
Supplemental Appendix

STADL Up! The Spatio-Temporal Autoregressive Distributed Lag

Model for TSCS Data Analysis

Scott J. Cook, Jude C. Hays, and Robert J. Franzese, Jr.

1



1 TSCS Data in the APSR, AJPS and JOP

To calculate the number of articles that use time-series cross-sectional data, we analyzed 7336

research articles appearing in The American Political Science Review, The American Journal of

Political Science, and The Journal of Politics, from 1980 to 2019. Using this set of articles, we

counted the occurrence(s) of a list of keywords related to time-series cross-sectional data in each

article. For the years 1980 to 2014, we use the data and metadata provided by JSTOR’s API.1

To collect the recent articles that are not covered by JSTOR’s API, we directly scraped the text

from each journal’s website, the same keywords are used to count the number of occurrences in

each article.2

These results are summarized in Figure 1 which provides the yearly count of articles using

keywords associated with TSCS data analysis. Specifically, TSCS (solid line) gives the number of

articles using at least one of the following keywords: ‘time series cross section(al)’, ‘tscs’, ‘panel

data.’3 Within the set of TSCS articles, we then count those that use keywords consistent with

Temporal analysis (dotted line) – e.g., ‘time series’, ‘time serial’, ‘temporal autocorrelation’, ‘tem-

poral correlation’,‘temporal dependence’, ‘temporal dynamics’, ‘time dependence’, ‘time lag(ged)’,

‘time lagged dependent’, ‘serial correlation’, ‘serially correlated’, ‘serial dependence.’ – and Spatial

analysis (dashed line) – e.g., ‘spatial dependence’, ‘spatial autocorrelation’, ‘spatial correlation’,

‘spatially correlated’, ‘spatial lag’, ‘spatial-lag dependent’, ‘spatially lagged’, ‘spatially lagged de-

pendent.’

1. JSTOR’s API has different time coverage for each journal. It provides upto 2014, 2015, 2018 for APSR, JOP,
AJPS, respectively.

2. For the replication data for this Appendix and the associated article see Cook, Hays, and Franzese (2022).
3. Since JSTOR’s API only provides the count of words up to trigrams, we use the keyword ‘time series cross’

instead of ‘time series cross section’ or ‘time series cross sectional’.
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Figure 1: Count of Articles Using TSCS Data in the Top-3, 1980-2019
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The results demonstrate that TSCS data remain widely used, with 33 articles appearing in

the top-3 (APSR, AJPS, and JOP) in 2019 alone. Few of these, however, seem to meaningfully

consider both temporal and spatial dependence. In 2019, for example, of the 33 TSCS articles only

12 used keywords consistent with temporal analysis and only 2 with spatial analysis. As such,

at most 2 could have jointly considered both temporal and spatial analysis, as our manuscript

suggests in necessary.

2 Monte Carlo Analysis

2.1 Additional Design Details

The spatial locations for the units are generated by twice taking N draws from a standard

uniform to create xy-coordinates for each unit. The wij relative connections between units are

then generated using a k-Nearest Neighbor algorithm with k = 5, returning a binary N -by-N

matrix W
N

with each element wij = 1 for the five closest j to i and 0 for all others (and all

wii = 0 along the diagonal). The Kronecker product of this matrix and a T -dimensional identity

matrix produces W, an NT -by-NT matrix with each N -by-N block W
N
along the prime diagonal
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giving the dyadic relations, which are assumed constant over time. We also assume that this same

W operates with respect to spatial dynamics in y, x, u, and e, and that it is known to the

researcher.4

In order to focus on how varying the strength of ϕy and ρy affect model performance, we fix the

parameters for β = 2, ϕx = 0.6, and ρx = 0.3, and confine attention to variation in the temporal

dependence – ϕy = {0,0.1,. . . ,0.4,0.5} – and spatial dependence – ρy = {0,0.05,. . . ,0.25,0.3} – in

y.5 We are primarily interested in understanding how well the LDV and SAR models recover β,

however, we also examine how the estimates of ϕy and ρy are affected.

