
Online Appendix (Not for Publication)

In this Appendix, we first provide the proofs of all of the results stated in the text. We then present

some further discussion on global dynamics, and then provide a generalization of the model where

there are direct transitions from despotic to week and from weak to despotic states. The Appendix

also includes additional numerical results and a discussion of the microfoundations of the assumptions

used in the text.

Proof of Proposition 1

We start with a series of lemmas on the equilibria of this model, and their stability properties. Before

presenting these results, we remark that, mathematically, there can be three types of equilibria: (i)

those in which the party in question (say society) chooses a positive level capacity, and thus we will

have x∗t = x∗ ∈ (0, 1), so that the marginal cost of investment is simply c′x(δ)+max{γx−x∗, 0}, which

is equal to the benefit from this capacity; (ii) those in which we have zero capacity, in which case the

marginal cost of investment, c′x(0) + γx, is greater than or equal to the benefit from building further

capacity; (iii) those in which the party in question has capacity equal to 1, in which case marginal

cost of investment, c′x(δ), is less than or equal to the benefit from building additional capacity.

Lemma 1 There exists a (locally) asymptotically stable equilibrium with x∗ = s∗ = 1.

Proof of Lemma 1. At x∗ = s∗ = 1, the marginal cost of investment for player z ∈ {x, s} is

c′z(δ), while the marginal benefit starting from this point is h(0), so Assumption 3 ensures that the

marginal benefit strictly exceeds the marginal cost, and neither player has an incentive to reduce its

investment. Furthermore, because 1 is the maximum level of investment, neither party has the ability

to increase it.

We turn next to asymptotic stability of this equilibrium. First note that from (7), the laws of

motion of x and s in the neighborhood of (x∗ = 1, s∗ = 1) are given by

c′x(ẋ+ δ) = h(x− s) if x < 1 and ẋ = 0 if x = 1 (A1)

c′s(ṡ+ δ) = h(s− x) if s < 1 and ṡ = 0 if s = 1,

where we are exploiting the fact that once we are away from the equilibrium, there cannot be an

immediate jump and thus the first-order conditions have to hold in view of Assumption 2. We have

also used the information that we are in the neighborhood of the equilibrium (1, 1) in writing the

system for x > γx and s > γs. Now to establish asymptotic stability, we will show that

L(x, s) =
1

2
(1− x)2 +

1

2
(1− s)2

is a Lyapunov function in the neighborhood of the equilibrium (1, 1). Indeed, L(x, s) is continuous

and differentiable, and has a unique minimum at (1, 1). We next verify that in a sufficiently small
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neighborhood of (1, 1), L(x, s) is decreasing along solution trajectories of the dynamical system given

by (A1). Since L is differentiable, for x ∈ (γx, 1) and s ∈ (γs, 1), we can write

dL(x, s)

dt
= −(1− x)ẋ− (1− s)ṡ.

First note that since h(x − s) > c′x(δ) and h(s − x) > c′s(δ) for x and s in a sufficiently small

neighborhood of (1, 1), we have both ẋ > 0 and ṡ > 0. This implies that, in this range, both

terms in dL(x,s)
dt are negative, and thus dL(x,s)

dt < 0. Moreover, the same conclusion applies when

x = 1 (respectively when s = 1), with the only modification that dL(x,s)
dt no longer includes the ṡ

(respectively the ẋ) term, but still continues to be strictly negative, even on the boundary of [0, 1]2.

Then the asymptotic stability of (1, 1) follows from LaSalle’s Theorem (which takes care of the fact

that our equilibrium is on the boundary of the domain of the dynamical system in question, see, e.g.,

Walter, 1998).

This Lemma shows that under our maintained assumptions, both parties investing at their maxi-

mum capacity is a stable equilibrium. Intuitively, this proposition exploits the fact that when the two

players are “neck and neck,” they both have strong incentives to invest. If instead we had, say, x much

larger than s, then from part 1 of Assumption 3, both h(x− s) and h(s− x) would be smaller than

h(0), reducing the investment incentives of both parties. The stronger investment incentives around

x∗ = s∗ = 1 are key for maintaining this combination as an (asymptotically stable) equilibrium —

combined with part 2 of Assumption 3, which ensures that these strong incentives are sufficient to

guarantee a corner solution. If the inequality in part 2 of Assumption 3 did not hold, x∗ = s∗ = 1

could not be an equilibrium, and in this case, the only possible equilibria would be those identified

in Lemma 2 below.

The local stability of this equilibrium is then established by constructing a Lyapunov function.

The use of this method is necessitated by the fact that x∗ = s∗ = 1 is at the corner of the feasible

set, [0, 1]2, and thus dynamics around it cannot be characterized by using linearization methods.

Our next result identifies two additional locally asymptotically stable equilibria

Lemma 2 There exist two additional (locally) asymptotically stable equilibria:

1. one with x∗ = 0 and s∗ ∈ (γs, 1), and

2. one with s∗ = 0 and x∗ ∈ (γx, 1).

Proof of Lemma 2. We start with the first statement. Suppose first that x∗ = 0. Then from

(6) an interior equilibrium level of investment requires

h(s) = c′s(δ) + max{0; γs − s}.

Note that Assumption 3 implies that at s = 1, h(1) < c′s(δ), and at s = γs, h(γs) > c′s(δ), thus by

the intermediate value theorem, there exists s∗ between γs and 1 satisfying

h(s∗) = c′s(δ). (A2)
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Moreover, because h is single peaked and symmetric around 0, h(s) is decreasing in s ≥ γs, and thus

only a unique s∗ satisfying this relationship exists.

We next verify that x∗ = 0 is indeed consistent with the optimization of society. This follows

immediately since

h(−s∗) = h(s∗) = c′s(δ) < c′x(0) + γx,

where the first equality follows from the symmetry of h, the second one simply replicates (A2), and

the inequality follows from Assumption 2, and establishes that x∗ = 0 is optimal for society.

The local stability is again established using a Lyapunov argument as in the proof of Lemma 1.

Now in the neighborhood of the equilibrium (x = 0, s = s∗), the dynamical system in (7) can be

written as

c′x(ẋ+ δ) = h(x− s) + γx − x if x > 0 and ẋ = 0 if x = 0, and

c′s(ṡ+ δ) = h(s− x),

where we are now using the fact that we are in the neighborhood of (0, s∗) so that x < γx and s > γs.

