.01, ** p < 0.05, * p < 0.1.

Table A10: Heterogeneous Effects: Armed Conflict: Quadratic Polynomial

	(1)	(2)
	$Attacks\ me$	asure Z
	Paramilitary	Guerrilla
A Donor funded	0.337	0.733**
	(0.364)	(0.367)
${f Z}$	-0.078	0.435^{*}
	(0.144)	(0.227)
B $Z \times Donor funded$	0.168	-0.554**
	(0.156)	(0.241)
Observations	408	408
Bandwidth obs.	191	191
R-squared	0.108	0.166
Bandwidth	0.060	0.060
(Local) polynomial order	2	2
A + B	0.505	0.179
Effect size (%)	30.514	8.698
Ho: $A + B = 0$		
F-statistic	2.432	0.213
P-value	0.121	0.645

Note: OLS regression weighted by a triangular kernel within the MSE optimal bandwidth sample and controlling for a quadratic polynomial. Bandwidth obs. denotes number of observations in the optimal MSE bandwidth. The dependent variable is deforestation during the full term. Paramilitary (Guerrilla) attacks is the number of paramilitary (guerrilla) attacks during the previous term (2008-2011). The Effect size (%) is computed as $100x(A+B)/(constant+\beta_Z)$. *** p<0.01, ** p<0.05, * p<0.1.

Table A11: Donor funded politician and fire intensity: Quadratic polynomial

	(1)	(2)
Donor Funded	92.839**	77.625
Robust p-value	0.044	0.145
CI 95%	[2.659, 187.461]	[-26.568, 180.535]
Added Covariates:		
Previous fire intensity		0.481***
		(0.076)
Observations	408	408
Bandwidth obs.	312	217
Mean	246.324	246.324
Effect Mean(%)	37.69	31.51
Bandwidth	0.124	0.073
(Local) polynomial order	2	2

Note: Local quadratic estimates of average treatment effects at cut-off estimated with triangular kernel weights and optimal MSE bandwidth. 95% robust confidence intervals and robust p-values are computed following Calonico, Cattaneo and Titiunik (2014). Bandwidth obs. denotes number of observations in the optimal MSE bandwidth. Column (2) includes as covariate the measure of fire intensity from the previous term (2009-2011), being 2009 the first year with data availability. Fire intensity is measured as the average brightness of fires in a municipality. The Effect size (%) is computed as the point estimate over the mean x 100. *** p<0.01, ** p<0.05, * p<0.1.

Table A12: Donor funded politician and fire intensity by year of government

	(1)	(2)	(3)	(4)		
	$Year\ of\ government$					
	1	2	3	4		
Donor Funded	31.434	55.882	1.715	110.844**		
Robust p-value	0.461	0.225	0.978	0.018		
CI 95%	[-65.426, 144.208]	[-42.699, 181.289]	[-110.545, 107.437]	[20.741, 224.285]		
Observations	408	408	408	408		
Bandwidth obs.	232	200	215	237		
Mean	189.531	182.944	185.052	198.819		
Effect Mean(%)	16.59	30.55	0.93	55.75		
Bandwidth	0.078	0.066	0.073	0.082		
(Local) polynomial order	1	1	1	1		

Note: Local linear estimates of average treatment effects at cut-off estimated with triangular kernel weights and optimal MSE bandwidth. 95% robust confidence intervals and robust p-values are computed following Calonico, Cattaneo and Titiunik (2014). Bandwidth obs. denotes number of observations in the optimal MSE bandwidth. Fire intensity is measured as the average brightness of fires in a municipality. The Effect size (%) is computed as the point estimate over the mean x 100. *** p<0.01, ** p<0.05, * p<0.1.

Table A13: Donor funded politician and agro-cattle firms entry by year

	Year of government				
	1	2	3	4	
Donor Funded	1.093	1.831	1.340	2.569**	
Robust p-value	0.314	0.243	0.496	0.019	
CI 95%	[-1.151, 3.585]	[-1.308, 5.169]	[-1.893, 3.910]	[0.495, 5.653]	
Observations	408	408	408	408	
Bandwidth obs.	190	198	232	161	
Mean	0.211	0.305	0.211	0.455	
Effect Mean(%)	518.01	600.33	635.07	564.62	
Bandwidth	0.060	0.063	0.077	0.048	
(Local) polynomial order	1	1	1	1	

Note: Local linear estimates of average treatment effects at cut-off estimated with triangular kernel weights and optimal MSE bandwidth. 95% robust confidence intervals and robust p-values are computed following Calonico, Cattaneo and Titiunik (2014). Bandwidth obs. denotes number of observations in the optimal MSE bandwidth. The dependent variable is the number of firms registered in agro-cattle business during that year. The Effect Size (%) is computed as the point estimate over the mean x 100. *** p<0.01, ** p<0.05, * p<0.1.