2.2 Lagrange Multiplier Tests

Current best practice (as advised by Beck and Katz 2011, e.g.) suggests post-estimation

diagnostic tests for remaining serial dependence in estimated residuals, specifically Lagrange Mul-

tiplier tests of auxiliary regressions of estimated residuals on their lags. Unfortunately, these

post-estimation tests for remaining temporal dependence will lead researchers astray when there

is (unmodeled, i.e. remaining) residual spatial autocorrelation. Here, too, the unmodeled spatial

dependence is “mistaken” for temporal dependence, causing researchers to over-reject the null,

the frequency of which false-positive rate, intuitively, increases in ρy as shown in Figure 2). The

LM test for residual serial correlation has power against the incorrect alternative under these

circumstances, erroneously registering the spatial dependence as temporal dependence, leading

researchers to take inappropriate remedial actions – e.g., modeling higher-order time-lags of the

outcome – rather than addressing the truly spatial cause of the dependence in the residuals.

4. Noteworthy–in that these following are also commonly issues in TSCS data-analysis–among the simplifying
assumptions in our simulations are (1) no parameter heterogeneity and (2) all regressors X are exogenous.

5. The extent of the bias in these parameter estimates is a function of ϕx and ρx, but for tractability we fix and
do not estimate these two parameters.
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Figure 2: False-Positive Rate of Lagrange Multiplier test with Spatial Dependence
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2.3 STADL Results

In the main text we demonstrate the bias of the SAR and the LDV models when there is

unmodeled temporal or spatial dependence, respectively. We also imply that since the STADL

model accounts for both temporal and spatial dependence, that it should be unbiased under these

conditions. Here we demonstrate that explicitly, showing that under all conditions evaluated in

our simulations the STADL model is an unbiased estimator of β (Figure 3), ρ (Figure 4), and ϕ

(Figure 5).
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Figure 3: STADL performance with Spatio-temporal dependence – Bias in β
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Figure 4: STADL performance with Spatio-temporal dependence – Bias in ρ
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Figure 5: STADL performance with Spatio-temporal dependence – Bias in ϕ
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2.4 Additional Model Comparisons

In the main text we focus exclusively on bias when evaluating the models under different

simulated conditions. Here we report additional quantities of interest, including bias (Bias),

average standard error (Avg. SE), the standard deviation of the empirical distribution (SD),

mean square error (MSE), and the coverage probabilities (CP).6 Since reporting all of the simulated

conditions in this manner would be unwieldy, we focus on 4 values of ρ (0.0, 0.1, 0.2, 0.3), within

each table, and 2 values for ϕ (0.0 and 0.5).7 Both tables report the results for a set value of ϕ

(Table 1 is ϕ = 0, Table 2 is ϕ = 0.5), and different values of ρ (with values increasing as one

moves down the Table). The results are consistent with what we would expect, in that failing

to properly account for dependence between the observations induces bias, inaccurate standard

errors (as demonstrated by the deviation of the Avg. SE and the SD), increased mean square

error, and confidence intervals that rarely bound the true value (as indicated by CP).

6. The coverage probabilities (CP) are calculated using the 95% confidence intervals (CIs) for each models sample
coefficient and standard error estimate. The reported value for CP indicates the proportion of trials for which the
95% CI contains the true coefficient.

