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Appendix A Bounds for Differential Privacy

First write Equation 2 in the text as N (t | θ̂, S2) ≤ δ + eε · N (t | θ̂ + ∆, S2), for any t,

where ∆ is the “sensitivity” of this estimator (the largest change in M(mean, D) over all

possible pairs of datasets that differ by at most one row), where |θ̂D − θ̂D′ | ≤ ∆ such that

θ̂D and θ̂D′ denote the estimator computed from D and D′, respectively. The censored

mean θ̂ has sensitivity ∆ = 2Λ/N .

A simple expression for S that satisfies the differential privacy standard is

S ≡ S(Λ, ε, δ, N) =
∆
√

2 ln(1.25/δ)

ε
=

2Λ
√

2 ln(1.25/δ)

Nε
, (1)

Equation 3 in the text is a special case of this expression with δ = 0.0005.

Note that Equation 1 holds only for ε ≤ 1 (Dwork and Roth, 2014). In practice,

we use the tighter numerical solution by Balle and Wang (2018), which allows 20-30%

smaller values of S when ε ≤ 1 and is still valid for larger values. To summarize: for

the Gaussian mechanism, write Equation 2 in the text in terms of the cumulative standard

normal density: Φ
(

∆
2σ
− εσ

∆

)
− eεΦ

(
− ∆

2σ
− εσ

∆

)
≤ δ. Then set S to the minimum σ that

satisfies this inequality. This numerical calculation exactly calibrates the noise to a given

privacy budget and hence minimizes S for a given level of {ε, δ}.

An alternative option is to use Zero Concentrated Differential Privacy (zCDP) which

is known to have tighter composition properties, therefore allowing for less noise across

multiple queries. This is due to the fact that the algorithm is primarily based on the

Gaussian mechanism. The fact our algorithm satisfies zCDP also implies that the δ we

provide in the paper does not correspond to the probability of “catastrophic failure”. A

version of the Gaussian mechanism satisfying zCDP is given in Bun and Steinke (2016).

This article also demonstrates that zCDP implies approximate differential privacy and

shows how to convert to the zCDP parameter, which is immediately computable based on

the standard deviation of the Gaussian noise in our paper. (For context, the US Census

Bureau also routinely reports the zCDP parameter for the Gaussian mechanism, also for

its desirable composition properties.)
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Appendix B Privatized Versions of Classical Uncertainty
Estimates Are Not Valid for Privatized Esti-
mates

In Section , we discuss the need for uncertainty estimates of differentially private statistics.

We show here that using the same algorithm to privatize and disclose the classical variance

estimate is not a solution to the problem.

In a system without differential privacy, let θ̂ be a point estimate of a quantity of inter-

est θ in an unobserved population. Denote by V (θ̂) the (true) variance of θ̂ over repeated

(hypothetical, unobserved) samples of datasets drawn with the same data generation pro-

cess. Consider now a differentially private point estimator (or “mechanism”) θ̂dp of θ.

Although it would be easy to disclose a differentially private estimate of the variance,

V̂ (θ̂)dp, it is of no direct use, since θ̂ is never disclosed and so an estimate of its variance

is irrelevant. Indeed, V̂ (θ̂)dp is a biased estimator of the quantity we need, V (θ̂dp). Since

we will show below that θ̂dp itself is biased, V (θ̂dp) would be of no direct use even if it

were known.

Appendix C Comparison to Smith (2011)

Our method achieves approximate unbiasedness in the presence of censoring by apply-

ing a bias correction procedure. Censoring then is advantageous because less noise is

required and no penalty is paid in terms of bias. An alternative approach to obtaining

unbiased estimates, which also uses the sample and aggregate approach, avoids censoring

altogether by selecting a censoring value Λ outside the data (with high probability) in a

differentially private way. Along these lines, Smith (2011) proposes the “Widened Win-

sorized Mean” algorithm which, after constructing P partition estimates of the quantity

of interest, returns estimates of the 0.25 and 0.75 quantiles of the P partition estimates via

the Exponential mechanism. The censoring value, Λ, is then constructed by widening the

estimated quantiles so as to avoid censoring any of the partitions with high probability.