Table A14: Donor funded politician and agro-cattle firms entry by year: Quadratic polynomial

	Year of government					
	1	2	3	4		
Donor Funded	1.116	1.749	1.168	2.671**		
Robust p-value	0.415	0.346	0.505	0.030		
CI 95%	[-1.515, 3.671]	[-1.788, 5.097]	[-2.152,4.370]	[0.278,5.574]		
Observations	408	408	408	408		
Bandwidth obs.	245	271	267	246		
Mean	0.211	0.305	0.211	0.455		
Effect Mean(%)	528.91	573.44	553.55	587.03		
Bandwidth	0.084	0.099	0.097	0.085		
(Local) polynomial order	2	2	2	2		

Note: Local quadratic estimates of average treatment effects at cut-off estimated with triangular kernel weights and optimal MSE bandwidth. 95% robust confidence intervals and robust p-values are computed following Calonico, Cattaneo and Titiunik (2014). Bandwidth obs. denotes number of observations in the optimal MSE bandwidth. The dependent variable is the number of firms registered in agro-cattle business during that year. The Effect Size (%) is computed as the point estimate over the mean x 100. *** p < 0.01, ** p < 0.05, * p < 0.1.

Table A15: Alternative outcomes and sources

	(1)	(2)	(3)
	Forest cover	Grassland	Methane
Donor Funded	-0.180	0.087	1.462
Robust p-value	0.713	0.469	0.411
CI 95%	[-1.379, 0.943]	[-0.204, 0.443]	[-2.059, 5.036]
Observations	408	408	408
Bandwidth obs.	198	253	274
Mean	0.463	-0.031	1808.488
Effect Mean(%)	-38.88	280.65	0.08
Bandwidth	0.064	0.091	0.099
(Local) polynomial order	1	1	1

Note: Local linear estimates of average treatment effects at cut-off estimated with triangular kernel weights and optimal MSE bandwidth. 95% robust confidence intervals and robust p-values are computed following Calonico, Cattaneo and Titiunik (2014). Bandwidth obs. denotes number of observations in the optimal MSE bandwidth. Columns (1) and (2) use measures of forest cover and grassland from the ESA CCI Land Cover time-series v2.0.7 (1992 - 2015). The data is condensed following the IPCC land categories for change detection. Source: ESA. Land Cover CCI Product User Guide Version 2. Tech. Rep. (2017). Available at: maps.elie.ucl.ac.be/ CCI/viewer/download/ESACCI-LC-Ph2-PUGv2_2.0.pdf. The ESA land use data has a spatial resolution of 300m, much lower than the 30m from the Hansen et al. (2013) dataset we use in the paper. The resolution difference is highly relevant. First, the number of pixels that may change status from forest to non-forest (or any other category in the case of the landcover data) is far less, increasing the overall measurement error. Second, and even more critical, the dimension of a change in land use must be much more substantial to be detected. To be precise, in the best-case scenario, the ESA landcover data will detect a difference only if the affected area is larger than one squared kilometre or if no more than five kilometres from a clear hotspot. Even more relevant, as stated by the ESA, due to a lower satellite (MERIS FR) coverage, some globe sections have lower data quality, including a passage of the Amazon basin, where a large portion of Colombia's forest resides. The outcome in Column (3) is methane emissions concentration, calculated as average methane parts per billion in 2016 using satellite data. Source: https://airs.jpl.nasa.gov/data/get-data/standard-data/. This data is a single low resolution (0.1 degrees or about 11.1km per pixel) "snapshot" of the average methane emissions during 2016 (only available year) using the information from the AQUA satellite. The Effect size (%) is computed as the point estimate over the mean x 100. *** p<0.01, ** p<0.05, * p<0.1.