7. We have also produced similar tables for other values of ϕ (0.1, 0.2, 0.3, 0.4), these results are available on
Dataverse or by request.
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Table 1: Simulation Results, ϕ = 0.0

β ϕ ρ
Static LDV SAR STADL LDV STADL SAR STADL

ρ = 0.0

Bias -0.000 0.002 0.001 0.003 -0.001 -0.001 -0.002 -0.002
Avg. SE 0.012 0.026 0.013 0.027 0.013 0.013 0.011 0.011

SD 0.011 0.027 0.013 0.027 0.014 0.014 0.010 0.010
MSE 0.000 0.001 0.000 0.001 0.000 0.000 0.000 0.000
CP 0.956 0.940 0.960 0.940 0.944 0.944 0.972 0.976

ρ = 0.1

Bias 0.065 0.032 0.000 0.003 0.018 -0.001 -0.000 -0.000
Avg. SE 0.012 0.028 0.013 0.027 0.014 0.013 0.010 0.010

SD 0.012 0.027 0.014 0.027 0.014 0.013 0.010 0.010
MSE 0.004 0.002 0.000 0.001 0.000 0.000 0.000 0.000
CP 0.000 0.808 0.956 0.952 0.732 0.948 0.952 0.940

ρ = 0.2

Bias 0.145 0.009 0.001 -0.001 0.071 0.001 -0.002 -0.002
Avg. SE 0.014 0.032 0.013 0.026 0.015 0.013 0.009 0.010

SD 0.012 0.029 0.014 0.026 0.014 0.012 0.010 0.010
MSE 0.021 0.001 0.000 0.001 0.005 0.000 0.000 0.000
CP 0.000 0.964 0.912 0.940 0.000 0.964 0.916 0.928

ρ = 0.3

Bias 0.254 -0.070 -0.000 -0.001 0.160 0.000 0.000 0.000
Avg. SE 0.018 0.038 0.014 0.026 0.017 0.012 0.008 0.009

SD 0.014 0.035 0.013 0.027 0.017 0.013 0.008 0.009
MSE 0.065 0.006 0.000 0.001 0.026 0.000 0.000 0.000
CP 0.000 0.528 0.968 0.944 0.000 0.940 0.944 0.964
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Table 2: Simulation Results, ϕ = 0.5

β ϕ ρ
Static LDV SAR STADL LDV STADL SAR STADL

ρ = 0.0

Bias 1.598 0.002 1.592 0.002 -0.001 -0.001 0.027 -0.000
Avg. SE 0.027 0.027 0.031 0.028 0.008 0.008 0.014 0.006

SD 0.020 0.023 0.023 0.024 0.006 0.006 0.012 0.006
MSE 2.553 0.001 2.534 0.001 0.000 0.000 0.001 0.000
CP 0.000 0.988 0.000 0.984 0.996 0.988 0.484 0.916

ρ = 0.1

Bias 1.836 -0.028 1.581 -0.001 0.045 -0.000 0.113 0.000
Avg. SE 0.032 0.032 0.032 0.027 0.008 0.008 0.012 0.005

SD 0.022 0.028 0.023 0.026 0.008 0.008 0.009 0.005
MSE 3.372 0.002 2.499 0.001 0.002 0.000 0.013 0.000
CP 0.000 0.900 0.000 0.964 0.000 0.948 0.000 0.964

ρ = 0.2

Bias 2.219 -0.282 1.570 0.004 0.163 -0.001 0.197 0.000
Avg. SE 0.046 0.041 0.033 0.027 0.010 0.007 0.010 0.005

SD 0.026 0.028 0.026 0.026 0.007 0.007 0.008 0.005
MSE 4.926 0.081 2.465 0.001 0.027 0.000 0.039 0.000
CP 0.000 0.000 0.000 0.952 0.000 0.956 0.000 0.948

ρ = 0.3

Bias 2.897 -0.724 1.553 0.001 0.324 0.000 0.280 -0.000
Avg. SE 0.075 0.048 0.035 0.025 0.009 0.007 0.008 0.005

SD 0.030 0.027 0.025 0.024 0.006 0.007 0.006 0.005
MSE 8.391 0.524 2.411 0.001 0.105 0.000 0.078 0.000
CP 0.000 0.000 0.000 0.968 0.000 0.964 0.000 0.964

