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The appendices in this document provide a self-contained introduction to semiparametric

efficiency and the proposed method (Appendix A); a discussion of the necessary assumptions

required to give the estimate a causal interpretation (Appendix B); a set of diagnostic tests

implemented with the PLCE software (Appendix C); implementation details, both prelim-

inary and detailed (Appendices D, E); and a set of simulation results extending those in the

manuscript F.

A Formal Derivation of a Semiparametrically Efficient

Estimator in the Partially Linear Model

In order to integrate the technical discussion with the broader statistical literature, I adopt

the standard empirical process notation, where Pn denotes the sample mean, Pnxi = 1
n

∑n
i=1 xi,

P the population mean Pxi = E(xi) and Gn the empirical process Gnxi =
√
n(Pnxi − Pxi).

The remaining notation is as in the body.



A.1 Characterizing the Semiparametric Efficiency Bound

The semiparametrically efficient estimate can be calculated treating the model where I as-

sume the true nuisance functions were known, called the parametric submodel, as a linear

regression,

y = θt + Xηγy + e

t = Xηγt + u

with the ith row of Xη is xη,i = [f(xi), g(xi)]. Hη is the projection matrix of Xη(X
>
η Xη)

−1X>η ,

where the matrix is assumed full rank, and Aη = In −Hη, the annihilator matrix.

Denote as ỹ, t̃ the residuals after regressing y, t on the matrix Xη, i.e.

t̃ = Aηt = Aηu︸︷︷︸
:=ũ

= ũ

ỹ = Aηy = θAηt + Aηe︸︷︷︸
:=ẽ

= θt̃ + ẽ

= θũ + ẽ
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The semiparametrically efficient estimate is then

θ̂ =
ỹ>t̃

t̃>t̃
(1)

=
Pnỹit̃i

Pnt̃2i
(2)

=
Pn(θũ2

i + ũiẽi)

Pnũ2
i

(3)

= θ +
Pnũiẽi
Pnũ2

i

(4)

The estimator is clearly consistent for θ by the law of large numbers with limiting distribution

√
n
(
θ̂ − θ

)
= Gnθ̂ =

√
n

{
Pnũiẽi
Pnũ2

i

}
(5)

 N

(
0,

E (ũ2
i ẽ

2
i )

E (ũ2
i )

2

)
. (6)

This gives the semiparametric efficiency bound for the model. Now, were f, g known, least

squares could recover a point and variance estimate through the method of least squares,

and it would be efficient. Since f, g are not known, I next construct an estimate that is

asymptotically indistinguishable from the estimate calculated from the parametric submodel.

This estimate will be semiparametrically efficient.

A.2 Deviations Between the Feasible Estimate and the Semipara-

metrically Efficient Estimator

The functions f, g are not known but instead estimated as f̂ , ĝ, introducing ∆f̂ ,∆ĝ into the

linear regression. The argument follows exactly as above, except these approximation error
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terms must be accounted for. Writing the models in terms of f̂ , ĝ, and hence in terms of f, g

and ∆f̂ ,∆ĝ, gives

y = θt + Xηγy + X∆βy + e

t = Xηγt + X∆βt + u

with the ith row of X∆ is x∆,i = [∆f̂ ,i,∆ĝ,i]. Then, constructing

t̃ = Aηt = AηX∆βy︸ ︷︷ ︸
:=∆̃t

+ Aηu︸︷︷︸
:=ũ

(7)

= ũ + ∆̃t (8)

ỹ = Aηy = θAηt + AηX∆βy︸ ︷︷ ︸
:=∆̃y

+ Aηe︸︷︷︸
:=ẽ

(9)

= θt̃ + ẽ (10)

= θũ + θ∆̃t + ∆̃y + ẽ (11)

These partialed-out values can be used to construct

√
n(θ̂ − θ) = Gnθ̂ =

√
n

(
Pnt̃iỹi

Pnt̃2i
− θ

)
(12)