Table A16: Donor funded politician and deforestation during term in office: Adding covariates

	(1)	(2) Politician ch	(3) naracteristics	(4)	(5) Mun	(6) icipality charact	(7) eristics
Covariates:	Ideology	Experience	Sanctioned before	Campaign	Development	Forest coverage	Agricultural land
Donor Funded Robust p-value CI 95%	1.145*** 0.007 [0.371, 2.296]	1.132*** 0.007 [0.366, 2.259]	1.144*** 0.004 [0.421, 2.257]	0.996** 0.022 [0.171, 2.184]	0.869** 0.018 [0.177, 1.880]	1.070** 0.011 [0.286, 2.216]	1.096*** 0.007 [0.341, 2.196]
$Added\ Covariates:$							
Left-wing party	0.393 (0.573)						
Right-wing party	-0.381 (0.313)						
Political experience		-0.328 (0.263)					
Sanctioned before			-0.587 (0.505)				
Total campaign income			, ,	0.002 (0.003)			
Total donations income				0.000 (0.007)			
Number of donors				0.011 (0.052)			
Number of donations				-0.006 (0.028)			
Population density				(0.0_0)	-0.003** (0.001)		
Rurality index $(0-1)$					-2.383*** (0.662)		
Nighttime lights					-0.143 (0.171)		
Road density					0.126 (0.355)		
Forest cover					(0.333)	0.001 (0.003)	
share of the municipality with agricultural land						(0.003)	$262.939 \\ (246.494)$
Total agricultural production							-36.640** (16.713)
Observations Bandwidth obs.	408 130	408 130	408 132	408 122	406 132	408 129	408 136
Mean	1.182	1.182	1.182	1.182	1.182	1.182	1.182
Effect Mean(%)	96.87	95.77	96.79	84.26	73.52	90.52	92.72
Bandwidth	0.040	0.040	0.041	0.036	0.041	0.039	0.042
(Local) polynomial order	1	1	1	1	1	1	1

Note: All columns present the local linear estimates of average treatment effects at cut-off estimated with triangular kernel weights and optimal MSE bandwidth. Column 1 adds as a covariate dummies for whether the candidate is from a left-wing party. Column 2 adds as covariates dummies for whether the candidate has held a political office before. Column 3 adds a dummy if the candidate has been previously sanctioned by the comptroller office. Column 4 adds as covariates the number of donors, number of donations, and the amount spent in the campaign and privately funded. Column 5 adds as covariates the share of rural population, the nighttime luminosity, the roads' density, and population density. Column 6 adds as a control the total forest coverage in the municipality. Finally, column 7 adds the share of the municipality with agricultural land and the total agricultural production over the size of the municipality. 95% robust confidence intervals and robust p-values are computed following Calonico, Cattaneo and Titiunik (2014). Bandwidth obs. denotes number of observations in the optimal MSE bandwidth. The Effect Size (%) is computed as the point estimate over the mean x 100. *** p<0.01, ** p<0.05, * p<0.1.

Table A17: Heterogeneous effects by state presence controlling for agricultural pressure $\frac{1}{2}$

	(1)	(2)	(3)
_		Measure Z	
	National	CAR	Distance to
	Parks Area	office	$\underline{\hspace{1cm}}^{\text{CAR}}$
A Donor funded	1.060**	1.207**	-0.307
	(0.452)	(0.472)	(0.562)
${f Z}$	0.194^{*}	1.334**	-0.002
	(0.108)	(0.569)	(0.009)
B $Z \times Donor funded$	-0.261*	-2.805***	0.040**
	(0.149)	(0.916)	(0.016)
Observations	408	408	408
Bandwidth obs.	132	132	132
R-squared	0.059	0.081	0.213
Bandwidth	0.041	0.041	0.041
(Local) polynomial order	1	1	1
A + B	0.799	-1.598	-0.267
Effect size (%)	83.841	-76.204	-30.375
Ho: A + B = 0			
F-statistic	3.790	4.435	0.235
P-value	0.054	0.037	0.629

Note: OLS regression weighted by a triangular kernel within the MSE optimal bandwidth sample and controlling for a linear polynomial. Bandwidth obs. denotes number of observations in the optimal MSE bandwidth. The dependent variable is deforestation during the full term. National Parks area is defined as the total area with national parks in the municipality, CAR office is a dummy that takes the value one if there was at least on CAR office in the municipality, and Distance to CAR is the distance to the closest CAR. All specifications control for the share of of the municipality with agricultural land and total agricultural production over the size of the municipality. The Effect size (%) is computed as $100x(A+B)/(constant+\beta_Z)$. *** p<0.01, ** p<0.05, * p<0.1.

