Supplementary Materials Blood is Thicker Than Water: Elite Kinship Networks and State Building in Imperial China

American Political Science Review

Yuhua Wang Harvard University yuhuawang@fas.harvard.edu

Last updated November 23, 2021

Background and Supplementary Information	•	•		•	•	•	. A2
Additional Tables and Figures for the Main Analysis	•	•		•	•	•	. A12
Robustness Checks	•	•		•	•	•	. A16

BACKGROUND AND SUPPLEMENTARY INFORMATION

Figure A1-1: Northern Song Borders, 960–1127 CE *Notes*: This figure shows the three regimes in China between 960 and 1127 based on CHGIS (2018).

Figure A1-2: Major Politicians' Local Concentration of Kin (Estimating Sample)

Notes: The figure shows the histogram of politicians' local concentration of kin index. Only the 40 politicians in the estimating sample are included.

Figure A1-3: Major Politicians' Attitudes toward the State-Building Reform (Estimating Sample)

Notes: The figure shows the histogram of politicians' policy attitudes toward the statebuilding reform (1 = support; o = oppose; non-integer = mean of mixed attitudes). Only the 40 politicians in the estimating sample are included.

Figure A1-4: Correlations between Major Politicians' Attitudes toward the State-Building Reform and Their Political Ranks

Notes: The figure shows the correlations between major politicians' attitudes toward the state-building reform and their rank changes (the rank of an official's last position - his first), first ranks (rank of the first position), average ranks (mean rank of all positions), and highest ranks. Rank ranges from 1 to 6, with higher numbers indicating higher ranks. Only the 40 politicians in the estimating sample are included.

	Ν	Mean	Std Dev	Min	Max
Support for reform (continuous)	63	0.574	0.482	0.000	1.000
Support for reform (trichotomous)	137	0.036	0.680	-1.000	1.000
Support for reform (dichotomous)	63	0.540	0.502	0.000	1.000
Local concentration of kin	68	3.336	6.686	0.001	38.334
Local concentration of kin/N of children	68	2.109	4.149	0.001	18.006
Local concentration of kin (politician)	59	1.982	3.371	0.001	15.106
Local concentration of kin (relational distance discount)	68	0.607	1.184	0.000	6.252
Herfindahl index of kin concentration (county)	68	0.200	0.222	0.034	1.000
Herfindahl index of kin concentration (prefecture)	68	0.231	0.222	0.059	1.000
Herfindahl index of kin concentration (province)	68	0.298	0.235	0.098	1.000
Local concentration of kin (matrilineal discount 0.1)	68	1.572	4.699	0.000	35.514
Local concentration of kin (matrilineal discount 0.2)	68	1.768	4.755	0.000	35.827
Local concentration of kin (matrilineal discount 0.3)	68	1.964	4.862	0.001	36.140
Local concentration of kin (matrilineal discount 0.4)	68	2.160	5.017	0.001	36.454
Local concentration of kin (matrilineal discount 0.5)	68	2.356	5.214	0.001	36.767
Local concentration of kin (matrilineal discount 0.6)	68	2.552	5.450	0.001	37.080
Local concentration of kin (matrilineal discount 0.7)	68	2.748	5.719	0.001	37.394
Local concentration of kin (matrilineal discount 0.8)	68	2.944	6.018	0.001	37.707
Local concentration of kin (matrilineal discount 0.9)	68	3.140	6.341	0.001	38.020
Politician rank change	137	0.255	0.900	-2.000	4.000
Betweenness centrality	137	25.664	55.796	0.000	443.731
Degree centrality	137	8.978	11.995	0.000	50.000
Bonacich power	137	-0.016	1.004	-4.570	2.780
N of kin	70	101.957	110.517	1.000	566.000
N of children	70	2.014	1.378	1.000	8.000
N of children (groups)	70	1.671	0.737	1.000	3.000
Factional tie with reform leader	137	0.204	0.405	0.000	1.000
Politician's first rank	137	1.847	0.695	1.000	4.000
Politician's average rank	137	1.963	0.686	1.000	4.000
Politician's highest rank	137	2.241	0.951	1.000	5.000
Kin centroid exposure to external wars	68	0.026	0.008	0.013	0.061
Kin centroid exposure to mass rebellions	68	0.062	0.015	0.033	0.112
Kin exposure to external wars	68	2.492	2.714	0.017	14.086
Kin exposure to mass rebellions	68	5.714	6.162	0.041	31.798
Ruggedness Index	117	77268.661	65227.410	6938.060	320378.719
Father exam	137	0.190	0.394	0.000	1.000
Father migration	137	17.371	84.333	0.000	767.121
Father official status	137	0.358	0.481	0.000	1.000
Grandfather official status	137	0.496	0.502	0.000	1.000
Uncle official status	137	0.190	0.394	0.000	1.000

Table A1-1: Summary Statistics (Whole Sample)

Notes: This table shows the summary statistics of the whole sample. See text for variable descriptions and data sources.