Noise is then added to the aggregated partition estimates, where the variance scales in the

censoring bound in order to satisfy differential privacy.
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However, as we now demonstrate, the approach in Smith (2011) requires adding far

more noise than our method because Λ must be set so large. Our method benefits from

censoring because Λ can be set smaller. The result is that our approach applied to finite

datasets can have dramatically more efficient inferences. (We can also marshal in our

approach the portion of the algorithm in Smith 2011 used for discovering the value of Λ

at which censoring would begin. When less information is available from prior research

than usual, we use this algorithm but set Λ to a smaller value and correct for the censoring,

resulting in less noise and more efficiency.)

To demonstrate this point, consider a simple data generating process where we draw

1000 i.i.d. samples of n = 10000 for each value of ε from Poisson(5). Our quantity

of interest is the population mean, which we estimate in P =
√
n partitions (as per the

advice in Smith (2011)) by the sample mean. To ensure we calibrate both methods with

an identical privacy budget, we estimate Λ from the data via the Exponential mechanism

in both (‘Private Quantile Estimation’), allocating an equal privacy budget to this step for

both methods. For our procedure, our target Λ censors about 40% of the partitions with

the privacy budget divided equally between the partition mean and the private quantiles.

The results are shown in Figure 1, where we compare the Root Mean Square Error

(RMSE) of our estimate (‘bias adjusted’) with Smith (2011), as the privacy budget, ε,

varies. The difference is so large that we had to plot the RMSE on the log scale. The

figure demonstrates that, at all privacy budgets given, our estimator has substantially lower

RMSE. At the lowest privacy budget, ε = 0.5, Smith’s estimator has a RMSE that is 428

times higher than our estimator.

Appendix D Estimates from Partitions

In Section , algorithm Step 1a, we compute θ̂p from the data in partition p, Dp, via one of

two options: (1) Use the same statistical method we would have used if we were able to

analyze the entire private dataset. If we make this choice, we must be careful to appropri-

ately scale up this result to the entire dataset when required (a version of “subsampling”;

see Politis, Romano, and Wolf 1999). Alternatively, (2) use the general purpose “bag of
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Figure 1: Root Mean Square Error Comparison of our bias adjusted approach to Smith
(2011), with the vertical axis on the log scale

little bootstraps” algorithm (Kleiner et al., 2014) so scaling up is automatic.

To implement this optional bag of little bootstraps in partition p, first repeat these steps

B times:

1. Simulate bootstrap b (i.e., b = 1, . . . , B) by sampling one weight for each of the n

units in partition p as wb ≡ {w1,b, . . . , wn,b} ∼ Multinomial(N,1n/n).

2. Calculate a statistic (an estimate of population value θ) from bootstrapped sample

b in partition p: θ̂p,b = s(Dp, wb), such as a predicted value, expected value, or

classification.

Then summarize the set of B bootstrapped estimates within each partition with a (still

unobserved) estimator, which we write generically as θ̂p. Examples include a mean

θ̂p = m(θ̂p,b) or the probability of the Democrat winning a majority of the vote, θ̂p =

m[1(θ̂p,b > 0.5)].

Under option (1), the necessary scale factors the researcher would need to derive differ

depending on the type of estimator and quantity of interest; some quantities, like the
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variance, are a linear function of N , but each partition’s estimate is a function of n and so

need to be scaled up by a factor of (N − n)/n.

The bag of little bootstraps in option (2) is computationally more intensive but allows

simpler and more flexible estimation strategies for some quantities, such as the probability

that a causal effect is greater than zero, estimated by merely counting the proportion of

positive bootstrap estimates that meet selected criteria. It is also far less computationally

demanding than the standard bootstrap procedures.

Appendix E Bounding Error in The Expected Value

Let Zm ∼ N (θ, σ2/n). Our goal is to show that E
[
θ̂dpn

]
= E[c(Zn,Λ)] ± O(1/

√
n),

where n ≡ N/P and c(x, T ) is a function that censors an input x at [−T, T ]. We will

assume that θ̂ is an asymptotically normal statistic and that E[|θ̂|3) = ρ < ∞ (i.e., the

estimate has a finite third moment).