Beginning with the denominator,

Pnt̃
2
i = Pn

{
ũ2
i + 2ũi∆̃ĝ,i + ∆̃2

ĝ,i

}
u→ E(u2

i ) (13)
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by the uniform consistency of f̂ , ĝ. A uniform Slutsky’s theorem can then be used to char-

acterize the limiting behavior as

√
n(θ̂ − θ) = Gnθ̂ =

√
n

(
Pnt̃iỹi
E(ũ2

i )
− θ

)
(14)

and expanding the numerator gives,

√
n(θ̂ − θ) = Gnθ̂ =

√
n

θPnũ2
i + Pnũiẽi
Pũ2

i︸ ︷︷ ︸
efficient estimate

−θ

+
√
n
B

Pũ2
i︸ ︷︷ ︸

bias terms

(15)

where B = Pn

{
2θũi∆̃ĝ,i + ũi∆̃f̂ ,i + ∆̃ĝ,iẽi + θ∆̃2

ĝ,i + ∆̃ĝ,i∆̃f̂ ,i

}
(16)

The first element of the sum shares a limiting distribution with the estimate given above,

and hence achieves the semiparametric efficiency bound.

Establishing semiparametric efficiency of an estimate is, at its simplest, deriving a set

of assumptions under which
√
nB

u→ 0. Recall that ∆̃f̂ ,i, ∆̃ĝ,i are each an arbitrary linear

combination of the approximation error terms and ũi and ẽi are a linear combination of the

errors. Zeroing out the first three terms can be guaranteed when

√
nPnui∆f̂ ,i

u→ 0,
√
nPnui∆ĝ,i

u→ 0 (17)

and the third when

√
nPnei∆f̂ ,i

u→ 0,
√
nPnei∆ĝ,i

u→ 0. (18)
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This is accomplished through a split-sample strategy, as the split sample approach guarantees

that the random element in the approximation error is conditionally independent of that in

the inference sample.1 See van der Vaart (1998, ch. 25) for more. The last two bias terms

involve square and cross-products of the approximation error terms,

√
nPn∆2

f̂ ,i
,
√
nPn∆2

ĝ,i;
√
nPn∆f̂ ,i∆ĝ,i. (19)

By taking the square roots of the square terms and applying Cauchy-Schwarz to the cross-

product, these terms go to zero when

n1/4
√
Pn∆2

ĝ,i

u→ 0; n1/4
√
Pn∆2

f̂ ,i

u→ 0, (20)

which gives the n1/4 rate described in the text. Under these conditions, B tends to zero

uniformly and the estimate is semiparamterically efficient.

A.3 Second-Order Semiparametric Efficiency

So long as the covariate vectors Ûf̂ ,i, Ûĝ,i are finite dimensional, which they are by assumption,

then the argument above establishes their first-order semiparametric efficiency.

Reducing the rate from n1/4 to n1/8 requires examine the convergence of these two co-

variates. Consider the convergence of Ûf̂ ,i, with an analogous argument for Ûĝ,i. In this case,

1An alternative approach is to assume that the functions f, g are sufficiently simple that this bias term
is negligible. This is referred to as a Donsker-class assumption; see (van der Vaart, 1998, esp. Ch. 19) for
details.
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the principal components are constructed from cross-observation covariances,

f(xi) ≈ f̂(xi) + Û>
f̂ ,i
γf (21)

f(xi) = f̂(xi) +
n∑

i′=1

Ĉov(f̂(xi), f̂(xi′))wi′ (22)

for scalars ŵi′ .
2 The finite-dimensional assumption of the Uf,i constrains wi′ , since these are

linear combinations of the finite terms in γf , and the split-sample approach will ensure any

approximation errors in γ̂f and f̂ be uncorrelated. As to the gain in efficiency, note that

estimating the covariates from principal components will introduce terms like

√
nPn

{
Ĉov(f̂(xi), f̂(xi′))− Cov(f̂(xi), f̂(xi′))

}2

(23)

into the regression. For first-order semiparametric efficiency, the n1/4 rate is recovered from

taking the square root of this term. For the second order calculation, though, note that

since f̂(xi), f̂(xi′) are both converging at n1/8, their product in the covariance is converging

at n1/4.

Essential to this argument is the finite-dimensional assumption on the covariance matrix.

