
Online Appendices

Mixed Motivations

We have compared the two extreme kinds of rewards, purely material or purely psychological.

But as Kennedy (1999) aptly puts in his study of “the rumbles of discontent” during the Great

Depression, people “can subsist on solely spiritual nourishment little longer than they can live

on bread alone” (218).14 We now analyze movements in which incentives to rebel are a combi-

nation of material and psychological rewards. We generalize our payoffs in Figure 1 by adding a

parameter m̄ ∈ [0, 1] that generates our purely material rewards setting in one extreme (m = 0)

and our purely psychological rewards setting in the other extreme (m = 1). Figure 4 shows the

payoffs—we normalize the population size to 1.

outcome
m ≥ θ m < θ

rebel 1
m

(1{m≤m} + 1{m≥m} · mm)− c −c

not rebel 0 0

Figure 4: Payoffs combining material and psychological motivations.

Proposition 6 characterizes the unique equilibrium. Figure 5 illustrates the result.

Proposition 6 Let θ∗ be the equilibrium regime change threshold in the setting with mixed

motivations. Then,

θ∗ =


e−c ;m ≤ e−c

m (1− c− log(m)) ;m ≥ e−c.

Moreover, θm > θ∗(m) > θp for m ∈ (0, 1), with limm→0 θ
∗ = θm and limm→1 θ

∗ = θp.

Proof of Proposition 6: The net payoff from rebelling versus not is:

1

m

(
1{θ<m,m≤m} + 1{θ<m,m≥m} ·

m

m

)
− c (21)

14Kennedy, David M. 1999. Freedom from Fear: The American People in Depression and War, 1929-1945.
New York: Oxford University Press.
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As in the pure material rewards setting, this net payoff is non-monotone in the fraction of

rebels m. It jumps up at m = θ (the threshold at which regime change succeeds), but then

falls, weakly is some range and strictly in others, as more citizens join the movement.

As before, given a value of θ, the fraction of rebels is m(θ) = Pr(x < x∗|θ), and Pr(xi <

x∗|θ∗) = θ∗. Moreover, m(θ) < m if and only if θ > θ̄, where Pr(xi < x∗|θ̄) = m. Then, the net

expected payoff from rebellion versus not is:∫ ∞
θ=−∞

1

m

(
1{θ<θ∗,θ≥θ̄} + 1{θ<θ∗,θ≤θ̄} ·

m

Pr(xi < x∗|θ)

)
pdf(θ|xi)− c. (22)

As before, if c < min{1, 1/m} = 1, we can invoke the Karlin’s Theorem to conclude to that the

best response to a monotone strategy is also monotone. The indifference condition is:

∫ ∞
θ=−∞

(
1{θ<θ∗,θ≥θ̄} + 1{θ<θ∗,θ≤θ̄} ·

m

Pr(xi < x∗|θ)

)
pdf(θ|xi = x∗) = m c. (23)

First, suppose θ̄ > θ∗. Then,∫ ∞
θ=−∞

1{θ<θ∗} ·
m

Pr(xi < x∗|θ)
pdf(θ|xi = x∗) = m c. (24)

Thus,

θ∗ < θ̄ ⇒ θ∗ = e−c, (25)

where we recognize that θ̄ is endogenous and depends on x∗. However, recall that Pr(x <

x∗|θ̄) = m and Pr(x < x∗|θ∗) = θ∗. Thus, θ∗ < θ̄ is equivalent to θ∗ > m. Given (25), θ∗ > m

is equivalent to: −c > log(m).