The dynamical system in (7) in this case can be written as

ẋ = (c′x)−1(h(x− s) + γx − x)− δ (A3)

ṡ = (c′s)
−1(h(s− x))− δ.

We now choose the Lyapunov function

L(x, s) =
1

2
x2 +

1

2
(s− s∗)2,

which is again continuous and differentiable, and has a unique minimum at (0, s∗). We next verify

that in the neighborhood of (0, s∗), L(x, s) is decreasing along solution trajectories of the dynamical

system given by (A3). Specifically, since L is differentiable, for x ∈ (0, γx) and s ∈ (γs, 1), we can

write
dL(x, s)

dt
= xẋ+ (s− s∗)ṡ.

First note that as h(−s∗) < c′x(δ) + γx, for x and s in the neighborhood of (0, s∗),

ẋ = (c′x)−1(h(x− s) + γx − x)− δ < 0. (A4)

Then, using a first-order Taylor expansion of (A3) in this neighborhood, we obtain

(s− s∗)ṡ =
1

c′′s(δ)
h′(s∗)(s− s∗)(s− x− s∗) + o(·), (A5)

where o(·) denotes second-order terms in x and s− s∗.
The desired result follows from the following arguments: (i) for x ∈ (0, γx) and s ∈ (γs, 1), |xẋ| >

|(s− s∗)ṡ|, regardless of the sign of (s−s∗)ṡ, as x→ 0 and s→ 0, (s−s∗)(s−x−s∗)/x→ 0, because

in the neighborhood of the equilibrium (0, s∗), ṡ is of the order s − s∗, while h(−s∗) < c′x(δ) + γx,
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ensuring that ẋ < 0). Therefore, in the range where x ∈ (0, γx) and s ∈ (0, γs),
dL(x,s)
dt < 0. (ii)

when x = 0, (A5) implies that (s − s∗)ṡ < 0 in view of the fact that h′(s∗) < 0, and thus we have
dL(x,s)
dt < 0. (iii) when s = s∗, (A4) ensures that ẋ < 0, so that we again have dL(x,s)

dt < 0. Then in all

three cases, the asymptotic stability of (0, s∗) follows from LaSalle’s Theorem (e.g., Walter, 1998).

The proof of the existence, uniqueness and asymptotic stability of the equilibrium with s∗ = 0

and x∗ ∈ (γx, 1) is analogous, and is omitted.

These two additional equilibria have a very different flavor than the equilibrium in Lemma 1. Now

both parties have a lower level of capacity, and one of them is in fact at zero. The intuition is again

related to the incentives for investment in capacity: when one party is at zero capacity, h(·) is small

for both players, which encourages the first player to build a state with low capacity, and discourages

the other player from building further capacity.

Assumptions 2 and 3 play an important role in this lemma as well. Without the boundary

conditions in Assumption 3, there could be other equilibria with some of them including investments

below γx and γs. Though these equilibria would be locally unstable (with the same argument as in

Lemma 4 below), it would also become harder to ensure that there exists a locally stable equilibrium,

making us prefer these assumptions.

The next lemma rules out several types of equilibria.

Lemma 3 There is no equilibrium with (i) x∗ = s∗ = 0; or (ii) x∗ = 0 and s∗ ∈ (0, γs), or s∗ = 0

and x∗ ∈ (0, γx); or (iii) x∗ ∈ (γx, 1) and s∗ ∈ (γs, 1).

Proof of Lemma 3. Claim (i) follows immediately, since from part 3 of Assumption 3, we have

h(0) − γs > c′s(0), so that when x∗ = 0, the elite will deviate from s = 0. Claim (ii) follows directly

from the proof of Lemma 2. Finally, for claim (iii), note that an equilibrium with x∗ ∈ (γx, 1) and

s∗ ∈ (γs, 1) would necessitate

h(s∗ − x∗) = c′s(δ) (A6)

h(x∗ − s∗) = c′x(δ),

but then from the symmetry of the h function around zero, we have that h(s∗ − x∗) = h(x∗ − s∗), so

that

c′s(δ) = h(s∗ − x∗) = c′x(δ),

which contradicts part 2 of Assumption 2.

There are other types of equilibria that could exist, but the next lemma shows that when they

do, they will all be asymptotically unstable.

Lemma 4 All other (possible) equilibria are asymptotically unstable.

Proof of Lemma 4. We will prove this lemma by considering three types of equilibria, which

exhaust all possibilities.
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Type 1: x∗ ∈ (0, γx) and s∗ ∈ (0, γs).

The optimality conditions in such a equilibrium are

h(s∗ − x∗) = c′s(δ) + γs − s∗

h(x∗ − s∗) = c′x(δ) + γx − x∗.

The dynamical system (7) now becomes

ẋ = (c′x)−1(h(x∗ − s∗) + γx − x∗)− δ

ṡ = (c′s)
−1(h(s∗ − x∗) + γs − s∗)− δ.

Since the equilibrium levels of state and civil society capacity are defined by equality conditions in

this case, local dynamics can be determined from the linearized system, with characteristic matrix

given by (
1

c′′s (δ) [h′(s∗ − x∗) + 1] − 1
c′′s (δ)h

′(s∗ − x∗)
− 1
c′′x(δ) [h′(x∗ − s∗) 1

c′′x(δ) [h′(x∗ − s∗) + 1]

)
.

Using the fact that from Assumption 3, h′(s∗ − x∗) = −h′(x∗ − s∗), the determinant of this matrix

can be computed as 1
c′′s (δ)c′′x(δ) > 0. Moreover, from part 2 of Assumption 2, we can show that the

trace of this matrix is
1

c′′s(δ)
[h′(s∗ − x∗) + 1] +

1

c′′x(δ)
[h′(x∗ − s∗) + 1].

Once again using Assumption 3, this expression is positive provided that

h′(s∗ − x∗)(c′′s(δ)− c′′x(δ)) ≤ c′′x(δ) + c′′s(δ). (A7)

Assumption 2 ensures that ∣∣c′′s(δ)− c′′x(δ)
∣∣ ≤ c′′x(δ)

|h′(s∗ − x∗)|
,

which is a sufficient condition for (A7), establishing that both eigenvalues are positive, and we have

asymptotic instability.