This particular assumption, sometimes termed “sufficient dimension reduction,” (see Section

7.1.1 of the main body), makes convergence of the sums described above tractable. Under

this assumption, argument can follow dimension-by-dimension by a Cramer-Wold device

van der Vaart (1998). This finite-dimensional assumption, as a theoretical matter, is crude

but as a practical matter aligns with the method’s approach, where a control vector is simply

2This is an example of a second-order U-statistic, see van der Vaart (1998) Ch. 12 for more.
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entered into a reduced form regression. For a more general theoretical discussion, see the

citations in the main manuscript.

If the finite dimensional assumption is correct then the method achieves second-order

efficiency by fully capturing the variance in the approximation errors. If this assumption is

not correct, though, the method still recovers a semiparametrically efficient estimate and–

due to the split sample strategy–the principal components should help or, at worst, increase

the variance of the estimates. The simulations and applied examples provide compelling

evidence that the approach is reasonable.

B Causal Assumptions

In giving these assumptions, I utilize the potential outcomes notation, where each observation

is equipped with a potential outcome function yi(t) which deterministically maps an arbitrary

treatment level t to the outcome for observation i under that treatment, yi(t). I will denote

as X−i, t−i the background covariates and treatments for all observations except observation

i.

Assumption 1 Causal Assumptions

1. Stable treatment value: There is a single version of each treatment value.

2. Positivity: The treatment is not deterministic, Var(ti|xi,X−i) > 0 for all observations.

3. Ignorability:3 ti⊥⊥t−i|xi,X−i and yi(ti, t−i)⊥⊥ti|t−i,xi,X−i

The partial effect of the treatment on the outcome at a given point xi can be conceptu-

alized as the limit of an estimated slope coefficient from regressing the yi on ti for all with

3Here, the notation A⊥⊥B|C means that event A is conditionally independent of B given C.
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the same covariate value xi and also fixing X−i. The causal interpretation of this param-

eter involves considering all possible combinations (yi(ti, t−i), ti, t−i) for all values of t and

regressing yi(ti, t−i) on ti.

Equating the causal and descriptive parameters requires three things. First, yi(ti, t−i)

must equal yi when the treatment takes the value t. This is the first assumption. Second, the

variance of the treatment variable must be positive, so that the denominator of the coefficient

is nonzero. Third, only considering observation i with covariate values xi,X−i, t−i allows ti

to move freely of the other treatment and of any unobserved confounders. This is the third

assumption.

Formally, denote as Cov,Var the sample covariances, and CovT ,VarT these operators for

a given observation taken with respect to the treatment. Then, under the causal identificaton

assumptions, the marginal effect and causal effect can be equated as

θi =
Cov(yi, ti|xi,X−i, t−i)

Var(ti|xi,X−i, t−i)︸ ︷︷ ︸
Partial Effect

=
CovT (yi(ti, t−i), ti|t−i)

VarT (ti|t−i)︸ ︷︷ ︸
Causal Effect

. (24)

The estimand is well-defined by the stable treatment assumption; its denominator is nonzero

by the postivity assumption; and the ignorability assumption equates the numerators and

denominators. Equating the marginal effect and observation-level effect for each observation

equates their averages.

C Diagnostics

I implement a sensitivity analysis in order to assess how strong an unobserved confounder

must be in order to overturn any results. Since the method is, in effect, a linear regression
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in subsample S2, diagnostics for the linear regression are applicable.

I implement the recent method of Cinelli and Hazlett (2020) in the software. Following

the authors’ suggestion, the software report three statistics. The statistics are calculated on

subsample S2, and averaged over cross-fits. The first two, robustness values RV and RV0.05,

range from 0 to 1 and characterize how strong an unobserved confounder must be in order

to reduce the observed effect to 0 (RV ) or to make it no longer significant at the 95% level

(RV0.05). Larger numbers indicate a more robust result. The second, the extreme value

statistic R2
Y∼D|X , assumes a “worst-case” confounder that perfectly explains the residuals,

and characterizes how much of the variance in the treatment this confounder must explain in

order to eliminate the estimated effect, again ranging from 0 to 1 with larger values preferred.