Table A18: Donor funded politician and deforestation during term in office: Using different weights

Weights	(1) Forest coverage	(2) Municipality area
Donor funded	1.311** (0.564)	1.164** (0.519)
Observations	408	408
Bandwidth obs.	132	132
R-squared	0.157	0.139
Bandwidth	0.041	0.041
(Local) polynomial order	1	1

Note: OLS regression within the MSE optimal bandwidth sample and controlling for a linear polynomial. In column 1, we weight the observations using the forest coverage in the municipality in 2011, while in column 2, we use the area of the municipality as weight. Bandwidth obs. denotes number of observations in the optimal MSE bandwidth. *** p<0.01, ** p<0.05, * p<0.1.

Table A19: Heterogeneous effects by agricultural presence

	(1)	(2)	(3)	(4)
		Meas	ure Z	
	Agricultural Area	Sh Agricultural Area	Agricultural production	Sh Agricultural production
A Donor funded	0.945**	0.943**	1.439**	0.908**
	(0.412)	(0.428)	(0.612)	(0.413)
${f Z}$	0.933**	-0.024	-1.845	-0.130
	(0.435)	(0.021)	(1.797)	(0.113)
B $Z \times Donor funded$	-0.202	0.338	3.836	-0.186
	(0.968)	(0.999)	(3.706)	(0.345)
Observations	408	408	408	408
Bandwidth obs.	132	132	132	132
R-squared	0.102	0.058	0.056	0.051
Bandwidth	0.041	0.041	0.041	0.041
(Local) polynomial order	1	1	1	1

Note: OLS regression weighted by a triangular kernel within the MSE optimal bandwidth sample and controlling for a quadratic polynomial. The variables used for heterogeneous effects (Z) are: the total agricultural area, the share of the municipality with agricultural area, total agricultural production, and the share of total agricultural production over the size of the municipality. In all cases, we standardize the Z variable by it's average and standard deviation. Bandwidth obs. denotes number of observations in the optimal MSE bandwidth. *** p<0.01, ** p<0.05, * p<0.1.

Table A20: Right-wing politician and deforestation during term in office

	(1)	(2)	(3)	(4)
D D 11	0.101	0.050	0.100	0.191
Donor Funded	0.101	0.059	0.126	-0.131
Robust p-value	0.805	0.966	0.786	0.607
CI 95%	[-0.815, 1.050]	[-0.648, 0.620]	[-0.912, 1.205]	[-0.977, 0.570]
Added Covariates:				
Previous deforestation		0.529***		0.482***
		(0.063)		(0.058)
Observations	482	482	482	482
Bandwidth obs.	264	245	349	294
Mean	1.182	1.182	1.182	1.182
Effect Mean(%)	8.54	4.99	10.66	-11.08
Bandwidth	0.081	0.073	0.121	0.096
(Local) polynomial order	1	1	2	2

Note: Columns 1 and 2 present the local linear estimates of average treatment effects at cut-off estimated with triangular kernel weights and optimal MSE bandwidth. Columns 3 and 4 presents the quadratic estimates of average treatment effects at cut-off estimated with triangular kernel weights and optimal MSE bandwidth. 95% robust confidence intervals and robust p-values are computed following Calonico, Cattaneo and Titiunik (2014). Bandwidth obs. denotes number of observations in the optimal MSE bandwidth. The Effect Size (%) is computed as the point estimate over the mean x 100. Columns (2) and (4) include as covariate the measure of deforestation in the previous term (2008-2011). **** p<0.01, *** p<0.05, ** p<0.1.