Next, suppose θ̄ < θ∗, i.e., θ∗ < m. Then,

m c =

∫ θ̄

θ=−∞

m

Pr(xi < x∗|θ)
pdf(θ|xi = x∗)dθ +

∫ θ∗

θ̄

pdf(θ|xi = x∗)dθ

= −m log(1− Pr(θ < θ̄|xi = x∗)) + Pr(θ < θ∗|xi = x∗)− Pr(θ < θ̄|xi = x∗). (26)

Substituting for Pr(xi < x∗|θ̄) = m = 1 − Pr(θ < θ̄|xi = x∗) and Pr(θ < θ∗|xi = x∗) = 1 − θ∗

yields −m log(m) +m− θ∗ = m c, i.e.,

θ∗ = m (1− log(m))−m c. (27)

Thus, θ∗ < m if and only if −c < log(m).
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Figure 5: The equilibrium regime change threshold for the settings with pure psychological
rewards (solid line, θp), pure material rewards (dashed curve, θm), and a mix of psychological
and material rewards (dotted curve, θ∗). Parameters: m = 0.75.

Combining this results yield:

θ∗ =


e−c ; c ≤ − log(m)

m (1− c− log(m)) ; c ≥ − log(m)

(28)

We observe that
θ∗(c)

dc

∣∣∣∣
c=− log(m)

= −m.

�

Proposition 6 and Figure 5 show that when motivations are a mix of psychological and ma-

terial, the effects of repression and early failure lie in between those effects in the settings with

material and psychological rewards analyzed earlier. The key intuition comes from thinking

about the extent to which rewards are rival. In the pure material rewards setting, rewards are

entirely rival. In the pure psychological rewards setting, rewards are entirely non-rival. In this

mixed setting, we can think of some portion of the rewards as being rival and another portion

being non-rival.

Interestingly, this points to a different interpretation of this version of the model, where we
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interpret the rewards as material, but imperfectly divisible, such as promises to hold future

government office. Suppose there are a total of m offices available. If the rebellion is small,

m < m, and succeeds, each participant in the rebellion gets an office. But there are too many

offices for the rebels to fill all of them. So some offices must be left in the hands of their previous

holders. (Think of a small rebel group not fully purging the bureaucracy after taking control of

the state.) However, if the rebellion is large, m > m, there are not enough offices to go around

and the congestion externality returns. So, if the number of participants is smaller than the

number of offices, an increase in participation in the rebellion does not diminish the rewards an

individual enjoys should they success. For example, if 1000 offices are available, whether 600 or

800 citizens rebel, there are enough offices for each to get one. This feature shares the non-rival

aspect of the psychological rewards setting. However, if the number of participants exceed 1000,

further increases in the number of participants reduces the chances that each rebel receives an

office upon success because there will not be enough government offices to go around. This

feature shares the rival aspect of the material rewards setting.

The real world, of course, is not so clear cut. More offices can be created and responsibilities

may be shared. However, the insight that government offices tend to be more discrete than, for

example, cash, diamonds, or land remains true. As such, in settings where such offices are the

main reward of victory, the effect of repression on the rebel movement falls between the effects

in settings with pure (continuous) material rewards and settings with psychological rewards.
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Relaxing Informational Assumptions

In the text, we focused on the case in which players share a prior that θ is distributed uni-

formly on R (improper prior). With a smooth (proper) prior, the same results obtain in the

limit when the information content of the prior becomes vanishingly small, e.g., θ ∼ N(µ, σ0)

when σ0 becomes unboundedly large. Here, we show that the same results also obtain for any

smooth prior in the limit when the noise becomes vanishingly small (σ → 0). We then provide

numerical examples for a standard normal prior for both the case of a uniform distribution of

noise and a standard normal distribution of noise. Finally, we provide additional numerical

examples for the effect of a public signal about the strength of the regime (θ) in both settings

with psychological and material rewards.