I also assess the positivity assumption. Positivity is violated when the treatment variable

is a deterministic function of the covariates. I do so by graphically assessing the kurtosis

of the residuals (Wooldridge, 2013, Appendix B, p. 737.).4 Denoting as ε̂i,s the residual

from estimating the treatment for observation i on repeated cross-fit iteration s, the method

estimates the kurtosis κ̂i as

κ̂i =
1
S

∑S
s=1 ε̂

4
i,s

( 1
S

∑S
s=1 ε̂

2
i,s)

2
. (25)

The excess kurtosis is the extent that this statistic falls above that expected from a normal

distribution, and the software plots them from high to low. The lefthand side of Figure

1 contains five possible error densities. The first one is thin-tailed and raises the deepest

4For a random variable X, its kurtosis is E(X4)/E(X2)2 Since the kurtosis is constructed from a fourth
moment, and can be written as E(Z2);Z = X2, the kurtosis captures the variance of the variance.
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Figure 1: Excess kurtosis plot for diagnosing positivity. The lefthand side presents the
five different error densities assessed on the right. The first one is thin-tailed and raises the
deepest concerns about violating positivity. The next is normal, then a fat-tailed and skewed
density. The last density combines a the thin-tailed density, where some observations may
violate positivity, and a normal density. Consulting the righthand figure, a positive excess
kurtosis statistic everywhere above zero suggests that the researcher should examine the data
for violations of positivity.

concerns about violating positivity, since the residuals are tightly clustered near zero. The

next is normal, then a fat-tailed and skewed density follow. The last combines a thin-tailed

density, where some observations may violate positivity, and a normal density.

The righthand side presents the diagnostic plot. The normal density falls on the 0 line.

The thin-tailed distribution falls everywhere above 0 and flares up to the right. The fat-tailed

distribution falls below 0, flaring down. The skewed distribution agrees with the normal close

to zero, but then flares up above 0 as the thin-tailed distribution. The mixture of the normal

and thin-tailed creates a U -shape, going down below 0 then up again.

A positive excess kurtosis statistic everywhere above zero suggests that the researcher

should examine the data for violations of positivity. This method is diagnostic and, it must
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be emphasized, needs to be combined with substantive knowledge. If a violation is found,

the researcher should identify observations for which the residuals are pooling near zero and

consider trimming them from the analysis. This will change the estimand from the average

effect to a local average effect on the trimmed sample. These statistical diagnostics and the

excess kurtosis plot are all returned by my software.

D Implementation Details: Preliminaries

In this section, I give an overview of the estimation strategy. The software itself is public and

can be expected. The results presented here were generated using the software submitted

in the replication file and will be available via the APSR branch of the software’s github at

https://github.com/ratkovic/PLCE/tree/APSR. The publicly available version via CRAN

may be updated over time and results may not match exactly those reported in this work.

D.1 Preliminaries: Basis Functions

D.1.1 B-Spline Basis Functions

The software adjusts for nonlinearities in the control variables by transforming them into a

set of basis functions knowns as “B-splines” (de Boor, 1978). The original control variables

are rank-transformed and rescaled to run from 0 to 1. Then for each covariate, include along

with the original variable is a set of degree 3 B-splines with different knots along its range,

see Figure 2.

I denote the kth of these transformations applied to covariate X·j as

X·j 7→ φk(X·j)
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Figure 2: Nonlinear transformations of each variable used to construct basis
functions.

The first two basis functions are the intercept and the linear term,

φ0(X·j) = 1n; φ1(X·j) = X·j

Including the intercept and linear term with the five nonlinear transformation, seven terms

are generated from each covariate.
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D.1.2 Constructing Basis Functions for the Nuisance Functions

Modeling Conditional Mean Components I model the nuisance functions f, g1 in

terms of all two-way interactions between the basis functions,

φk,k′(X·j,X·j′) = φk(X·j)φk′(X·j′)

Modeling Treatment Heteroskedasticity For the treatment heteroskedsticity term, I

use the three-way interaction

φk,k′(X·j,X·j′ , v̂) = v̂φk(X·j)φk′(X·j′)

where v̂ = t − Ê(t|X), an estimated residual. I return to how I estimate the residuals

below, but for now note that the basis functions for g2 are interactions between an estimated

treatment residual and the two-way basis interactions.