Table A21: Heterogeneous effects by candidate characteristics

		Measure Z	
	Political experience	Right-wing	Sanctioned before
A Donor funded	1.435***	1.139**	1.019**
	(0.510)	(0.483)	(0.430)
Z	0.434	$0.056^{'}$	-0.120
	(0.406)	(0.547)	(1.295)
B $Z \times Donor funded$	-1.361	-0.696	-1.064
	(0.834)	(0.989)	(1.551)
Observations	408	408	408
Bandwidth obs.	132	132	132
R-squared	0.073	0.057	0.056
Bandwidth	0.041	0.041	0.041
(Local) polynomial order	1	1	1
A + B	0.074	0.443	-0.045
Effect size (%)	6.839	54.490	-6.955
Ho: $A + B = 0$			
F-statistic	0.012	0.264	0.001
P-value	0.911	0.609	0.976

Note: OLS regression weighted by a triangular kernel within the MSE optimal bandwidth sample and controlling for a linear polynomial. Bandwidth obs. denotes number of observations in the optimal MSE bandwidth. The dependent variable is deforestation during the full term. Political experience is a dummy for whether the candidate has held political office previously. Right-wing is a dummy for the candidate being from a right-wing party. Sanctioned before is a dummy if the candidate has been previously sanctioned by the comptroller office. Bandwidth obs. denotes number of observations in the optimal MSE bandwidth. *** p<0.01, ** p<0.05, * p<0.1.

Table A22: Politically experienced politician and deforestation during term in office

	(1)	(2)	(3)	(4)
	Loc. Lin	Loc. Linear Pol-1		ear Pol-2
Donor Funded	0.154	0.102	-0.010	0.034
Robust p-value	0.544	0.891	0.820	0.873
CI 95%	[-0.535, 1.016]	[-0.680,0.782]	[-1.175, 0.931]	[-0.883,0.749]
Previous deforestation		✓		✓
$Added\ Covariates:$				
Previous deforestation		0.467***		0.444***
		(0.059)		(0.052)
Observations	479	479	479	479
Bandwidth obs.	282	221	275	291
Mean	1.182	1.182	1.182	1.182
Effect Mean(%)	13.03	8.63	-0.85	2.88
Bandwidth	0.084	0.065	0.081	0.091
(Local) polynomial order	1	1	2	2

Note: Columns 1 and 2 present the local linear estimates of average treatment effects at cut-off estimated with triangular kernel weights and optimal MSE bandwidth. Columns 3 and 4 presents the quadratic estimates of average treatment effects at cut-off estimated with triangular kernel weights and optimal MSE bandwidth. 95% robust confidence intervals and robust p-values are computed following Calonico, Cattaneo and Titiunik (2014). Bandwidth obs. denotes number of observations in the optimal MSE bandwidth. The Effect Size (%) is computed as the point estimate over the mean x 100. Columns (2) and (4) include as covariate the measure of deforestation in the previous term (2008-2011). *** p<0.01, ** p<0.05, * p<0.1.

Table A23: Heterogeneous Effects: State Presence - Quadratic Polynomial

	(1)	(2)	(3) Measure Z	(4)	(5)
	National Parks Area	CAR office	Distance to CAR	Procurator offices	Attorney offices
A Donor funded	0.679*	0.750*	-0.234	0.624*	0.830**
Z	(0.366) 0.348	(0.386) 1.532*	(0.429) -0.003	(0.361) 1.062***	(0.405)
B $\mathbb{Z} \times \mathbb{D}$ onor funded	(0.240) -0.329* (0.176)	(0.798) -2.072*** (0.660)	(0.010) 0.027** (0.013)	(0.310) -1.695*** (0.574)	(0.143) -0.285** (0.118)
Observations	408	408	408	408	408
Bandwidth obs.	191	191	191	191	191
R-squared Bandwidth	0.069 0.060	0.083 0.060	0.201 0.060	0.068 0.060	0.087 0.060
(Local) polynomial order	1	1	1	1	
A + B	0.350	-1.322	-0.207	-1.071	0.545
Effect size (%)	17.579	-41.300	-12.042	-39.002	30.566
Ho: A + B = 0 F-statistic	0.986	6.087	0.000	3.832	6.331
P-value	0.322	0.015	0.995	0.052	0.013

Note: OLS regression weighted by a triangular kernel within the MSE optimal bandwidth sample and controlling for a quadratic polynomial. Bandwidth obs. denotes number of observations in the optimal MSE bandwidth. The dependent variable is deforestation during the full term. National Parks area is defined as the total area with national parks in the municipality, CAR office is a dummy that takes the value one if there was at least on CAR office in the municipality, Distance to CAR is the distance to the closest CAR, Procurator offices is the number of offices of the Procurator General (Procuraduria), and Attorney offices is the number of offices of the Attorney General (Fiscalia). The Effect size (%) is computed as $100x(A+B)/(constant+\beta_Z)$. *** p<0.01, ** p<0.05, * p<0.1.