Consider the setting in the text, but suppose θ ∼ G, where G(·) is smooth and G(θ) ∈ (0, 1)

for all θ ∈ R. Let g(·) be the corresponding pdf. We begin by proving that θm > θp. From

the belief consistency condition, xj = θj + σF−1(θj/a), j ∈ {p,m}. Because the right hand

side is increasing in θj, it is invertible. Define Ω(·), so that θj = Ω(xj). Thus, the indifference

conditions can be written as:

c =

∫ Ω(xm)

−∞

pdf(θ|xm)

F
(
xm−θ
σ

) dθ =

∫ Ω(xp)

−∞
pdf(θ|xp)dθ. (29)

Because F (·) in the denominator is less that 1, we have:

c <

∫ Ω(xp)

−∞

pdf(θ|xp)
F
(
xp−θ
σ

) dθ.
Thus, xm = xp (and hence θm = θp) cannot be part of the equilibrium in the material rewards

setting. xm (and hence θm) must adjust to restore the equilibrium. In the stable equilibrium,

they must increase, so that higher costs c imply higher likelihoods of regime change. Thus, we

have:

Proposition 7 In a stable equilibrium of the material rewards setting, θm > θp.

To further characterize the equilibrium regime change thresholds, we provide analytical

results when the noise is very small (σ → 0) and numeral results when noise is larger.

Analytical Results for Vanishingly Small Noise

Lemma 3 θj, j ∈ {p,m}, is an equilibrium regime change threshold if it satisfies the following

equation:
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c = Γj(θ
j;σ) ≡

∫∞
F−1(θj/a)

f(z) g(θj + σ(F−1(θj/a)− z)) 1
1{j=m}F (z)+1{j=p}

dz∫∞
−∞ f(z) g(θj + σ(F−1(θj/a)− z)) dz

,

where 1{·} is the indicator function.

Proof of Lemma 3: The belief consistency condition is:

θj

a
= F

(
xj − θj

σ

)
. (30)

The indifference condition is:

c =

∫ θj

θ=−∞
pdf(θ|xj) 1

1{j=m}F
(
xm−θ
σ

)
+ 1{j=p}

dθ

=

∫ θj

θ=−∞

f
(
xj−θ
σ

)
g(θ)∫∞

θ=−∞ f
(
xj−θ
σ

)
g(θ)dθ

1

1{j=m}F
(
xm−θ
σ

)
+ 1{j=p}

dθ

=

∫ ∞
z=zj

f (z) g(xj − σz)∫∞
z=−∞ f (z) g(xj − σz)dz

1

1{j=m}F (z) + 1{j=p}
dz

=

∫ ∞
z=F−1(θj/a)

f (z) g(θj + σ(F−1(θj/a)− z))∫∞
z=−∞ f (z) g(θj + σ(F−1(θj/a)− z))dz

1

1{j=m}F (z) + 1{j=p}
dz (from (30)),

where, in the third equality, we did a change of variables from θ to z = xj−θ
σ

, with zj = xj−θj
σ

. �

In the limit when σ → 0, the terms involving g(·) in Lemma 3 will cancel, and θj simplifies

to those in Proposition 2 in the text with improper uniform prior.

Proposition 8 In the limit when the noise become vanishingly small (σ → 0) we have:

lim
σ→0

Γj(θ
j;σ) =

{
1− θp/a ; j = p

− log(θm/a) ; j = m,

so that θp = a(1− c) and θm = ae−c.

Proof of Proposition 8: From Lemma 3,

lim
σ→0

Γj(θ
j;σ) =

∫ ∞
F−1(θj/a)

f(z)
1

1{j=m}F (z) + 1{j=p}
dz =

{
1− F (F−1(θp/a)) ; j = p

log(1)− log(F (F−1(θm/a))) ; j = m.

�
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An Example: Uniform Noise

We next provide a simple example to demonstrate a special case of this general result. Suppose

F = U [−1, 1]. Then,

pdf(θ|xi) =
pdf(xi|θ)g(θ)∫∞

−∞ pdf(xi|θ)g(θ)dθ
=


1
2σ
g(θ)∫ xi+σ

xi−σ
1
2σ
g(θ)dθ

= g(θ)
G(xi+σ)−G(xi−σ)

; θ − σ ≤ xi ≤ θ + σ

0 ; otherwise.