We start by writing the expectation as:

E
[
θ̂dpn

]
= E[c(θ̂n,Λ)] + E[V ]︸︷︷︸

DP noise

= E[c(θ̂pn,Λ)]

Since E[V ] = 0. Let Fn(x) = Pr(θ̂pn ≤ x) and pn(x) = F ′n(x). Therefore:

E
[
θ̂dpn

]
=

∫ −Λ

−∞
−Λpn(x)dx+

∫ Λ

−Λ

xpn(x)dx+

∫ ∞
Λ

Λpn(x)dx

= −ΛFn(−Λ) +

∫ Λ

−Λ

xpn(x)dx+ Λ(1− Fn(Λ)) (2)

Focusing on the second term, we have that:

∫ Λ

−Λ

xpn(x)dx =

[
x

∫
pn(x)dx

]Λ

−Λ

−
∫ Λ

−Λ

∫
pn(x)dxdx

= ΛFn(Λ) + ΛFn(−Λ)−
∫ Λ

−Λ

Fn(x)dx (3)
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Substituting Eqn. (3) into Eqn. (2), we have that

E
[
θ̂dpn

]
= −ΛFn(−Λ) + ΛFn(−Λ)−

∫ Λ

−Λ

Fn(x)dx+ Λ(1− Fn(Λ)) + ΛFn(Λ)

=

∫ Λ

−Λ

1/2− Fn(x)dx (4)

By a similar logic it follows that E[c(Zn,Λ)] =
∫ Λ

−Λ
1/2 − F ∗n(x)dx, where F ∗n =

Pr(Zn ≤ x). Then, we apply the Berry-Esseen theorem (Feller, 1971, Section 16.5) to

Eqn. (4), and denote by C a positive constant, which yields:

∫ Λ

−Λ

1/2− Fn(x)dx =

∫ Λ

−Λ

1/2− F ∗n(x)± Cρ

σ3
√
n
dx

= E[c(Zn,Λ)]± 2ΛCρ

σ3
√
n

Recognizing the alternative formulation of E[c(Zn,Λ)], we obtain our desired result:

E
(
θ̂dpn

)
= −α1Λ + (1− α2 − α1)θT + α2Λ±O(1/

√
n), (5)

where

θT = θ + σ/
√
n ·
(
N (−Λ | θ, σ2/n)−N (Λ | θ, σ2/n)

1− α2 − α1

)
.

Appendix F Software Design

We recommend data access systems that use our procedures allow a wide range of sta-

tistical methods and quantities of interest. Researchers should be able to choose almost

any quantity to estimate and almost any statistical model. Given the limited privacy bud-

get, researchers will want to choose which quantities to disclose selectively. For example,

instead of logit coefficients, researchers would typically be more interested in reporting

relative risks, probabilities, or risk differences (King, Tomz, and Wittenberg, 2000; King

and Zeng, 2002). Even regression coefficients are often best replaced by quantities like a
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predicted value, the probability a party’s candidate wins the election, or a first difference.

Software should allow researchers to submit statistical code to be checked and included,

since the algorithm can wrap around any legitimate statistical procedure.

Designing the user interface to encourage best statistical practices can be valuable.

This is especially so for users unfamiliar with differential privacy. One simple procedure

is to provide a simulated dataset (without leaking any privacy from the real dataset) so

users can compare the results from runs with and without privacy protections and get a

feel for how to do data analysis within the framework.

For estimation, we note that α2 is bounded to the unit interval, and so we could set

Λα = 1 without risk of censoring, but this would overstate this parameter’s sensitivity by

a factor of two (since we are paying from the privacy budget in anticipation of α being

negative, which is impossible). Instead of resolving this issue by changing the expression

for censoring and S, we do so more conveniently, without changing the notation (or code)

above, by simply reparameterizing as β = α2 − 0.5, setting Λβ = 0.5, estimating and

disclosing β, and then solving to obtain our estimate of α2 before using it to solve our

three equations.

Useful approaches also exist for unusual situations where little information about Λ is

available; see Appendix C and Liu and Talwar (2018).