Type 2: x∗ ∈ (γx, 1) and s∗ ∈ (0, γs), or x∗ ∈ (0, γx) and s∗ ∈ (γs, 1). Consider the first of these,

h(s∗ − x∗) = c′s(δ) + γs − s∗

h(x∗ − s∗) = c′x(δ).

Now once again, local dynamics can be determined from the linearized system, with characteristic

matrix (
1

c′′s (δ) [h′(s∗ − x∗) + 1] − 1
c′′s (δ)h

′(s∗ − x∗)
− 1
c′′x(δ) [h′(x∗ − s∗) 1

c′′x(δ)h
′(x∗ − s∗)

)
.

The trace of this matrix is

1

c′′s(δ)
[h′(s∗ − x∗) + 1] +

1

c′′x(δ)
h′(x∗ − s∗),
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which is positive provided that

h′(s∗ − x∗)(c′′s(δ)− c′′x(δ)) ≤ c′′x(δ).

The same argument as in the proof of Type 1 shows that this condition follows from Assumption 2,

implying that at least one of the eigenvalues is positive and thus establishing asymptotic instability.

The argument for the case where x∗ ∈ (0, γx) and s∗ ∈ (γs, 1) is analogous.

Type 3: s∗ = 1 and x∗ < 1 or x∗ = 1 and s∗ < 1.

We prove the first case (the proof for the second is analogous). Such a equilibrium exists only if

h(1− x∗) ≥ c′s(δ)

h(x∗ − 1) = c′x(δ) + max{γx − x∗, 0}.

Exploiting these conditions, we will show that such an equilibrium cannot be asymptotically stable.

To do this, let us distinguish between x∗ > γx and x∗ ≤ γx. Consider the first one of these. Then

consider a perturbation that keeps s∗ constant and reduces x∗ to x∗ − εx for εx > 0 small (since it is

sufficient to show asymptotic instability for a specific set of perturbations). Then, we have

ẋ = − 1

c′′x(δ)
h′(x∗ − 1)− δ < 0.

The sign follows because h′(x∗ − 1) > 0 from Assumption 3, and implies that x∗ decreases away

from the equilibrium in question, establishing asymptotic instability. Consider finally the second

possibility, with the same perturbation which yields

ẋ = − 1

c′′x(δ)
[h′(x∗ − 1) + 1]− δ < 0,

which is also locally asymptotically unstable. This completes the proof of the lemma.

Proposition 1 then follows straightforwardly by combining these lemmas. Figure 4 provides a

visual representation.

Global Dynamics

We next partially characterize the global dynamics. In particular, we will determine three regions, as

shown in Figure 5, separating the phase diagram into basins of attraction of the three asymptotically

stable equilibria characterized in the previous subsection. For example, starting from Region I, the

dynamics converge to the equilibrium with x∗ = 0 and s∗ ∈ (γs, 1); from Region II, convergence is to

the equilibrium with x∗ = s∗ = 1; and from Region III, convergence will be to the equilibrium with

x∗ ∈ (γx, 1) and s∗ = 0. Unfortunately, it is not possible to determine the boundaries of these regions

analytically, but we will be able to characterize subsets thereof explicitly.

Consider first Region II, which is the basin of attraction of the equilibrium x∗ = s∗ = 1. Recall

that the dynamical system for the behavior of the capacities of society and state take the form given

in (7) above. We proceed by first noting that any subset S of [0, 1]2 for which there exists a Lyapunov
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State Capacity

0 1x∗
0
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s∗
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Figure 4: Stable Equilibria and their local dynamics.

function L(x, s) such that (i) S = {(x, s) : L(x, s) ≤ K} for some K > 0; (ii) L(x, s) ≥ 0 for all

(x, s) ∈ S, with equality only if x = s = 1; and (iii) ∂L(x, s)/∂t ≤ 0 for all (x, s) ∈ S, with equality

only if x = s = 1, is part of the basin of attraction of this equilibrium.

Let us first construct a subset of the parameters (x, s) such that ẋ ≥ 0 and ṡ ≥ 0, with one

of them holding as strict inequality. Let us define x̄ such that c′x(δ) = h(x̄ − 1). Clearly, from

Assumption 2 c′s(δ) < h(1 − x̄). This defines R′′II= {(x, s) : x ≥ max{γx, x̄} and s ≥ max{γs, x̄}}.
This region can be further extended by noting that any combination of (x, s) such that (c′x)−1(h(x−
s)−max{γx − x, 0})− δ ≥ 0 and (c′s)

−1(h(s− x)−max{γs − s, 0})− δ ≥ 0 also satisfies ẋ ≥ 0 and

ṡ ≥ 0. Let us define s̄(x) such that h(s̄(x) − x) − max{γs − s̄(x), 0} − c′s(δ) = 0. Similarly, define

x̄(s) such that h(x̄(s)− s)−max{γx− x, 0}− c′x(δ) = 0. Both s̄(x) and x̄(s) are upward sloping, and

in fact correspond to lines with slope 1 when s ≥ γs and x ≥ γx, respectively. Then starting within

R′II = {(x, s) : s ≤ s̄(x) and x ≤ x̄(s)}, we also have ẋ ≥ 0 and ṡ ≥ 0 (and in fact, R′′II ⊂ R′II). This

region, as well as R′′II , is depicted in Figure 5. The shape of the region is intuitive.

Now consider the family of functions, L(x, s | lx, ls) = lx
2 (1− x)2 + ls

2 (1− s)2, indexed by lx > 0

and ls > 0. Clearly, for any member of this family, we have that for all (x, s) ∈ R′II\(1, 1),

∂L(x, s | lx, ls)
∂t

= lx(1− x)ẋ− ls(1− s)ṡ < 0.

So if we in addition define the subset RII of R′II where L(x, s | lx, ls) ≤ K, then RII satisfies the

above conditions and by construction is part of the basin of attraction of the equilibrium (1, 1).

Now consider the problem of choosing K, lx and ls such that we achieve the largest set RII =
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Figure 5: Global Dynamics.