(31)

Thus, for a given θ̂ and x̂,

Pr(θ < θ̂|xi = x̂) =


0 ; θ̂ ≤ x̂− σ
G(θ̂)−G(x̂−σ)

G(x̂+σ)−G(x̂−σ)
; x̂− σ ≤ θ̂ ≤ x̂+ σ

1 ; x̂+ σ ≤ θ̂.

(32)

Similarly,

Pr(xi < x̂|θ = θ̂) =


1 ; θ̂ ≤ x̂− σ
x̂−(θ̂−σ)

2σ
; x̂− σ ≤ θ̂ ≤ x̂+ σ

0 ; x̂+ σ ≤ θ̂.

(33)

Lemma 4 For any x̂ and θ̂, we have:

lim
σ→0

Pr(θ < θ̂|xi = x̂) = 1− lim
σ→0

Pr(xi < x̂|θ = θ̂).

Proof of Lemma 4: From equations (32) and (33), the result is immediate for the cases of

θ̂ ≤ x̂ − σ and x̂ + σ ≤ θ̂. For completeness, consider x̂ − σ ≤ θ̂ ≤ x̂ + σ and equation (32).

Using a Taylor’s expansion, in the limit σ → 0, we have:

G(θ̂)−G(x̂− σ) = G(x̂+ (θ̂ − x̂))−G(x̂− σ) = G(x̂) + g(x̂)(θ̂ − x̂)− (G(x̂)− g(x̂)σ)

= g(x̂)(θ̂ − x̂+ σ). (34)

Similarly,

G(x̂+ σ)−G(x̂− σ) = G(x̂) + g(x̂)σ − (G(x̂)− g(x̂)σ) = g(x̂)2σ. (35)

Combining equations (34) and (35), for x̂− σ ≤ θ̂ ≤ x̂+ σ, we have:

lim
σ→0

G(θ̂)−G(x̂− σ)

G(x̂+ σ)−G(x̂− σ)
=
g(x̂)(θ̂ − x̂+ σ)

g(x̂)2σ
= 1− x̂− (θ̂ − σ)

2σ
= 1− Pr(xi < x̂|θ = θ̂).
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As shown in Shadmehr (2019a,b), Lemma 4 is the statistical property that delivers the

uniform beliefs property, which, in turn, delivers the result in Proposition 2 in the text.

Numerical Simulations for Larger Noise

We have established the results analytically in the asymptotic cases of vanishingly small noise

and no prior information (about θ). The results also hold when the noise is sufficiently small,

or there is sufficiently little common knowledge, e.g., the prior is N(µ, σ0) and σ0 is sufficiently

large. We now provide numerical simulations to show that our results are not limited to the

cases of very small noise or very little common knowledge, leaving to future research a fuller

characterization of the interactions between information and motivation in contentious settings.

First, we continue the example above by providing a numerical example for the case of

standard normal prior distribution and uniform noise distribution: G = N(0, 1), F = U [−1, 1],

and σ = 1. From equation (33), the belief consistency condition can be written as:

θj

a
= min{1,max{0, 1

2
+
xj − θj

2σ
}}, j ∈ {p,m}.

Because θj/a ∈ (0, 1), we have:

θj =
xj + σ
2σ
a

+ 1
, j ∈ {p,m}. (36)

From equation (31), the indifference condition can be written as:

c =

∫ θj

−∞

g(θ) · 1{xj−σ≤θ≤xj+σ}
G(xj + σ)−G(xj − σ)

1

1{j=m} Pr(xi ≤ xj|θ) + 1{j=p}
dθ

=

∫ θj

xj−σ

g(θ)

G(xj + σ)−G(xj − σ)

1

1{j=m}
(

1
2

+ xm−θ
2σ

)
+ 1{j=p}

dθ, j ∈ {p,m}. (37)