Finally, under the topic of “do not try this at home,” data providers should understand

that a differentially private data access system involves details of implementation not cov-

ered here. These include random number generators, privacy budgets, parallelization,

security, authentication, and authorization. They also involve avoiding side attacks on the

timing of the algorithm, statistical methods that occasionally fail (e.g., due to collinearity

in regression or, in logit, perfect discrimination), the privacy budget, and the state of the

computer system (e.g., Garfinkel, Abowd, and Powazek, 2018; Haeberlen, Pierce, and

Narayan, 2011).
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Appendix G Variance Estimation Derivations

We derive our method of variance estimation outlined in Section . Our goal is to use the

output from our point estimate algorithm to compute V̂ (θ̃dp). We do this without any

additional tax on the privacy budget. Using notation (i) to denote the ith simulation, we

write:

θ̂dp(i), α̂dp
2 (i) ∼ N

([
θ̂dp

α̂dp
2

]
,

[
V̂ (θ̂dp) Ĉov(α̂dp

2 , θ̂
dp)

Ĉov(α̂dp
2 , θ̂

dp) V̂ (α̂dp
2 )

])
. (6)

To implement this procedure we require intermediate quantities V̂ (θ̂dp), V̂ (α̂dp
2 ), and

Ĉov(α̂dp
2 , θ̂

dp), which we show below can be written as functions of information already

disclosed. We plug these into Equation 6 and repeatedly draw {θ̂dp(i), α̂dp
2 (i)}, each time

bias correcting via the procedure in Section to compute θ̃dp(i). Finally, we compute the

sample variance over these simulations to yield our estimate V̂ (θ̃dp).

We decompose the two variance parameters using the results following Equation 7.

The first we write as V̂ (θ̂dp) = V̂ (θ̂) + S2
θ̂
, where V̂ (θ̂) is the variance of the mean over

P draws from a normal censored at [−Λ,Λ] (divided by P ), and S2
θ̂

is the variance of

the differentially private noise. The distribution from which this variance is calculated

then is a three component mixture (see Equation 9 in the paper). The first component is

a truncated normal with mean θT , and bounds [−Λ,Λ]; the two other components are the

spikes at Λ and −Λ. Begin with the following generic formula for the variance of the

mean of draws from a 3-component mixture distribution with weights wi, and component

mean and variances of E[θi], σ2
i respectively:

V (θ̂) =
1

P
·

([
3∑
i=1

wi(E[θ̂i]
2 + σ2

i )

]
− E[θ̂]2

)
(7)

with weights w = [(1 − α1 − α2), α2, α1], and with means for the spikes at E[θ̂2] = Λ,

and E[θ̂3] = −Λ and variances σ2
2 = σ2

3 = 0. Then, rearranging Equation 9, we write the

truncated normal mean as

E[θ̂1] ≡ θT =
E[θ̂]− Λ(α1 + α2)

1− α2 − α1

. (8)
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and we express the variance of the truncated normal as

σ2
1 = σ2

[
1 +

(−Λ−θ
σ

)
Q1 −

(
Λ−θ
σ

)
Q2

1− α2 − α1

−
(

Q1 −Q2

1− α2 − α1

)2
]

(9)

where Q1 = 1√
2π

exp
(
−1

2

(−Λ−θ
σ

)2
)

and Q2 = 1√
2π

exp
(
−1

2

(
Λ−θ
σ

)2
)

. σ2 is the variance

of the distribution from which partitions are drawn (before censoring).

We now use these results to fill in Equation 7:

V (θ̂) =
1

P
·
(

(1− α2 − α1)
(
θT + σ2

1

)
+ Λ2(α2 + α1)− E[θ̂]2

)
. (10)

Finally, our estimator of this variance simply involves plugging in for {α̂1, α̂2, θ̃
dp, σdp, θ̂dp}

the values {α1, α2, θ, σ, E[θ̂]}, respectively.