{(x, s) : L(x, s | lx, ls) ≤ K} contained in R′II . Mathematically, let A(RII) be the area of set RII .
Then the problem is to choose

max
K,lx,ls>0

A(RII).

Figure 5 shows the construction of region RII in this manner, which is by construction part of the

basin of attraction of the equilibrium (1, 1).

Subsets of the basins of attraction of the other equilibria can be constructed analogously and are

shown in Figure 5.

Forward-Looking Model

We first provide the basics of the argument for Proposition 3 and then present some additional details

and numerical illustration.

Proof of Proposition 3

With the specification introduced above, we can straightforwardly represent the maximization prob-

lem of each player as a solution to a recursive, dynamic programming problem, written as

Vx(xt−∆, st−∆, β; ∆) = max
xt∈[0,1]

{
(1− β)H(xt − st)−∆ · Cx (xt, xt−∆) + βVx(xt, s

′∗(xt−∆, st−∆, β; ∆), β; ∆)
}
,

(A8)
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and

Vs(xt−∆, st−∆, β; ∆) = max
st∈[0,1]

{
(1− β)H(st − xt)−∆ · Cs (st, st−∆) + βVs(x

′∗(xt−∆, st−∆, β; ∆), st, β; ∆)
}
.

(A9)

Several things are important to note. First, as anticipated in the previous section, we multiply the

flow costs with ∆, but not the benefits, since these capture life-time benefits from conflict, and we

have conditioned on ∆ in writing the value functions for emphasis. Second, notice that we have

already imposed the boundary conditions, xt ∈ [0, 1] and st ∈ [0, 1], in the maximization problems.

Third, x′∗(x, s, β; ∆) and s′∗(x, s, β; ∆) are the policy functions, which give the next period’s values

of the state variables as a function of this period’s values (and are explicitly conditioned on ∆ > 0).

A dynamic equilibrium in this setup as given by a pair of policy functions, x′∗(x, s, β; ∆) and

s′∗(x, s, β; ∆) which give the next period’s values of the state variables as a function of this period’s

values (for ∆ > 0), and each solves the corresponding value function taking the policy function of the

other party is given. Once these policy functions are determined, the dynamics of civil society and

state strength can be obtained by iterating over these functions.

Since these are standard Bellman equations, the following result is immediate (throughout this

proof we take (x, s, β) ∈ [0, 1]3).

Lemma 5 For any ∆ > 0, Vx(x, s, β; ∆) and Vs(x, s, β; ∆) exist and are continuously differentiable

in x, s and ∆. Moreover, x′∗(x, s, β; ∆) and s′∗(x, s, β; ∆) and are continuous in x, s and ∆.

In particular, from (A8) and (A9), as β → 0, Vx(x, s, β; ∆) → Vx(x, s, β = 0; ∆) and

Vs(x, s, β; ∆) → Vs(x, s, β = 0; ∆). But since x′∗(x, s, β; ∆) and s′∗(x, s, β; ∆) are maximizers of

the continuous (and bounded) functions, (A8) and (A9), we can apply Berge’s maximum theorem

to conclude that x′∗(x, s, β; ∆) and s′∗(x, s, β; ∆) are also continuous, particularly in β, and thus

x′∗(x, s, β; ∆)→ x′∗(x, s, β = 0; ∆) and s′∗(x, s, β; ∆)→ s′∗(x, s, β = 0; ∆), and thus for β sufficiently

close to 0, we have that x′∗(x, s, β; ∆) and s′∗(x, s, β; ∆) are approximately the same as their myopic

values. Therefore, there exists β̄ > 0, such that for all β < β̄, a steady state of the dynamical system

given by x′∗(x, s, β; ∆) and s′∗(x, s, β; ∆) exists and is locally stable if and only if it is a locally stable

steady state of the myopic model.

This argument establishes that the forward-looking, discrete-time dynamics when the discount

factor is sufficiently close to 0 will have the same locally stable steady states as the myopic, discrete-

time dynamics. In the previous section, we approximated the discrete-time dynamics with their

continuous-time limit, and it is also convenient to do the same here, and to maximize the parallel,

this is how we have stated the proposition.

We can also observe that when the discount factor β → 1, the two steady states other than (1, 1)

disappear. The argument is simple: take the steady state with x = 0, where the society’s flow return

is zero. If civil society invests at a high level for a finite number of periods, this will ensure that

x ≥ γx, eliminating the region of higher costs of investment for civil society, and thus taking x to 1
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(which gives the society a positive flow return). When β is arbitrarily close to 1, the costs of investing

at a high level for a finite number of periods are negligible, and hence such a deviation is profitable

for civil society. This argument, again from continuity, ensures that there exists βx < 1 such that

for β > βx, x = 0 is not consistent with a steady state. With the parallel argument, we also have

that there exists βs < 1 such that for β > βs, s = 0 cannot be part of a steady state. Then, for

β > β = max{βx, βs} only (1, 1) remains as an asymptotically stable steady state.

The next subsection discusses the continuous-time limit and also derives the continuous-time

Hamilton-Jacobi-Bellman (HJB) equations, which can be used to characterize the equilibrium more

generally. We then come back to completing the proof of Proposition 3.

Continuous-Time Approximation

For characterizing the equilibrium for any value of the players’ impatience, we can once again use

the continuous-time approximation by taking the limit ∆→ 0, which shrinks the period length (and

correspondingly adjusts the discount factor β = e−ρ∆, so that the discount rate remains constant at

ρ). In this limit, conditions on β translate into conditions on ρ. More specifically, we have:

Lemma 6 As ∆ → 0, the value functions Vx(x, s, β; ∆) and Vs(x, s, β; ∆) converge to their

continuous-time limits Vx(x, s) and Vs(x, s), and the policy functions x′∗(x, s, β; ∆) and s′∗(x, s, β; ∆)

converge to their continuous-time limits x′∗(x, s) and s′∗(x, s).23

Proof of Lemma 6. This follows given the continuous differentiability of Vx(x, s, β; ∆) and

Vs(x, s, β; ∆) and of x′∗(x, s, β; ∆) and s′∗(x, s, β; ∆) for all ∆ > 0.