2.5 Spatiotemporal Error Autocorrelation

In the main text we focus primarily on model performance under different levels of spatial interde-

pendence (i.e., ρ) and serial autodependence (i.e., ϕ) in the outcome directly, reflecting the wide

use of the SAR and LDV model in applied work. However, we might also be interested in how

these models perform under varying levels of spatial and temporal error autocorrelation (λ and δ

respectively). To evaluate this, we generate data from a STADL(se0, te1):

yt = xtβ + (I− δL− λW)−1εεεy,
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with λ and δ determining the level of spatial and temporal error autocorrelation.8 Below we report

various quantities of interest (bias, average standard error, standard deviation, mean square error,

and the coverage probabilities) for a subset of the simulated conditions: 4 values of λ (0.0, 0.1,

0.2, 0.3), within each table, and 2 values for δ (0.0 and 0.5).9 Both Table 3 & 4 report the results

for a set value of δ (Table 3 is δ = 0 and Table 4 is δ = 0.5), and different values of λ (with values

increasing as one moves down the Table). We focus on the estimator of β, since it is common

across models and reflects the total effect of xt on yt under our simulated conditions.

The results are consistent with what we would expect, so we only briefly describe them glob-

ally here. First, under either (or both) forms of error dependence, the static model is unbiased by

produces overly confident standard errors (as seen by the difference between Avg. SE and SD),

resulting in poor coverage. Second, the respective error correlation models (SCE and SEM) are

also always unbiased, however, they each produce overly confident standard errors when there is

dependence in the unmodeled dimension. For example, when there is temporal error autocorre-

lation (δ ̸= 0), we see the standard errors of the SEM model is overconfident (i.e., Avg. SE <

SD) and, as a result, the coverage probabilities are lower than the targeted 95%. Third, the LDV

and SAR models perform poorly under error dependence, as this is now partially captured by the

(time or spatial) lag of the outcome, producing an inflationary bias in ϕ and ρ and consequently

an attenuating bias in β (due to the covariate between the lags and x).10 This can be seen most

acutely in the performance of the LDV model under higher values of δ, as the bias increases

and the coverage probabilities decrease. Fortunately, the STADL model performs well across all

simulated conditions: unbiased, accurate SEs, low mean square error, and coverage probabilities

consistently around 95%.

8. All other model features are held fixed and identical to the DGP in the main text: β = 2, x is generated with
spatial and temporal dependence, etc.

9. We have also produced similar tables for other values of δ (0.1, 0.2, 0.3, 0.4), these results are available on
Dataverse or by request.
10. β in the LDV and SAR models now reflects the short-run and pre-spatial effect respectively, however, under

the simulated DGP the true long-run and post-spatial effects should be zero. As such, any bias given here does
reflect an underestimation of the short-run, pre-spatial effects and a misattribution of the total effect of xt on yt.
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Table 3: Simulation Results, δ = 0.0

β
Static SCE SEM LDV SAR STADL

λ = 0.0

Bias -0.001 -0.002 -0.000 -0.001 0.000 -0.002
Avg. SE 0.011 0.029 0.011 0.027 0.012 0.029

SD 0.010 0.027 0.010 0.025 0.011 0.027
MSE 0.000 0.001 0.000 0.001 0.000 0.001
CP 0.956 0.980 0.956 0.976 0.956 0.976

λ = 0.1

Bias -0.000 -0.000 -0.001 0.000 -0.002 0.000
Avg. SE 0.011 0.029 0.011 0.027 0.012 0.029

SD 0.010 0.030 0.010 0.028 0.012 0.030
MSE 0.000 0.001 0.000 0.001 0.000 0.001
CP 0.964 0.936 0.956 0.936 0.952 0.928

λ = 0.2

Bias 0.001 0.000 0.001 0.001 -0.003 -0.000
Avg. SE 0.011 0.029 0.011 0.027 0.012 0.029

SD 0.012 0.030 0.012 0.028 0.013 0.029
MSE 0.000 0.001 0.000 0.001 0.000 0.001
CP 0.936 0.964 0.940 0.940 0.948 0.968

λ = 0.3

Bias -0.002 -0.002 -0.002 -0.002 -0.009 -0.001
Avg. SE 0.011 0.029 0.012 0.027 0.013 0.030