Table A24: Donor funded politician and infrastructure contracts by year of government: Quadratic polynomial

	Year of government					
	1	2	3	4		
Donor Funded	0.561	0.195	1.431**	0.886		
Robust p-value	0.418	0.918	0.028	0.114		
CI 95%	[-0.752, 1.812]	[-1.209, 1.344]	[0.161, 2.785]	[-0.230, 2.136]		
Observations	381	386	386	389		
Bandwidth obs.	210	217	268	265		
Mean	4.203	5.093	5.283	5.508		
Effect Mean(%)	13.35	3.83	27.09	16.09		
Bandwidth	0.075	0.076	0.108	0.105		
(Local) polynomial order	2	2	2	2		

Note: Local quadratic estimates of average treatment effects at cut-off estimated with triangular kernel weights and optimal MSE bandwidth. 95% robust confidence intervals and robust p-values are computed following Calonico, Cattaneo and Titiunik (2014). Bandwidth obs. denotes number of observations in the optimal MSE bandwidth. The average value of contracts was transformed using inverse hyperbolic sine. The contracts are catalogued in each category by analysing their reported object. The Effect size (%) is computed as the point estimate over the mean x 100. *** p<0.01, ** p<0.05, * p<0.1

Table A25: Donor funded politician and fire intensity by year of government - Quadratic polynomial

	(1)	(2) Year of go	(3) overnment	(4)
	1	2	3	4
Donor Funded Robust p-value CI 95%	51.029 0.451 [-90.214, 203.103]	118.096* 0.100 [-25.585, 292.761]	4.267 0.952 [-145.384, 154.528]	122.898* 0.068 [-9.357, 256.419]
Observations	408	408	408	408
Bandwidth obs.	238	204	233	267
Mean	189.531	182.944	185.052	198.819
Effect Mean(%)	26.92	64.55	2.31	61.81
Bandwidth	0.082	0.068	0.079	0.097
(Local) polynomial order	2	2	2	2

Note: Local quadratic estimates of average treatment effects at cut-off estimated with triangular kernel weights and optimal MSE bandwidth. 95% robust confidence intervals and robust p-values are computed following Calonico, Cattaneo and Titiunik (2014). Bandwidth obs. denotes number of observations in the optimal MSE bandwidth. Fire intensity is measured as the average brightness of fires in a municipality. The Effect size (%) is computed as the point estimate over the mean x 100. **** p < 0.01, *** p < 0.05, * p < 0.1.

Table A26: Heterogeneous effects: Guerrilla presence and ceasefire

	(1)	(2)	(3)	(4)
		Attacks	$measure\ Z$	
	Paran	ilitary	Guer	rrilla
	2012-14	2015	2012-14	2015
4 D 6 1 1	0.000	0.400**	0.000**	0 = 0.4***
A Donor funded	0.302	0.402**	0.629**	0.504***
_	(0.244)	(0.196)	(0.273)	(0.180)
${f Z}$	0.078	0.038	0.303***	0.271***
	(0.094)	(0.055)	(0.086)	(0.103)
B $Z \times Donor funded$	0.114	0.010	-0.343***	-0.280**
	(0.102)	(0.062)	(0.114)	(0.130)
Observations	408	408	408	408
Bandwidth obs.	132	132	132	132
R-squared	0.156	0.063	0.092	0.162
Bandwidth	0.041	0.041	0.041	0.041
(Local) polynomial order	1	1	1	1
A + B	0.416	0.412	0.286	0.224
Effect size (%)	67.752	135.974	39.722	47.558
Ho: $A + B = 0$				
F-statistic	3.216	5.536	1.202	1.269
P-value	0.075	0.020	0.275	0.262

Note: OLS regression weighted by a triangular kernel within the MSE optimal bandwidth sample and controlling for a quadratic polynomial. The dependent variable is deforestation between 2012-2014 (columns 1 and 3) and deforestation in 2015 (columns 2 and 4). Bandwidth obs. denotes number of observations in the optimal MSE bandwidth. The dependent variable is deforestation during the full term. Paramilitary (Guerrilla) attacks is the number of paramilitary (guerrilla) attacks during the previous term (2008-2011). The Effect size (%) is computed as $100x(A+B)/(constant+\beta_Z)$. **** p<0.01, ** p<0.05, * p<0.1.