Substituting from (36) into (37) yields:

c = Rj(xj) ≡
∫ xj+σ

2σ
a +1

xj−σ

g(θ)

G(xj + σ)−G(xj − σ)

1

1{j=m}
(

1
2

+ xm−θ
2σ

)
+ 1{j=p}

dθ, j ∈ {p,m}. (38)

To demonstrate, suppose G = N(0, 1), and σ = a = 1, so that θj = xj+1
3

. Figure 6 shows

Rj(xj), j ∈ {p,m}. Both Rm(x) and Rp(x) are decreasing, so that raising the costs (c) reduces

the equilibrium threshold. Moreover, when c approaches 0, both xm and xp approach 2, im-

plying that θm and θp approach 1. When, instead, c approaches 1, xp approaches −1, so that
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Figure 6: An example with G = N(0, 1), F = U [−1, 1], and σ = a = 1. From equation (38),
the equilibrium threshold satisfies Rj(xj) = c, j ∈ {p,m}. Note that an increase in c causes a
sharper reduction in xp than in xm.

θp approaches 0. In contrast, xm and hence θm both remain positive as in our model with no

prior information about θ. Critically, Rm(x) changes faster with x, so that as increase in costs c

causes a smaller reduction in xm than in xp. Equation (38) shows the additional term 1
2

+ xm−θ
2σ

in the denominator for the material rewards settings. When c increases, in any stable equi-

librium, the equilibrium threshold xj must fall so restore the indifference condition—citizens

become less likely to revolt. In our example, the presence of 1
2

+ xm−θ
2σ

in the denominator

causes xm to fall by less. That is, the same reduction in xj has a larger effect in restoring the

indifference condition and the equilibrium in the material rewards setting.

Next, we provide a numerical example when both the prior and the noise have the standard

normal distribution: G = N(0, σ0), F = N(0, 1), and σ0 = σ = a = 1. The belief consistency

condition is:

θj = Φ

(
xj − θj

σ

)
, so that xj = θj + σΦ−1(θj). (39)

The indifference conditions are:

c = Φ

(
θp − bxp√

bσ2

)
=

∫ θm

−∞

1√
bσ2
φ
(
θ−bxm√
bσ2

)
Φ
(
xm−θ
σ

) dθ, where b =
σ2

0

σ2 + σ2
0

. (40)
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Figure 7: The equilibrium regime change threshold for the psychological rewards setting (θp),
and material rewards setting (θm) when θ ∼ N(0, 1), εi ∼ iidN(0, 1), and σ = a = 1.

Substituting from (39) into (40) yields:

c = Φ

(
(1− b)θp − bσΦ−1(θp)√

bσ2

)
=

∫ θm

−∞

1√
bσ2
φ
(
θ−bθm−bσΦ−1(θm)√

bσ2

)
Φ
(
θm+σΦ−1(θm)−θ

σ

) dθ. (41)

Based on (41), Figure 7 demonstrates the equilibrium regime change thresholds θp and θm as

functions of costs c when σ0 = σ = a = 1.

Public Signal

To further highlight the logic behind our results, we also compare the effect of public signals

about the regime’s strength on the equilibrium regime change threshold in the psychological

and material rewards settings. There is a link between this analysis and our discussion of a

general prior. Suppose players share an improper uniform prior about θ as in the paper, but

receive a noisy public signal p about θ in the form of p = θ + σpν, where ν ∼ H. This setting

is equivalent to players having a (proper) prior with mean p. For example, if ν ∼ N(0, 1) and

p = 1, players will share a prior that θ ∼ N(1, σp). In particular, beginning from no prior in-

formation about θ, the public signal will generates some common knowledge about θ. We now

investigate the effect of a higher public signal in both settings. A higher public signal generates
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Figure 8: The equilibrium regime change threshold for the psychological rewards setting (θp),
and material rewards setting (θm) as a function of a public signal p = θ + ν. Parameters:
G = N(0, 1), ν ∼ N(0, 1), F = N(0, 1), σ = a = 1.