The continuous-time Hamilton-Jacobi-Bellman (HJB) equations can be obtained as follows. First

rearrange (A8) evaluated at the optimal choices and divide both sides by ∆ to obtain

1− β
∆

Vx(xt−∆, st−∆, β; ∆)

= max
xt≥0

[
1− β

∆
H(xt − st)− Cx (xt, xt−∆) + β

Vx(xt, s
∗
∆(xt−∆, st−∆), β; ∆)− Vx(xt−∆, st−∆, β; ∆)

∆

]
.

Now note that as ∆ → 0, (1 − β) → 0 and (1 − β)/∆ → ρ. Moreover the last term in the previous

expression tends to the total derivative of the value function with respect to time. Therefore, the

continuous-time HJB equation for civil society is

ρVx(x, s) = ρH(x− s) + max
ẋ≥−δ

{
−Cx(x, ẋ) +

∂Vx(x, s)

∂x
ẋ

}
+
∂Vx(x, s)

∂s
ṡ∗(x, s),

where we have used the notation Cx(x, ẋ) to denote the continuous-time cost function as a function of

the change in the conflict capacity of civil society, while ẋ∗(x, s) and ṡ∗(x, s) designate the continuous-

time policy functions, conveniently written in terms of the time derivative of the conflict capacities

of the two parties. We have also imposed that ẋ cannot be less than −δ.
23We also drop the conditioning on the discrete-time discount factor β in writing the continuous-time value and policy

functions and do not add conditioning on its continuous-time equivalent, the discount rate ρ to simplify the notation.
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Applying the same argument to (A9) and denoting the continues-time cost function for the state

by Cs(s, ṡ), we also obtain

ρVs(x, s) = ρH(s− x) + max
ṡ≥−δ

{
−Cs(s, ṡ) +

∂Vs(x, s)

∂s
ṡ

}
+
∂Vs(x, s)

∂x
ẋ∗(x, s),

The first-order optimality conditions for civil society are given by

∂Cx(x, ẋ)

∂ẋ
=
∂Vx(x, s)

∂x
if − δ < ẋ(x, s), and x ∈ (0, 1),

∂Cx(x, ẋ)

∂ẋ
≤ ∂Vx(x, s)

∂x
if x = 1, (A10)

∂Cx(x, ẋ)

∂ẋ
≥ ∂Vx(x, s)

∂x
if ẋ(x, s) = −δ or x = 0.

In the first case, when we have an interior solution, we can also write

ẋ =

 (c′x)−1
(
∂Vx(x,s)

∂x − γx + x
)

if x ≤ γx
(c′x)−1

(
∂Vx(x,s)

∂x

)
if x > γx

. (A11)

The first-order conditions for the state are also similar, and for an interior solution, they yield

ṡ =

 (c′s)
−1
(
∂Vs(x,s)

∂s − γs + s
)

if s ≤ γs
(c′s)

−1
(
∂Vs(x,s)

∂s

)
if s > γs

. (A12)

Numerical Characterization

We next provide a numerical characterization of the dynamics in the forward-looking model. As in

the text, we take f(x, s) = 0.6, and choose H to be a raised cosine distribution over [−1, 1] with mean

µ = 0, which is single-peaked and symmetric consistent with Assumption 3.24 The cost functions of

the state and civil society, once again as in the text, are

cx(i) = 3.25× i2 (for i ∈ [0, 10]) and cs(i) = 3.25× i2 (for i ∈ [0, 15]),

and outside of these ranges, the cost functions become vertical, placing a bound on investment

levels.25 In addition, we set γx = 0.35, γs = 0.35, and δ = 0.1. The critical threshold for ρ is

computed as ρ̄ = 100, and for discount rates above this value, the vector field is identical to the

one we obtain for the same parameter values in the static model (thus confirming that for high

discount rates the equilibrium dynamics of the model with forward-looking agents coincide with the

equilibrium of the model with myopic agents as claimed in Proposition 1). Figure 6, presented here,

can be contrasted with Figure 3 in the text, which also applies in this dynamic model when ρ ≥ ρ̄.

On the other hand, Figure 6 shows the implied vector field when ρ is smaller than ρ̄, illustrating the

very different dynamics with smaller discount rates.

24Assumption 1 imposed that f(x, s) = 1 rather than setting it equal to a constant, say φ0, in order to reduce the
number of parameters. We consider a more general surplus function in Assumption 1′ below. Setting φ0 = 0.6 enables
us to construct an example with more equally-sized regions.

25This bound plays no role in the numerical results reported here, but facilitates convergence when we consider the
dynamic model with the same parameterization and low discount rates in the next section.
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Figure 6: The direction of change of the power of state and society in a simulated example with
ρ = 30.

Dynamics under Concavity

We now show numerically that the same results as those provided above generalize even when f is

concave. Figure 7 depicts the dynamics of state and civil society when we consider the concave surplus

function,

f(x, s) = .6 + 0.1x0.8 + 0.1s0.8.

We can see that in this case, the dynamics are very similar to the ones studied in the section where

the surplus function is linear.

General Characterization

In this part of the Appendix, we relax Assumption 1. Since we have established the equivalence

of the myopic and forward-looking models when the discount rate is sufficiently large in the latter

(which is a result that does not depend in any way on Assumption 1), here we focus on a model with

forward-looking players. We also simplify the analysis throughout by assuming that f is linear as

specified in the next assumption, which replaces Assumption 1.

Assumption 1′ f(x, s) = φ0 + φxx+ φss, where φ0 > 0, φx > 0 and φs > 0.

Our other two assumptions also require some minor modifications, which are provided next.

Assumption 2′ 1. cx and cs are continuously differentiable, strictly increasing and weakly convex,

and satisfy limx→∞ c
′
x(x) =∞ and limx→∞ c

′
s(s) =∞.

2.

c′s(δ) 6= c′x(δ).
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Figure 7: Dynamics when the aggregate output function, f(x, s), is concave.

3.
|c′′s(δ)− c′′x(δ)|

min{c′′x(δ), c′′s(δ)}
< inf

z

2h(z)(φs + φx)

|h′(z)| (φ0 + φs + φx)
.

4.

c′s(0) + γs ≥ c′x(δ) and c′x(0) + γx > c′s(δ).

The minor modifications in parts 3 and 4 are in view of the fact that marginal benefits of investment

are different between the state and civil society. For same reason, we also modify Assumption 3 as

follows.