Table A27: Descriptive statistics for donor-funded politicians

Dependent variable	Mean	Std. Dev.
	(1)	(2)
Total privately funded	15.453	16.540
Sh privately funded	0.416	0.274
Number of donors	6.147	5.529
Number of donations	7.988	7.970

Note: There are a total of 408 Mayors in our base sample, 164 which are not donor-funded, while 244 are donor-funded. These descriptive statistics are for donor-funded politicians. "Total privately funded" is the total amount of private donations in millions of Colombian pesos. "Sh privately funded" is the % of total campaign funds from private donations.

Table A28: Private donations and deforestation: OLS

	(1)	(2)	(3)	(4)	(5)	(6)
Share of private donations	0.862**	0.590**				
23.000 p	(0.350)	(0.298)				
Number of private donations	,	,	0.017**	0.007		
			(0.007)	(0.006)		
Number of private donors					0.029***	0.019**
					(0.010)	(0.009)
Deforestation pre-term		0.395***		0.401***		0.400***
		(0.042)		(0.044)		(0.044)
Observations	408	408	408	408	408	408
R-squared	0.025	0.295	0.006	0.284	0.009	0.287
Mean DV	1.210	1.210	1.210	1.210	1.210	1.210

Note: This table presents an OLS regression for deforestation in the mayor's term. Share of private donations is the share of the mayor's electoral budget that privately funded and Number of private donations (private donors) is the number of private donations (donors) that the mayor received. Robust standard errors are presented in parenthesis. *** p < 0.01, ** p < 0.05, * p < 0.1.

Table A29: Heterogeneous effects by deforestation on future electoral outcomes

	(1) Party runs in next election	(2) Party vote share in next election	(3) Party seats in next election	(4) Politician runs in future elections
A Donor funded	0.227	0.090	0.048	0.167
	(0.175)	(0.068)	(0.123)	(0.184)
Deforestation	-0.091	-0.040	-0.056	0.028
	(0.085)	(0.031)	(0.046)	(0.098)
B Deforestation \times	0.090	0.044	0.049	-0.078
Donor funded	(0.136)	(0.051)	(0.072)	(0.151)
observations	132	132	132	132
Mean DV	0.409	0.154	0.098	0.424

Note: The outcomes in each of the four columns are (1) whether the incumbent mayor's party runs in 2015 for the mayor's office, (2) the vote share of the mayor's party in 2015, (3) the probability of the party winning the mayoral seat in 2015, and (4) whether the mayoral candidate in 2011 runs for any election at any level after leaving office in 2015. OLS regression weighted by a triangular kernel within the MSE optimal bandwidth sample and controlling for a quadratic polynomial. Observations denotes the number of observations in the optimal MSE bandwidth. (Z) is deforestation during the mayor's term. Robust standard errors are presented in parenthesis. *** p < 0.01, ** p < 0.05, * p < 0.1.

Table A30: Donor funded politician and deforestation during the previous term in office

	(1)	(2)
Donor Funded Robust p-value CI 95%	0.607 0.243 [-0.529, 2.084]	0.821 0.302 [-0.708, 2.286]
Observations	408	408
Bandwidth obs.	179	200
Mean	2.141	2.141
Effect Mean(%)	28.35	38.35
Bandwidth	0.055	0.067
(Local) polynomial order	1	2

Note: Columns 1 present the local linear estimates of average treatment effects at cut-off in the previous term (2008-2011) estimated with triangular kernel weights and optimal MSE bandwidth. Columns 2 presents the quadratic estimates of average treatment effects in the previous term (2008-2011) at cut-off estimated with triangular kernel weights and optimal MSE bandwidth. 95% robust confidence intervals and robust p-values are computed following Calonico, Cattaneo and Titiunik (2014). Bandwidth obs. denotes number of observations in the optimal MSE bandwidth. The Effect Size (%) is computed as the point estimate over the mean x 100. *** p<0.01, ** p<0.05, * p<0.1.