Next, we decompose the second parameter of the variance matrix of Equation 6 in the

same way: V̂ (α̂dp
2 ) = V (α̂2) + S2

α̂, the first component of which is the variance of the

proportion of partitions that are censored (prior to adding noise). We represent whether a

partition is censored or not by an indicator variable equal to 1 with probability α2: IfAp =

1(θ̂p > Λ), then Pr(Ap = 1) = α2. Then the sum of iid binary variables is a binomial,

with variance V
(∑P

p=1Ap

)
= Pα2(1−α2). Plugging α̂dp

2 into the decomposition yields

V̂ (α̂) =
1

P
(1− α̂dp

2 )α̂dp
2 + S2

α̂. (11)

Finally, we derive the covariance:

Cov(θ̂dp, α̂dp
2 ) = Cov(θ̂, α̂2) (noise is additive and independent)

= Cov

(
1

P

P∑
p=1

c(θ̂p,Λ),
1

P

P∑
p=1

Ap

)

=
1

P
Cov

(
c(θ̂1,Λ), A1

)
(θ̂p and Ap are iid over p)

=
1

P

{
E[c(θ̂1,Λ)A1]− E[c(θ̂1,Λ)E(A1)]

}
=

1

P

{
E[c(θ̂1,Λ) | A1 = 1)− E[c(θ̂1,Λ) | A1 = 0]

}
α2(1− α2) (12)

where E[c(θ̂1,Λ) | A1 = 1] = Λ, and E[c(θ̂1,Λ) | A1 = 0] = θT , the mean of the

truncated normal mean component of the censored normal. We thus use Equation 8 and

plug estimates into Equation 12:

Cov(θ̂dp, α̂dp
2 ) =

1

P

(
Λ− θ̂dp − α̂2Λ + α̂1Λ

1− α2 − α1

)
α̂2(1− α̂2). (13)
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Appendix H Additional Simulations

In this appendix, we provide additional simulation evidence to demonstrate the perfor-

mance of our method in finite samples. We convey the robustness of our method to

an alternative data generating process — and one that is a harder test of our procedure

due to the skewed nature of the data, making it harder for the Central Limit Theorem

to be approximated by a fixed sample size. Specifically, we draw Xi ∼ Exp(2) for

i = 1, ..., 200, 000, and Yi ∼ Bern(πi) where π = exp(α+βXi)
exp(α+βXi)+1

and α = β = 0.25.

Our quantity of interest is β.

We simulate 250 data sets for a range of privacy budgets (quantified by ε), and divide

the data set into P = 100 partitions, yielding a sample size of 2000 per partitions. We set

λ such that 30% of partitions were censored on average.

Our results are shown in Figures 2 which show that our estimator, θ̃, correct for the

bias in the censored estimate, θ̂, across a range of privacy budgets. Our standard error

estimate align approximately with the true standard deviation of the estimate, although

slightly conservative on average for smaller values of ε.
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Figure 2: Performance in Non-normal Data

Appendix I A “True Negative” Example

This appendix provides an example of where our procedure fails, followed by an expla-

nation for why it fails along with recommendations for how to avoid the problem. We do
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this by further analysis of the data in the example on the “Effect of Affirmative Action on

Bureaucratic Performance in India” in Section of the paper.

To do this, we extend the analysis by including state level fixed effects, of which there

are 25 in total. Including state-level (or other geography-based) fixed effects is a com-

mon data analysis procedure across political science, designed to control for unmeasured

confounders that are collinear with state geography.

We present our results for the same quantity of interest in the text from this alterna-

tive specification in Figure 3. With the fixed effects, the true effect is about zero with

a relatively narrow confidence interval (see the bar at the left of the figure). Our esti-

mate (presented in the middle of the graph) suggests instead that the effect is negative and

significantly different from zero.
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Figure 3: Biased Results

The cause of the problem here is the combination of a relatively small sample size

(n = 2, 047), a relatively large number of parameters (27), along with too many disjoint

partitions (P = 150). Each one of these is no problem, but all three together result in

some partitions containing zero or very few observations from some states, thus making it

either impossible to run the model with all the indicator variables, or leading to extremely
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imprecise estimates. We can see the imprecision reflected in vastly larger confidence

intervals. In this instance, the mean partition estimate does not correspond to the estimate

on the full sample, and censoring and DP noise further increases the error.