common knowledge that the regime is stronger, and hence less likely to collapse. As a result,

both θp and θm and the likelihood of regime change fall. Figure 8 illustrates the equilibrium

regime change thresholds for different values of p for the came of Normal noise: ν ∼ N(0, 1),

F = N(0, 1), σ = a = 1. As expected θm > θp. Moreover, as long as θp/θm is not too small,

the marginal effect of a higher p is lower in the material rewards settings. The logic is the same

as before: all else equal, a higher p reduces the citizens’ incentives to revolt, and hence the

likelihood of regime change. But, in the material rewards setting, a smaller number of revo-

lutionaries makes the rewards of a successful regime change larger, thereby partially canceling

the first effect. All else equal is important. An p increases, the probably of regime change in

the psychological rewards setting falls to almost 0. Beginning from such a low probability, the

marginal effect of a higher p then becomes very small. Thus, for the right comparison, one

must compare the slopes of θp and θm when the levels are about the same (θp ≈ θm). Now, it is

clear that the marginal effect of a higher p is much smaller at in the material rewards setting.
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Normalization of Material Rewards

In the text, we normalized material rewards to a
m

, so that if the rebellion succeeds, the total

available reward in both settings is a. We now explore the robustness of our results by using

more general payoffs. In particular, we assume that material rewards are k×a
m

, for some k > 0.

Our analysis in the text corresponds to k = 1. Given the payoff structure represented in Fig-

ure 1, this change is equivalent to normalizing the costs in the material rewards setting from

c ∈ (0, 1) to c/k ∈ (0, 1). Then, the equilibrium regime change thresholds in Proposition 2

become: θp = 1 − c (as before) and θm = e−c/k (new). Thus, dθp

dc
= −1 and dθm

dc
= − 1

k
e−c/k,

so that dθp

dc
< dθm

dc
if and only if e−c/k < k, i.e., −k log(k) < c. When k ≥ 1, the left hand side

is non-positive, and the inequality holds for all c > 0. When k < 1, this inequality holds at the

upper bound of c = k < 1 if and only if −k log(k) < k, i.e., k > 1/e ≈ 0.37. Then, there will

be a threshold ĉ ∈ (0, k) such that −k log(k) < c if and only if c > ĉ(k). To summarize:

Proposition 9 dθp

dc
< dθm

dc
if and only if either k ≥ 1, or k > 1/e and c > ĉ(k), where ĉ ∈ (0, k).

Proposition 5 has a similar analogue. In the proof of Proposition 5, observe that changing

c to c/k in the material rewards setting will change (20) to:

∆m = lim
σ→0

max{θm2 (σ)} − θm1 = e−ac/k − e−c/k and ∆p = lim
σ→0

max{θp2(σ)} − θp1 = (1− a)c.

Thus, ∆m < ∆p if and only if e
−c/k−e−ac/k

c−ac > −1, i.e., e
−c/k−e−ac/k
c/k−ac/k > −k. Now, let d = c/k ∈ (0, 1)

and observe that d can change independently of k. Thus, ∆m < ∆p if and only if e−d−e−ad
d−ad > −k,

for d ∈ (0, 1). Because e−x is strictly decreasing and convex with de−x

dx

∣∣
x=0

= −1, this inequality

holds for all k ≥ 1. When k < 1, as long as k > 1/e, there exists a, c/k ∈ (0, 1) such that

∆m < ∆p. To see this, observe that de−x

dx

∣∣
x=1

= −1/e. Thus, we have:

Proposition 10 Suppose the noise in the second period’s private signals becomes vanishingly

small, and we focus on the largest equilibrium. Conditional on failure in the first period, the

chances of success is higher in the psychological rewards setting than in the material rewards

setting if (i) k ≥ 1, or (ii) k > 1/e and a and c are sufficiently large.
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