Table A31: Donor funded politician and deforestation during term in office: Full model

	(1)	(2)	(3)	(4)
Donor Funded Robust p-value CI 95%	1.099*** 0.008 [0.339, 2.220]	0.627** 0.019 [0.127, 1.442]	1.290** 0.026 [0.158, 2.471]	0.972** 0.021 [0.158, 1.940]
Added Covariates: Previous deforestation		0.404*** (0.070)		0.389*** (0.061)
Observations	408	408	408	408
Bandwidth obs.	132	174	191	198
Mean	1.182	1.182	1.182	1.182
Effect Mean(%)	92.98	53.05	109.14	82.23
Bandwidth	0.041	0.053	0.060	0.064
(Local) polynomial order	1	1	2	2

Note: Columns 1 and 2 present the local linear estimates of average treatment effects at cut-off estimated with triangular kernel weights and optimal MSE bandwidth. Columns 3 and 4 presents the quadratic estimates of average treatment effects at cut-off estimated with triangular kernel weights and optimal MSE bandwidth. 95% robust confidence intervals and robust p-values are computed following Calonico, Cattaneo and Titiunik (2014). Bandwidth obs. denotes number of observations in the optimal MSE bandwidth. The Effect Size (%) is computed as the point estimate over the mean x 100. Columns (2) and (4) include as covariate the measure of deforestation in the previous term (2008-2011). **** p<0.01, ** p<0.05, * p<0.1.

Table A32: Donor funded politician and fire intensity: Full model

	(1)	(2)
	• •	
Donor Funded	80.976*	75.464**
Robust p-value	0.059	0.041
${\rm CI}~95\%$	[-3.381, 181.446]	[3.189, 156.092]
Added Covariates:		
Previous fire intensity		0.468***
		(0.080)
Observations	408	408
Bandwidth obs.	195	198
Mean	246.324	246.324
Effect Mean(%)	32.87	30.64
Bandwidth	0.061	0.063
(Local) polynomial order	1	1

Note: Local linear estimates of average treatment effects at cut-off estimated with triangular kernel weights and optimal MSE bandwidth. 95% robust confidence intervals and robust p-values are computed following Calonico, Cattaneo and Titiunik (2014). Bandwidth obs. denotes number of observations in the optimal MSE bandwidth. Column (2) includes as covariate the measure of fire intensity from the previous term (2009-2011), being 2009 the first year with data availability. Fire intensity is measured as the average brightness of fires in a municipality. The Effect size (%) is computed as the point estimate over the mean x 100. *** p < 0.01, ** p < 0.05, * p < 0.1.

Table A33: Summary Table Figure 4

Polynomial order	Bandwidth	Point Estimate	Lower bound	Upper bound
1	0.02	0.62	-0.64	1.64
1	0.02	0.65	-0.54	1.53
1	0.03	0.74	-0.18	1.71
1	0.03	0.91	0.17	1.94
1	0.04	1.03	0.37	2.05
1	0.04	1.10	0.49	2.07
1	0.04	1.11	0.51	2.08
1	0.05	1.08	0.55	2.01
1	0.05	0.91	0.45	1.81
1	0.06	0.78	0.34	1.63
1	0.06	0.68	0.24	1.49
1	0.07	0.62	0.17	1.39
1	0.07	0.58	0.11	1.31
1	0.08	0.53	0.05	1.23
1	0.08	0.47	-0.01	1.15
2	0.03	0.48	-0.87	1.72
2	0.04	0.47	-0.97	1.45
2	0.04	0.55	-0.91	1.38
2	0.04	0.68	-0.62	1.55
2	0.05	1.00	-0.13	1.93
2	0.06	1.18	0.19	2.18
2	0.06	1.29	0.34	2.29
2	0.06	1.29	0.34	2.28
2	0.07	1.30	0.42	2.30
2	0.07	1.27	0.48	2.29
2	0.07	1.19	0.50	2.24
2	0.08	1.14	0.48	2.14
2	0.09	1.09	0.46	2.07
2	0.09	1.05	0.49	2.02
2	0.10	1.01	0.48	1.97
2	0.10	0.96	0.46	1.90
2	0.10	0.91	0.43	1.84
2	0.11	0.85	0.39	1.77
2	0.12	0.81	0.34	1.70
2	0.12	0.77	0.29	1.63

Note: Estimates of average treatment effects at the cut-off, using triangular kernel weights. Optimal MSE bandwidths displayed in the dotted line. Following Cattaneo, Idrobo and Titiunik (2020), we display estimates between half and double the optimal bandwidth. Robust 90% confidence intervals estimated following Calonico, Cattaneo and Titiunik (2014).