SD 0.012 0.031 0.011 0.029 0.012 0.029
MSE 0.000 0.001 0.000 0.001 0.000 0.001
CP 0.924 0.944 0.972 0.936 0.896 0.948
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Table 4: Simulation Results, δ = 0.5

β
Static SCE SEM LDV SAR STADL

λ = 0.0

Bias -0.001 0.002 -0.001 -0.186 -0.001 0.002
Avg. SE 0.012 0.029 0.012 0.029 0.014 0.028

SD 0.020 0.029 0.020 0.033 0.023 0.029
MSE 0.000 0.001 0.000 0.036 0.001 0.001
CP 0.784 0.928 0.784 0.000 0.776 0.928

λ = 0.1

Bias -0.000 -0.003 -0.000 -0.192 -0.004 -0.004
Avg. SE 0.012 0.029 0.013 0.029 0.014 0.029

SD 0.020 0.031 0.020 0.033 0.022 0.031
MSE 0.000 0.001 0.000 0.038 0.000 0.001
CP 0.756 0.928 0.788 0.000 0.800 0.928

λ = 0.2

Bias -0.002 0.002 -0.002 -0.197 -0.010 0.002
Avg. SE 0.012 0.029 0.013 0.030 0.014 0.029

SD 0.022 0.030 0.021 0.031 0.022 0.029
MSE 0.000 0.001 0.000 0.040 0.001 0.001
CP 0.760 0.940 0.800 0.000 0.768 0.960

λ = 0.3

Bias 0.001 0.000 0.001 -0.223 -0.014 -0.000
Avg. SE 0.013 0.030 0.014 0.030 0.015 0.030

SD 0.027 0.034 0.024 0.039 0.024 0.033
MSE 0.001 0.001 0.001 0.051 0.001 0.001
CP 0.644 0.920 0.748 0.000 0.708 0.928

2.6 Alternative covariate dependence patterns

In footnotes 32 and 36 we discuss how the patterns of bias presented in the main text (for the

LDV and SAR models) are a function of the spatio-temporal dependence in the covariate, x. To

demonstrate this, we re-create the coefficient bias plots presented in the main text (Figures 6 and

7 for the LDV model, and Figures 10 and 11 for the SAR model) under for different conditions

for x. In the main text we held the dependence in x fixed at ϕx = 0.6 and ρx = 0.3, here we show

the effect of increasing ϕx or ρx respectively.

2.6.1 Increased temporal dependence in x

In the first set of results, we increase the temporal dependence in x relative to the spatial depen-

dence, i.e., ϕx = 0.8 and ρx = 0.1. The results are presented in Figures 6 and 7, and indicate
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similar, if more pronounced, biases to those reported in the main text. Specifically, we see that

the increase in ϕx (and decrease in ρx) actually increases the attenuation bias in β̂LDV (as seen in

Figure 6b), with β̂LDV now also clearly decreasing with increases to ρy.
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Figure 6: LDV with unmodeled spatial dependence (ϕx = 0.8, ρx = 0.1)
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Figure 7: SAR with unmodeled temporal dependence (ϕx = 0.8, ρx = 0.1)

2.6.2 Increased spatial dependence in x

In the next set of results, we increase the spatial dependence in x relative to the temporal depen-

dence, i.e., ρx = 0.6 and ϕx = 0.3. While these conditions are less likely in real-world data—as

we more often observe ϕ > ρ—it is still illustrative to see how the biases are affected under these
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conditions. The results are presented in Figures 8 and 9. The estimators of the dependence para-

maters ϕy (Figure 8a) and ρy (Figure 9a) are similar to what we report in the main text, though

slightly lesser for ϕ̂y,LDV (due to the decreased temporal dependence in x) and slightly greater for