Assumption 3′ 1. h exists everywhere, and is differentiable, single-peaked and symmetric around

zero.

2. For each z ∈ {x, s},
c′z(0) > h(1)(φ0 + φz) +H(1)φz.

3. For each z ∈ {x, s},

min{h(0)φ0 +H(0)φz − γz;h(γz)(φ0 + φzγz) +H(γz)φz} > c′z(δ).

Under these assumptions, the first-order optimality conditions with short-live players (in contin-

uous time) are modified in the following straightforward fashion:

h(xt − st)(φ0 + φxx+ φss) +H(xt − st)φx ≤ c′x(ẋt + δ) + max{0; γx − xt} if ẋt = −δ or xt = 0,
h(xt − st)(φ0 + φxx+ φss) +H(xt − st)φx ≥ c′x(ẋt + δ) + max{0; γx − xt} if xt = 1,
h(xt − st)(φ0 + φxx+ φss) +H(xt − st)φx = c′x(ẋt + δ) + max{0; γx − xt} otherwise.
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and

h(st − xt)(φ0 + φxx+ φss) +H(st − xt)φs ≤ c′s(ṡt + δ) + max{0; γs − st} if ṡt = −δ or st = 0,
h(st − xt)(φ0 + φxx+ φss) +H(st − xt)φs ≥ c′s(ṡt + δ) + max{0; γs − st} if st = 1,
h(st − xt)(φ0 + φxx+ φss) +H(st − xt)φs = c′s(ṡt + δ) + max{0; γs − st} otherwise,

Main Result

We have the following straightforward result.

Proposition 4 Suppose that Assumptions 1′, 2′ and 3′ hold. Then Propositions 1 and 3 apply.

Proof of Proposition 4. The proof of this proposition follows directly from the proofs of

Propositions 1 and 3, with only minor changes to Lemma 4, which we provide next, ruling out the

stability of three different types of steady states. We again treat each type separately.

Type 1: x ∈ (0, γx) and s ∈ (0, γs).

The optimality conditions in such a steady state are

h(s− x)(φ0 + φxx+ φss) +H(s− x)φs = c′s(δ) + γs − s

h(x− s)(φ0 + φxx+ φss) +H(x− s)φx = c′x(δ) + γx − x.

Local dynamics are in turn given by

h(s− x)(φ0 + φxx+ φss) +H(s− x)φs = c′s(ṡ+ δ) + γs − s

h(x− s)(φ0 + φxx+ φss) +H(x− s)φx = c′x(ẋ+ δ) + γx − x.

Since the steady-state levels of state and civil society strength are defined by equality conditions

in this case, local dynamics can be determined from the linearized system, with characteristic matrix

given by(
1

c′′s (δ) [h′(·)(φ0 + φxx+ φss) + 2h(·)φs + 1] 1
c′′s (δ) [−h′(·)(φ0 + φxx+ φss) + h(·)(φx − φs)]

1
c′′x(δ) [h′(·)(φ0 + φxx+ φss) + h(·)(φs − φx)] 1

c′′x(δ) [−h′(·)(φ0 + φxx+ φss) + 2h(·)φx + 1]

)
,

where we wrote h(·) or h′(·) instead of h(s−x) and h′(s−x) in order to save space (and we will adopt

this shorthand whenever we write matrices or long expressions below). From part 2 of Assumption

3′, we can show that the trace of this matrix is positive. In particular, the trace is given by

1

c′′s(δ)
[h′(·)(φ0 + φxx+ φss) + 2h(·)φs + 1] +

1

c′′x(δ)
[−h′(·)(φ0 + φxx+ φss) + 2h(·)φx + 1].

Using Assumption 3′, this expression is positive if

h′(s− x)(c′′s(δ)− c′′x(δ))(φ0 + φxx+ φss) ≤ (c′′x(δ) + c′′s(δ))(1 + 2h(s− x)(φs + φx)). (A13)

Assumption 2′ ensures that∣∣c′′s(δ)− c′′x(δ)
∣∣ ≤ c′′x(δ)(1 + 2h(s− x)(φs + φx))

|h′(s− x)| (φ0 + φx + φs)
,
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which is a sufficient condition for (A13), establishing that at least one of the eigenvalues is positive,

and we have asymptotic instability.

Type 2: x ∈ (γx, 1) and s ∈ (0, γs), or x ∈ (0, γx) and s ∈ (γs, 1). Consider the first of these,

h(s− x)(φ0 + φxx+ φss) +H(s− x)φs = c′s(δ) + γs − s

h(x− s)(φ0 + φxx+ φss) +H(x− s)φx = c′x(δ).

Now, once again, local dynamics can be determined from the linearized system, with characteristic

matrix(
1

c′′s (δ) [h′(·)(φ0 + φxx+ φss) + 2h(·)φs + 1] 1
c′′s (δ) [−h′(·)(φ0 + φxx+ φss) + h(·)(φx − φs)]

1
c′′x(δ) [−h′(·)(φ0 + φxx+ φss) + h(·)(φs − φx)] 1

c′′x(δ) [h′(·)(φ0 + φxx+ φss) + 2h(·)φx]

)
.

The trace of this matrix can now be computed as

1

c′′s(δ)
[h′(s− x)(φ0 + φxx+ φss) + 2hφs + 1]

+
1

c′′x(δ)
[h′(x− s)(φ0 + φxx+ φss) + 2h(x− s)φx].

which is positive if

h′(s− x)(c′′s(δ)− c′′x(δ))(φ0 + φxx+ φss) ≤ (c′′x(δ) + c′′s(δ))(2h(s− x)(φx + φs)) + c′′x(δ).

The same argument as in the proof of Type 1 establishes that this condition follows from Assumption

2’, and thus at least one of the eigenvalues is positive and the steady state in question is asymptotically

unstable. The argument for the case where x ∈ (0, γx) and s ∈ (γs, 1) is analogous.

Type 3: x = 1 and s < 1 or s = 1 and x < 1.

Let us prove the first case. Such a steady state would require

h(1− s)(φ0 + φx + φss) +H(1− s)φx ≥ c′x(δ)

h(s− 1)(φ0 + φx + φss) +H(s− 1)φs = c′s(δ) + max{0, γs − s}.