Technically, if at least one partition had no observations from one of the states, the

entire procedure would fail to produce an answer at all because of collinearity with the

constant term. However, our code follows the coding conventions of most statistical anal-

ysis programs by dropping state indicators when no states appear in that sample, which

makes sense statistically since controlling for confounding is not necessary for constants.

Appendix J Proportion of Observations Effectively Lost
to Privacy Protection

We first define L, described in Section as the proportion of observations effectively lost

due to privacy protective procedures, and then show how to estimate it.

Denote θ̂N as the estimator we would calculate if the data were not private and θ̃dp
N as

our estimator — each based on N observations. Then we set as our goal estimating N∗

(with N∗ < N ) such that V (θ̂N∗) = V (θ̃dp
N ). Because V (θ̂N∗) ∝ 1/N∗ and V (θ̃dp

N ) ∝

1/N , we can write V (θ̂N∗) = N · V (θ̂N)/N∗ = V (θ̃dp
N ). We then write the proportionate

(effective) loss in observations due to the privacy protective procedures L as

L =
N −N∗

N
= 1− V (θ̂N)

V (θ̃dp
N )
. (14)

We estimate the numerator of the second term as σ̂2
dp/P , where σ̂2

dp in the numerator,

and the whole denominator, are outputs from our bias correction and variance estima-

tion algorithms (Section ). So when a dataset has N observations, but is being provided

through a differentially private mechanism, this is the equivalent to the researcher having

only LN < N observations and no privacy protective procedures. The final estimator is

then simply:

L̂ = 1−
σ̂2

dp/P

V (θ̃dp)
. (15)

This estimator summarizes the effect of the differentially private mechanism and the pri-

vacy parameters (ε, δ, and Λ).
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Appendix K When Privacy Procedures Obscure All Rel-
evant Information

All privacy protective procedures are designed to destroy or hide information by making it

more difficult to draw certain inferences from confidential data. These are worthwhile to

protect individual privacy and to ensure that data which might not otherwise be accessible

at all are in fact available to researchers. However, with the noise and censoring used in

differential privacy, some inferences will be so uncertain that no substantive knowledge

can be learned. In even more extreme situations, our bias correction procedures, which

rely on some information passing through the differential privacy filters, would have no

leverage left to do their work. In this appendix, we develop a rule of thumb that sug-

gests when privacy protected data analysis becomes like trying to get blood from a stone:

max(α1, α2) > 0.6 or εP < 100 (also, if εP � 100 then max(α1, α2) could be even

larger before a problem occurs). If an analysis is implicated by this rule of thumb, then

it is best to rerun the analysis with more partitions, use more of the privacy budget, or

adjust Λ. If none of these are possible, then the only options are to negotiate with the data

provider for a larger privacy budget allocation, collect more data, or abandon inquiry into

this particular quantity of interest.

Recall that we attempt to choose Λ in order that each θ̂p ∈ [−Λ,Λ]. We then keep this

interval fixed and study the distribution of the mean θ̂ = 1
P

∑P
p=1 θ̂p, which has a variance

P times smaller than the distribution of θ̂p. Now consider the unusual edge case where

so much noise is added that |θ̂dp| � Λ (in contrast to a small deviation, which has little

consequence). In this extreme situation, using θ̂dp as a plug-in estimator for E(θ̂dp) no

longer works because no values of θ and σ2 can be logically consistent with it, given Λ;

in some ways, such a result even nonsensically suggests that σ2 < 0.

In this situation, we could simply stop and declare that no reasonable inference is

possible and, if we do, we wind up with an analogous rule of thumb. However, to build

intuition for this rule, we now show what happens if we try to accommodate this edge

case computationally. Thus, if θ̂dp > Λ we learn that e > 0 (where e is the differentially

private error defined in Equations 4-5), and so we replace θ̂dp with θ̌dp ≡ θ̂dp−S
√

2√
π

, where

14



the second term is E(e|θ̂dp > Λ) = E(e|e > 0). This adjustment makes the system of

equations (and the resulting θ̃dp) possible, at the cost of some (third order) bias. We now

derive our rule of thumb by showing how to bound this bias by appropriately choosing ε,

P , and Λ.