Modeling Interference Components Each interference basis function is a function of

two basis functions and a bandwidth parameter. I consider how close observation i′ is to

observation i, as a function of how close ψk(xij) is to ψk(xi′j), with bandwidth νjk as

Proximity: pi,i′(νjk) =
e
− 1
νjk

(φk(xij)−φk(xi′j))
2

∑
i′ 6=i e

− 1
νjk

(φk(xij)−φk(xi′j))
2

This measure accounts for homophily and heterophily due to nonlinearities in the bases.

The interferent may be driven by an entirely different basis function and variable,φk′ and
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X·j′ ,

Interferent: ψk′(xi′j′)

I combine these two into the interference function, the total effect on observation i with

proximity pi,i′(νjk) and interferent φk′(xi′j′)

ψj,k,j′,k′(xi,X−i) =
∑
i′ 6=i

pi,i′(νjk)︸ ︷︷ ︸
Proximity

×φk′(xi′j′)︸ ︷︷ ︸
Interferent

The summation is taken over all observations except i, thereby capturing the effect of all

observations but i on observation i, creating the interference bases used in the model.

I reduce the bases above down to a reasonable number for a linear regression in two ways:

through a correlation screen and then fitting a high-dimensional regression to these selected

bases. I give specifics below, but provide an overview of the strategies here.

D.2 Screening Mean Basis Functions

I denote the first screening function as

screenmean(y, basis vectors, split) (26)

which takes as its argument an outcome, and the basis vectors.

For example constructing bases for f uses the bases

basesf = screenmean(y, {φk,k′(X·j,X·j′)},S0) (27)
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The screening process constructs all interactions, finding the between 50 and 400 bases

(growing in sample size) with the largest correlation, then uses a call to glmnet (the LASSO)

to maintain a subset of these.

D.3 Screening Interference Basis Functions

I then implement a screen for the interference basis functions.

constructinterference(y, basis vectors, split) (28)

Here, it constructs all possible interferent-proximity bases using data in the split. At a first

pass, it uses a rule-of-thumb bandwidth to reduce down the total number of combinations

down to 200. After this, it optimizes the bandwidth for every remaining pair (as this is

computationally costly), and then follows the glmnet/LASSO trimming provided above.

For example, in the outcome model, the software generates these terms using

basesφy = constructinterference(y − Ê(y|basesf ), {φk,k′(X·j,X·j′)},S0) (29)

where the conditional expectation is evaluated using only data in S0.
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D.4 The High-Dimensional Regression

High-dimensional regression in this section will refer to the sparse regression of Ratkovic and

Tingley (2017). I use the hierarchy

yi|xi, β, zi, bσ2 ∼ N (x>i β + z>i b, σ
2) (30)

βk|λ,wk, σ ∼ DE (λwk/σ) (31)

λ2|N,K ∼ Γ (α, 1) (32)

wk|γ ∼ generalizedGamma (1, 1, γ) (33)

γ ∼ exp(1) (34)

b|σ2
g , ∼ N (0|b|, σ

2
gI|b|) (35)

σ2
g ∼ InverseGamma(0, 1) (36)

where in this case xi includes the covariates augmented by the basis functions while zi is a

vector for the random effect, σ2
g is its variance, and |b| is the number of random effects.

The model is fit via EM, with the tuning parameter α picked to maximize a BIC statistic.

Importantly, this gives an estimate of V̂ar(β̂|·), which is then used to calculate V̂ar(ŷ), and

it is these principal components that are entered as controls.

D.5 The Hodges-Lehmann Estimator

I combine estimates over repeated cross-fits using the Hodges-Lehmann estimator. Double

Machine Learning implements the median, which is not efficient, while the mean is not robust

to outliers. The Hodges-Lehmann estimator, which I denote HL(), is the median of pairwise
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averages. It has nice robustness, with a breakdown point of 0.27 (with 0 for the mean and .5

for the median), at little loss of efficiency (5% less efficient than the mean if the data are i.i.d.

gaussian, as opposed to 57% for the median). I will denote as HL() the Hodges-Lehmann

estimate of a vector.

E Implementation Details: Split Sample

E.1 Split S0

In this split, I generate a set of candidate bases for each nuisance component, estimates v̂,

and estimate bandwidth parameters for the interference components.