ρ̂y,SAR (due to the increased spatial dependence in x). The results for β reveal more interesting

differences, as the bias in the estimator βLDV is now inflationary under many conditions (those

with lower values of ϕy and ρy), again reflecting the increased spatial dependence in x. The SAR

estimator for β (9b) is more similar to the results given in the main text, though here we can

more clearly see that the bias is a decreasing function of ρy under some conditions (high ϕy) as

discussed in footnote 36.
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Figure 8: LDV with unmodeled spatial dependence (ρx = 0.6, ϕx = 0.3)
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Figure 9: SAR with unmodeled temporal dependence (ρx = 0.6, ϕx = 0.3)
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3 tscsdep: A New R Package

Among the most significant obstacles to modeling geographical spatial dependence in the

analysis of time-series-cross-sectional data, particularly with unbalanced panels, is creating the

spatial weights matrix, W. For balanced panels with fixed N and T , this task is relatively easy.

One simply pre-Kroenecker-multiplies the spatial weights matrix for a single cross-section by a

T × T identity matrix:

WNT = IT ⊗WN.

Unfortunately, in applied work, it is much more common to have unbalanced panels where T

varies across the sample’s units. This can arise either due to the entry and exit of units from

one’s sample (e.g., the recognition of South Sudan), or data missingness. Consequently, the

cross-sectional weights matrices are time-period specific—in other words, there are multiple cross-

sectional weights matrices associated with a sample. Moreover, because patterns of missingness

vary across variables, sample dimensions vary across different regression models. As such, each

regression will have a unique TSCS weights matrix. This makes accounting for spatial dependence

prohibitively costly.

The package tscsdep was created to make it easy to account for (geographical) spatial depen-

dence when working with TSCS data. It draws heavily from the Cshapes (Weidmann, Schvitz,

and Girardin 2021) and spatialreg packages (Bivand and Piras 2015). At the moment, there

are two main functions in tscsdep. The first, make ntspmat, generates a nearest neighbor spatial

weights matrix for an unbalanced TSCS sample of countries observed annually, which was used to

estimate a non-spatial linear regression model. The call to execute the function is

wm <- make_ntspmat(lmobj,ci,yi,k)

In this call, wm stores the output, the weights matrix; lmobj is an object created by the lm

function. This object contains information about the data and regression specification; ci and yi

are names of variables that identify the country name and year for each observation in the sample;
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and k is the number of nearest neighbors used for the spatial weights. The second function,

ntspreg, re-estimates the original linear regression with a spatial lag using the TSCS weights

matrix created by make ntspmat. The call is

sar <- ntspreg(lmobj,wm)

In this line, sar stores the spatial regression output; lmobj is the same lm object used to create

the TSCS spatial weights matrix, wm, which is also included as the second and final argument in

the function. The package is available at https://github.com/judechays/STADL.

3.1 Political Accountability / Infant Mortality Reanalysis

In this section, we show how to use tscsdep to estimate Model 2 in our reanalysis of Lührmann,

Marquardt, and Mechkova (2020). Our package uses cshapes and a nearest neighbor algorithm

to create spatial weights matrices and provides a convenience wrapper for the spatial regression

functions in spatialreg. We estimate the model in first differences using the slide function from

the package DataCombine (Gandrud 2016). To illustrate an important feature of the make ntspmat

function, we start by (incorrectly) assuming the country names in the Lührmann, Marquardt, and

Mechkova (2020) dataset match the country names in cshapes.

library (DataCombine)

data<-read.csv("accountability_data_regressions_old.csv")

# Lag the variable one time period by country

data <- slide(data = data, Var = ’infant’, GroupVar = ’country_id’,

NewVar = ’lag_inf’, slideBy = -1)

data$diff_inf <- data$infant - data$lag_inf

reg<-lm(formula = diff_inf ~ lag_inf + Accountability + aid + loggdp + gdp_grow +

resourcesdep_hm + gini2 + lnpop + urban_cow + violence_domestic + rx_infant +
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communist + v2x_corr + as.factor(year) + as.factor(country_name), data = data)

wm <- make_ntspmat_ch(reg,country_name,year,5)

We read the data, estimate the non-spatial linear regression (in first differences), and then run

the make ntspmat function, hoping to create a nearest neighbor spatial weights matrix, using the

five nearest neighbors. Unfortunately, the initial output tells us that the country names are not

perfectly matched. There are 24 country names in the dataset that do not match the country

names in cshapes.