We distinguish between s ≤ γs and s > γs. Consider the first one of these. Consider a perturbation

to s + εs for εs > 0 (it is sufficient to consider perturbations that maintain x constant). Then the

local dynamics of s are given by:

ṡ =
1

c′′s(δ)
[h′(s− 1)(φ0 + φx + φss) + 2h(s− 1)φs + 1]εs.

From Assumption 3′, h′(s− 1) > 0, the conflict capacity of the state locally diverges from this steady

state, establishing asymptotic instability. Consider next the second possibility. In this case, for s+εs,

we have

ṡ =
1

c′′s(δ)
[h′(s− 1)(φ0 + φx + φss) + 2h(s− 1)φs]εs,

which is also locally asymptotically unstable. The other case is proved identically.
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Comparative Statics

In this subsection, we discuss how changes in parameters affect the steady states and the dynamics

of equilibrium. We focus on the effects of changes in the parameters φx, φs, γx and γs as well as the

cost functions cx and cs. The effects of changes in initial conditions are identical to those already

discussed in the text.

Assumption 3′ guarantees that x∗ = 1 and s∗ = 1 is a steady state. There are also at least two

interior steady states. These steady states are one of two types. The first type is given by x∗ = 0 and

any s∗ that satisfies the following equation:

h(s)(φ0 + φss) +H(s)φs = c′s(δ).

The second type is given by s∗ = 0 and any x∗ that satisfies the following equation

h(x)(φ0 + φxx) +H(x)φx = c′x(δ).

Assumption 3′ guarantees that at least one steady state of each type exists. We impose the following

assumption to make sure that only one steady state of each type exist:

Assumption 4 h(y)(φ0 + φzy) +H(y)φz is a decreasing function of y ≥ 0 for z ∈ {s, x}.

This assumption is fairly mild. The following two conditions would be sufficient to guarantee it:

(i) φz is small, in which case the fact that, from Assumption 3′, h(y) is decreasing for y ≥ 0 ensures

that this assumption is also satisfied, or that (ii) the elasticity of the h function is greater than 1/2,

in which case for any value of φ0, Assumption 4 is satisfied.

Let us focus on the comparative statics of the steady state with x∗ = 0 and s∗ ∈ (γs, 1). The

other case is identical. s∗ solves the following equation:

h(s∗)(φ0 + φss
∗) +H(s∗)φs = c′s(δ). (A14)

The parameter φx does not directly appear in this equation. Therefore, ∂s∗/∂φx = 0. Next, implicitly

differentiating with respect to φ0 and rearranging, we obtain

∂s∗

∂φ0

=
−h(s∗)

h′(s∗)(φ0 + φss
∗) + 2h(s∗)φs

> 0,

where the inequality follows from Assumption 4. Implicitly differentiating equation (A14) with respect

to φs, we analogously get

∂s∗

∂φs
=

−h(s∗)s−H(s∗)

h′(s∗)(φ0 + φss
∗) + 2h(s∗)φs

> 0,

where again the inequality is a consequence of Assumption 4. Turning next to comparative statics

with respect to the cost function, it is straightforward to observe thatγs, γs, and cx(·) do not affect

the solution of equation (A14). But the marginal cost of increasing capacity affects the location of
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Figure 8: Changes in steady states and dynamics in response to an increase in φx. The red curves
depict the boundaries between the basins of attraction of the different steady states when φx = 0 and
the green curves show the same boundaries when φx = 0.1.

the steady state. To quantify this effect, let us implicitly differentiate equation (A14) with respect to

c′s(δ) and rearrange to obtain:

∂s∗

∂c′s(δ)
=

1

h′(s∗)(φ0 + φss
∗) + 2h(s∗)φs

< 0.

Even though there are unambiguous comparative statics of changes from changes in the output

and cost functions on s∗ and x∗, it has to be borne in mind that these are the values of state and

civil society capacity in a given steady state. The more important conclusion continues to be the

one already highlighted in Proposition 2, that comparative statics in this model are conditional.

Proposition 2 emphasized this for initial conditions, but they are no less true when we consider

changes in the output or cost functions. For instance, an increase in the marginal benefit of the

capacity of civil society on output, φx, increases x∗ as we have just shown. However, such a change

also shifts the boundaries of the basins of attraction of the different steady states as depicted in Figure

8. As a result, an economy that was previously in Region II — the basin of attraction of the steady

state (1, 1) — can now shift to the basin of attraction of the corners steady state (0, x∗) in Region III.

Consequently, the long-run state capacity may end up decreasing rather than increasing following an

increase in φx. This reiterates the conclusions of Proposition 2.

Numerical Results

Figure 8 illustrates how the steady states and the basins of attraction change when we increase φs,

making the capacity of the state more important for overall output. To draw this figure, we use

exactly the same parameterization as in the simulation reported in Figure 6, which corresponds to

the case in which φx = φs = 0 in terms of the model of this section. We then show how the steady
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states and dynamics are affected when we increase φx to .1. Particularly noteworthy are the shifts

in the boundaries between the regions, which show that the same type of conditional comparative

statics in response to shifts in initial conditions now apply when we consider changes in parameters

such as the sensitivity of aggregate surplus to the capacity of the state.

Direct Transitions between Region I and Region III

Figure 3 demonstrates how in our main model, the state space is divided into three regions, and

Region II always lies between Regions I and III. However, throughout much of pre-modern history,

we have many examples of societies approximating our Regions I and III, but relatively fewer examples

of Region II. Perhaps more challengingly for our model, we observe several transitions from Region

I directly into Region III, which would not be possible in our baseline model, since Region II is in-

between and should be traversed. Here we present a simple modification of the model where Region

II shrinks, and creates a subset of the state space (with low levels of state and civil society strength)

where Regions I and III are adjacent. The basic idea is to modify the model such that the economies

of scale in the cost of investment function becomes dependent on relative strengths.