Specifically, I generate the following sets of nuisance function bases:

basesf = screenmean(y, {φk,k′(X·j,X·j′)},S0) (37)

basesφy = constructinterference(y − Ê(y|basesf ), {φk,k′(X·j,X·j′)},S0) (38)

basesg1 = screenmean(t, {φk,k′(X·j,X·j′)},S0) (39)

v̂ = t− Ê(t|basesg1) (40)

basesg2 = screenmean(|v̂|, {φk,k′(X·j,X·j′)},S0) (41)

basesφt = constructinterference(t− Ê(t|basesg1 , v̂ � basesg2), {φk,k′(X·j,X·j′)},S0) (42)

v̂2 = v̂ − Ê(v̂|basesφt) (43)

Going through these, the first two basesf and basesφy follow come from above, and basesg1

is similar to basesf . Next, I model the treatment heteroskedasticity and interference in the

treatment. To do so, I want to look for any systematic trends in |v|, the absolute value of the
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error residual, which gives the bases in g2. Here, Ê denotes the high-dimensional regression

given above. Then I construct the interference bases using the residuals to regress the

treatment variable on mean bases basesg1 and interactions between the treatment residuals

v̂ and the bases basesg2 (where � denotes the elementwise interaction), using data in S0.

I then update v̂ by using instead the residuals after regressing using the high-dimensional

regression on basesφt , giving v2. At this point, I have what is needed to move to the next

split: estimated treatment residuals v̂2 and interference bases basesφy , basesφt where the

bandwidth parameters have been estimated on subsample S0.

E.2 Split S1

The algorithm now effectively condenses into Double Machine Learning Here, all estimation

is done only using data in S1. I regress y on {basesf , basesφy}, retaining the point estimate,

selected bases, and principal components of V̂ar(ŷ|·). I select the number of principal como-

ponents so as to include 90% of the variance in V̂ar(ŷ|·). Specifically, if I denote as β̂ the

estimated coefficients from this model and B the full bases set, I take the matrix

V̂ar(ŷ) = BV̂ar(β̂|B)B> (44)

and a sufficient number of principal components to explain 90% of the variance (i.e. 90% of

the explained variance, as you would find in a scree plot). I then follow the same strategy

for regressing t̂ on {basesg1 , v̂2 � basesg2 , basesφ2}.

I combine the point estimates, selected bases, and principal components into the matrix

Ûû. This matrix may not be full rank, with all of the elements coming in, so I use this
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subsample to regress y and t on Ûû and remove any unidentified columns due to collinearity.

This matrix has been constructed in its entirety without touching any observations in S2,

meaning that sample can be used for inference.

E.3 Split S2

I now regress y on t and Ûû using data on S2. The point estimate and standard error are

saved, with HC3 standard errors at default.5 The diagnostics of Cinelli and Hazlett (2020)

are run on this subsample.

E.4 Cross-fitting and Repeated Cross-fitting

I then cross-fit once, swapping the roles of S1 and S2, as most of the computational time

occurs in subsample S0. I average the point estimates and their variances for a given cross-fit,

and then take the Hodges-Lehmann mean of each over the repeated cross-fits.

F Additional Simulations

This appendix presents simulations for sample sizes n ∈ {250, 500, 750, 2000} to supplement

those in the text at n = 1000. The proposed method performs well across sample sizes.

The settings with interference carry the same qualitative results as that in the body, where

the proposed method performs well across settings and sample size. The same holds for the

setting without interference. The proposed method still maintains some bias with the effect

heterogeneity at the largest sample size, but outperforms the other methods in terms of bias,

and offers estimates that are most robust to the inclusion or exclusion of random effects.

5I do so due to the uncertainty over the covariate set. Note that I implemented HC0, or the standard
robust standard errors, in the experimental replication in the main body, to match the original authors’
specification.
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Figure 3: Simulation Results Without Interference, n = 250
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Figure 4: Simulation Results Without Interference, n = 500
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Figure 5: Simulation Results Without Interference, n = 750
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Figure 6: Simulation Results Without Interference, n = 2000
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Figure 7: Simulation Results With Interference, n = 250
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Figure 8: Simulation Results With Interference, n = 500
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Figure 9: Simulation Results With Interference, n = 750
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Figure 10: Simulation Results With Interference, n = 2000
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