For simplicity, we study the dominant case of one-sided censoring (α1 = 0), which

enables us to solve the bias correction equations algebraically rather than numerically; the

results are not very different for two-sided censoring. Thus, begin with the facts, including

α2 in Equation 8 and

θ̂dp = (1− α̂dp
2 )

θ −
σ√
2π

exp

(
−1

2

(
Λ−θ̂dp

σ

)2
)

(1− α̂dp
2 )

+ α̂dp
2 Λ. (16)

Then solve these equations for θ, which we label θ̃dp as above, and show, conditional on

α2, that θ̃dp is a linear function of θ̂dp:

θ̃dp = θ̂dp
(

1

B

)
+ Λ

(
B − 1

B

)
, (17)

where B = (1− α̂dp
2 ) +

√
2e−T2/2

2T
√
π

and T =
√

2 · erf−1[2(1− α̂dp
2 )− 1].

Note that if we apply our bias correction (in Section ) using the exact version of E(θ̂)

(and α2) as an input, we would find θ̃dp = θ. We are therefore interested in the discrepancy

d = E(θ̌dp)− E(θ̂), which we write as

d =

[
(1− Pr(θ̂dp > Λ))

∫ Λ

−∞

tN (t|θ̂, S2)

(1− Pr(θ̂dp > Λ))
dt

+ Pr(θ̂dp > Λ)

∫ ∞
Λ

(
t− S

√
2√
π

)
N (t|θ̂, S2)

Pr(θ̂dp > Λ)
dt

]
− E[θ̂]

=

[
E[θ̂dp]− Pr(θ̂dp > Λ)S

√
2√
π

]
− E[θ̂]

=− S
√

2√
π
× Pr(θ̂dp > Λ)

=−
2Λ
√

2 ln(1.25/δ)

εP

√
2√
π
× Pr(θ̂dp > Λ), (18)

where Pr(θ̂dp > Λ) =
∫∞

Λ
N (t|θ̂, S2)dt has a maximum value of 0.5. As a result, the

15



maximum value of the discrepancy is

max(d) = −
2Λ
√

ln(1.25/δ)/π

εP
. (19)

Making use of Equation 17, we write the maximum possible bias in θ̃dp as a function

of the maximum possible bias in θ̌dp. Thus,

E[θ̃dp]− θ ≤
(

1

B

)
·max(d) (20)

which shows that the bias depends on 1/B, which itself is a deterministic function of α2.

As shown in Figure 4, which plots this relationship, if censoring (plotted horizontally)

is 0.5, then θ̃dp is unbiased. We also see that we can control the maximum value of 1/B by

controlling the level of censoring. If we follow our rule of thumb and disallow censoring

over 60%, then max0≤α2≤0.6 | 1B | = 1.

0

2

4

6

0.0 0.2 0.4 0.6 0.8
α2

|1
/B

|

Figure 4: Relationship between |1/B| and Percent Censored

To find the maximum bias under this decision rule, note that if Pr(θ̂dp > Λ) is at its

maximum, then α2 = 0.5 and 1/B → 0. It follows that 1
B

Pr(θ̂dp > Λ) is strictly less than

0.5 and we are able to bound the absolute value of the discrepancy:

|E(θ̃dp)− θ| <

∣∣∣∣∣2Λ
√

ln(1.25/δ)/π

εP

∣∣∣∣∣ . (21)

We use this result to show that we have approximately bounded the bias in θ̃dp (if the

computational fix is applied) relative to our quantity of interest θ. Since users set Λ on the

16



scale of their quantity of interest to the range [−Λ,Λ], the maximum proportionate bias is

less than approximately

1

Λ

∣∣∣∣∣2Λ
√

ln(1.25/δ)π

εP

∣∣∣∣∣ =

∣∣∣∣∣2
√

ln(1.25/δ)π

εP

∣∣∣∣∣ . (22)

For example, if we choose, from our rule of thumb, εP = 100 and δ = 0.01, then this

evaluates to 0.03, a small proportionate bias. Of course, this is the upper bound; the actual

bias is likely to be a good deal smaller than even this small bound in most applications.
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