Suppose that the cost functions for the two players take the form

Cx(xt, xt−∆) = c

(
xt − xt−∆

∆
+ δ

)
+ [max {γ − xt−∆, 0} −max {γ − st−∆, 0}]

(
xt − xt−∆

∆
+ δ

)
,

and

Cs(st, st−∆) = c

(
st − st−∆

∆
+ δ

)
+ [max {γ − st−∆, 0} −max {γ − xt−∆, 0}]

(
st − st−∆

∆
+ δ

)
,

where we have made two changes relative to our baseline model. First, we have made c and γ the

same for the two players, which is just for simplicity’s sake. Second and more important, we have

changed the formulation of economies of scale in conflict, so that it is the relative strength of the two

players that matters. In particular, when both x and s are less than γ, the second term in the cost

function becomes simply a function of the gap between x and s. Clearly this leaves the dynamics

when xt > γ and st > γ unchanged. Consider the case in which xt < γ and st < γ. The differential

equations for the strength of society and state can now be written as

ẋ = (c′)−1(h(x− s) + x− s)− δ

ṡ = (c′)−1(h(s− x) + s− x)− δ.

Therefore, defining a new variable z = x− s, we have

ż = (c′)−1(h(z) + z)− (c′)−1(h(z)− z).

Or approximating this around z = 0, we have

ż =
2z

c′′(δ)
.
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Figure 9: Dynamics with the relative formulation of increasing returns to scale in the cost function for
investing in capacity for the state and society. We see that shrinking of Region II and the possibility
of direct transitions between Regions I and III.

Thus regardless of whether x ≷ s, the gap between these two variables will grow, with either x or s

increasing. Moreover, with x and s sufficiently small, this implies that we converge to one of these

two variables being zero. Therefore, we can conclude that there exists a neighborhood of (0, 0), such

that starting in this neighborhood, Region II is absent, and the economy will go to either of the

two steady states in Regions I or III. This is depicted in Figure 9, where we use exactly the same

parameterization as in Figure 3, except that we use the cost functions in this section and also set

cx(i) = cs(i) = 9 × i2, and let γx = γs = 0.4. This pattern implies that starting with low values of

state and civil society strength, a society that starts with a weak state could transition directly into

one on the path to a despotic state. However, when we consider societies with sufficiently developed

states and civil societies, transitions from despotic or weak states could take us towards an inclusive

state.

Microfoundations for Economic and Political Decisions

The model presented so far is reduced-form in many dimensions. One of those is the nature of the

actions taken by “society”. In this section, we briefly outline a model of conflict and production,

which maps into the reduced-form setup described so far. Suppose that society consists of a state

(ruler) and a number of small producers, each with the production function

F (gt, kit),

A19



where gt is a measure of public good provision (such as infrastructure, bureaucratic services or law

enforcement) at time t, and kit designates the capital investment of producer i. To simplify notation

in this subsection, we suppress time subscripts.

The cost of public good investment depends on the state’s “infrastructural power”, which is

denoted by st. We write this cost as Γg(g | s). This dependence captures the fact that investing

in public good provision will be much more difficult for the state when it is not otherwise powerful.

There is also a separate cost of increasing the infrastructural power of the state as specified in the

text. In addition, this infrastructural power of the state will also determine the state’s relationship

with society.

The producers, on the other hand, individually choose their capital level, but also jointly choose

the extent to which they coordinate their political (and perhaps also economic) actions, which we

denote by x. A higher degree of coordination among the producers might (but need not) impact

their costs of investing in capital, which we write as Γk(k | x), and this dependence might reflect the

fact that a greater degree of coordination among the producers enables them to help each other or

develop greater trust in production relations or internalize some externalities. More importantly, such

coordination impacts how they can deal with the state’s demands, and in the context of our model

also stands for social norms that society develops for managing political hierarchy as our historical

cases also emphasize. We assume that the cost of investing in x is as specified earlier in this section.

Note that the assumptions that only s and x, and not g and k, build on their non-depreciated

stock is for simplicity, and facilitate the comparison with our reduced-form model.

The political game takes the following form: first, the state and civil society simultaneously choose

their investments, g and k. Then, the state announces a tax rate τ on the output of the producers. If

the producers accept this tax rate, it is collected and the remainder is kept by the producers. If they

refuse to recognize this tax rate, there will be a conflict between state and society, the outcome of

which will be determined by s and x in a manner similar to the conflict in the text. In particular, the

state will win this conflict if (4) above holds, and if so, it can extract the entire output of producers,

while if the inequality is reversed, society wins, and the state will not be able to collect any taxes.

The equilibrium can be solved by backward induction within the period, starting from the tax

decision of the state. Given the conflict technology we have just specified, it is clear that if the tax

rate τ is greater than the likelihood of the state winning the conflict, H(s− x), then there will be a

conflict. We may thus focus, without loss of any generality, on the case in which τ = H(s− x). Then

the state’s maximization problem can be written as

H(s− x)F (g, k)− Γg(g | s)− C̃s(s, s−∆),

where C̃s is a cost function for the power of the state similar to the one specified in the text, s−∆

denotes last period’s state strength, and k is the common physical capital investment level of all

agents. The solution to this problem for g can be summarized as

g = g∗(x, k, s).
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Note that even though s−∆ influences s, it does not directly impact the choice of g.

Similarly, recalling that 1 −H(s − x) = H(x − s), the maximization problem of citizens can be

written as

H(x− s)F (g, k)− Γk(k | x)− C̃x(x, x−∆),

with solution

k = k∗(x, g, s).

Solving this equation together with the equation for g, we can eliminate dependence on the economic

decision of the other party, and obtain an equilibrium, expressed as g = g∗∗(x, s), and k = k∗∗(x, s).

Substituting these into the payoff functions, we obtain a simplified maximization problem for both

players similar to the one described above. In particular, the relevant equations become:

H(s− x)f(x, s)− Cs(s, s−∆ | x),

and

H(x− s)f(x, s)− Cx(x, x−∆ | s),

where

f(x, s) = F (g∗∗(x, s), k∗∗(x, s)),

Cs(s, s−∆ | x) = Γg(g
∗∗(x, s) | s) + C̃s(s, s−∆)

and

Cx(x, x−∆ | s) = Γk(k
∗∗(x, s) | s) + C̃x(x, x−∆).

The only complication relative to the model presented so far is that because the cost functions depend

on the equilibrium action choices of the other player, there may be non-uniqueness issues, and thus

the relevant statements now will have to be conditional on a particular equilibrium selection.
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