================================================================================

Data Country Name Data Start Year COW Country Name COW Start Year

--------------------------------------------------------------------------------

1 Belarus 2005

2 Bosnia and Herzegovina 1996

3 Burkina Faso 1974

4 Burma/Myanmar 1967

5 Cambodia 1995

6 Congo, Democratic Republic of 2006

7 Congo, Republic of the 1968

8 Germany 1992

9 Iran 1965

10 Italy 1960

11 Ivory Coast 1966

12 Korea, South 1960

13 Kyrgyzstan 1992

14 Macedonia 1993

15 Madagascar 1965

16 Romania 1963

17 Russia 1993

18 Sri Lanka 1960

19 Swaziland 1969

20 Tanzania 1988

21 Turkey 1967
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22 United States 1960

23 Yemen 1992

24 Zimbabwe 1971

--------------------------------------------------------------------------------

Error in make_ntspmat(reg, country_name, year, 5) : Some of your Country-Years are not Matched.

In the next chunk of code, we correct the country names to match cshapes, using the

recode factor function dplyr.

data$country_name<-recode_factor(data$country_name,"Burma/Myanmar"="Myanmar (Burma)")

data$country_name<-recode_factor(data$country_name,"Korea, South"="Korea, Republic of")

data$country_name<-recode_factor(data$country_name,"Russia"="Russia (Soviet Union)")

data$country_name<-recode_factor(data$country_name,"Yemen"="Yemen (Arab Republic of Yemen)")

data$country_name<-recode_factor(data$country_name,"United States"="United States of America")

data$country_name<-recode_factor(data$country_name,"Kosovo"="Yugoslavia/Serbia")

data$country_name<-recode_factor(data$country_name,"Tanzania"="Tanzania (Tanganyika)")

data$country_name<-recode_factor(data$country_name,"Burkina Faso"="Burkina Faso (Upper Volta)")

data$country_name<-recode_factor(data$country_name,"Cambodia"="Cambodia (Kampuchea)")

data$country_name<-recode_factor(data$country_name,"Zimbabwe"="Zimbabwe (Rhodesia)")

data$country_name<-recode_factor(data$country_name,"Ivory Coast"="Cote D’Ivoire")

data$country_name<-recode_factor(data$country_name,"Germany"="German Federal Republic")

data$country_name<-recode_factor(data$country_name,"Iran"="Iran (Persia)")

data$country_name<-recode_factor(data$country_name,"Italy"="Italy/Sardinia")

data$country_name<-recode_factor(data$country_name,"Turkey"="Turkey (Ottoman Empire)")

data$country_name<-recode_factor(data$country_name,"Belarus"="Belarus (Byelorussia)")

data$country_name<-recode_factor(data$country_name,"Congo, Democratic Republic of"="Congo, Democratic Republic of (Zaire)")

data$country_name<-recode_factor(data$country_name,"Congo, Republic of the"="Congo")

data$country_name<-recode_factor(data$country_name,"Kyrgyzstan"="Kyrgyz Republic")

data$country_name<-recode_factor(data$country_name,"Madagascar"="Madagascar (Malagasy)")

data$country_name<-recode_factor(data$country_name,"Sri Lanka"="Sri Lanka (Ceylon)")

data$country_name<-recode_factor(data$country_name,"Swaziland"="Swaziland (Eswatini)")

data$country_name<-recode_factor(data$country_name,"Bosnia and Herzegovina"="Bosnia-Herzegovina")

data$country_name<-recode_factor(data$country_name,"Macedonia"="Macedonia (FYROM/North Macedonia)")

data$country_name<-recode_factor(data$country_name,"Romania"="Rumania")

reg <-lm(formula = diff_inf ~ lag_inf + Accountability + aid + loggdp + gdp_grow +

resourcesdep_hm + gini2 + lnpop + urban_cow + violence_domestic + rx_infant +

communist + v2x_corr + as.factor(year) + as.factor(country_name), data = data)

wm <- make_ntspmat_ch(reg,country_name,year,5)
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After the country names are matched, we re-estimate the regression and call make ntspmat

to create the nearest-neighbor weights matrix (using distance between capital cities to calculate

distance). Now that the country names are matched, the console output changes. Instead of an

error message, the year and COW country codes for the corresponding cross-section will be printed

to the console. When finished, the function make ntspmat returns a list. The first element of the

list is the original dataset. The second element is the desired NT ×NT weights matrix. The last

element is a vector of unique country-year identifiers.

[1] 1960

[1] 70 380 740 290 140 2 750 732 20 220 90 645 325 600 210 95 200 780 390 375 350 820 920 385

[25] 310

[1] All of your Countries are Matched.

[1] 1961

[1] 70 380 740 290 140 2 92 135 750 732 20 220 90 645 325 600 210 95 616 200 165 780 390 375

[25] 350 820 920 385 310

[1] All of your Countries are Matched.

.

.

.

[1] 2006

[1] 70 452 560 365 339 651 100 290 140 92 771 145 91 432 770 135 625 700 160 475 840 510 800 500

[25] 101 760 439 811 541 790 436 551 438 437 435 516 482 155 94 130 90 645 663 367 450 712 600 95

[49] 640 369 165 371 373 370 471 490 42 372 705 703 812 580 359 517 780 572 702 461 346 355 344 950

[73] 368 343 820 150 360 317 310

[1] All of your Countries are Matched.

In the chunk of code below, we extract the second element of this list, the nearest-neighbor

weights matrix, and run the function ntspreg, to estimate a STADL in first differences. The

function returns a list of output from the function lagsarlm, which is a part of the spatialreg

package. The nearest-neighbors weights matrix is automatically row-standardized by ntspreg.

w <- as.matrix(wm[[2]])

sar <- ntspreg(reg,w)

summary(sar)

The results are summarized below (fixed-effects estimates omitted to save space).
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Call:spatialreg::lagsarlm(formula = formula, data = df, listw = listw, method = "eigen", zero.policy = TRUE, tol.solve = 1e-10)

Residuals:

Min 1Q Median 3Q Max

-8.708167 -0.347469 0.024157 0.350663 27.982009

Type: lag

Coefficients: (asymptotic standard errors)

Estimate Std. Error z value Pr(>|z|)

(Intercept) -14.7507422 2.0933916 -7.0463 1.837e-12

lag_inf -0.0199248 0.0016723 -11.9143 < 2.2e-16

Accountability -0.1902587 0.0383825 -4.9569 7.162e-07

aid 0.0155231 0.0033215 4.6735 2.961e-06

loggdp 0.7972011 0.0859525 9.2749 < 2.2e-16

gdp_grow -0.0193535 0.0025472 -7.5979 3.020e-14

resourcesdep_hm 0.0132692 0.0023254 5.7063 1.155e-08

gini2 0.0064230 0.0033563 1.9137 0.0556545

lnpop 0.7061523 0.1775994 3.9761 7.006e-05

urban_cow 0.0225790 0.0030610 7.3762 1.628e-13

violence_domestic -0.0159651 0.0139242 -1.1466 0.2515585

rx_infant 0.0088278 0.0024662 3.5795 0.0003443

communist -0.7459046 0.1751434 -4.2588 2.055e-05

v2x_corr -0.2535541 0.2057153 -1.2325 0.2177442

Rho: 0.032504, LR test value: 2.4805, p-value: 0.11527

Asymptotic standard error: 0.01982

z-value: 1.64, p-value: 0.10101

Wald statistic: 2.6895, p-value: 0.10101
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