	Ν	Mean	Std Dev	Min	Max
Support for reform (continuous)	40	0.446	0.483	0.000	1.000
Support for reform (trichotomous)	40	-0.200	0.992	-1.000	1.000
Support for reform (dichotomous)	40	0.400	0.496	0.000	1.000
Local concentration of kin	40	3.913	8.004	0.010	38.334
Local concentration of kin/N of children	40	2.113	4.217	0.010	15.487
Local concentration of kin (politician)	30	2.043	3.810	0.003	15.106
Local concentration of kin (relational distance discount)	40	0.694	1.335	0.005	6.252
Herfindahl index of kin concentration (county)	40	0.158	0.189	0.034	1.000
Herfindahl index of kin concentration (prefecture)	40	0.189	0.193	0.059	1.000
Herfindahl index of kin concentration (province)	40	0.240	0.175	0.098	1.000
Local concentration of kin (matrilineal discount 0.1)	40	1.882	5.875	0.001	35.514
Local concentration of kin (matrilineal discount 0.2)	40	2.108	5.939	0.002	35.827
Local concentration of kin (matrilineal discount 0.3)	40	2.333	6.055	0.003	36.140
Local concentration of kin (matrilineal discount 0.4)	40	2.559	6.220	0.004	36.454
Local concentration of kin (matrilineal discount 0.5)	40	2.785	6.430	0.005	36.767
Local concentration of kin (matrilineal discount 0.6)	40	3.010	6.680	0.006	37.080
Local concentration of kin (matrilineal discount 0.7)	40	3.236	6.967	0.007	37.394
Local concentration of kin (matrilineal discount 0.8)	40	3.462	7.286	0.008	37.707
Local concentration of kin (matrilineal discount 0.9)	40	3.687	7.633	0.009	38.020
Politician rank change	40	0.525	1.261	-2.000	4.000
Betweenness centrality	40	54.638	79.497	0.000	443.731
Degree centrality	40	17.550	12.469	0.000	50.000
Bonacich power	40	-0.186	1.289	-4.570	2.717
N of kin	40	113.400	117.821	1.000	566.000
N of children	40	2.150	1.545	1.000	8.000
N of children (groups)	40	1.700	0.791	1.000	3.000
Factional tie with reform leader	40	0.325	0.474	0.000	1.000
Politician's first rank	40	2.025	0.832	1.000	4.000
Politician's average rank	40	2.258	0.754	1.000	4.000
Politician's highest rank	40	2.750	1.080	1.000	5.000
Kin centroid exposure to external wars	40	0.025	0.006	0.013	0.039
Kin centroid exposure to mass rebellions	40	0.063	0.017	0.033	0.112
Kin exposure to external wars	40	2.719	2.912	0.017	14.086
Kin exposure to mass rebellions	40	6.206	6.581	0.041	31.798
Ruggedness Index	40	76485.501	41970.659	12010.493	226185.219
Father exam	40	0.175	0.385	0.000	1.000
Father migration	40	5.764	36.458	0.000	230.578
Father official status	40	0.425	0.501	0.000	1.000
Grandfather official status	40	0.625	0.490	0.000	1.000
Uncle official status	40	0.200	0.405	0.000	1.000

Table A1-2: Summary Statistics (Estimating Sample)

Notes: This table shows the summary statistics of the estimating sample. See text for variable descriptions and data sources.

Figure A1-5: Northern Song Politicians' Marriage Network, 1067–1085 CE *Notes:* This figure shows the social network among the 137 major politicians under Emperor Shenzong in the Northern Song Dynasty. Each node is a major politician. Each edge measures whether there is a marriage tie between the two politicians through one's children, as defined in Figure 2. Nodes are color coded to indicate their attitudes toward the reform: support (green), neutral (yellow), and oppose (orange). The layout algorithm uses Fruchterman-Reingold.

Figure A1-6: Conflicts in Northern Song, 1016–1065 CE *Notes:* This figure shows the locations of external war and mass rebellion battles during 1016–1065 in the Northern Song Dynasty.

		0		
Variable	Sample with missing data	Estimating sample	Difference	<i>p</i> -value
Support for reform	267.0	0.446	0.351	0.005
Local concentration of kin	2.512	3.913	-1.401	0.399
Betweenness centrality	13.716	54.638	-40.921	0.000
N of kin	86.700	113.400	-26.700	0.321
N of children	1.833	2.150	-0.317	0.345
Factional tie with reform leader	0.155	0.325	-0.170	0.025
Politician's average rank	1.841	2.258	-0.418	0.001
Kin centroid exposure to external wars	0.027	0.025	0.002	0.187
Kin centroid exposure to mass rebellions	0.059	0.063	-0.004	0.316
Ruggedness Index	77675.500	76485.500	1189.997	0.926
Father exam	0.196	0.175	0.021	0.779
Father migration	22.157	5.764	16.392	0.303
<i>Notes</i> : This table shows the <i>t</i> -test results corr	ıparing the observations with r	missing data and the est	imating sample	

Table A1-3: Comparing Estimating Sample with Observations with Missing Data

Prefecture ID	N of Observations
12899	1
12784	1
11212	2
12721	1
101125	2
101103	1
12966	2
12296	1
11372	1
13902	3
101099	1
101092	1
13341	1
12697	1
11272	1
11167	1
11724	1
13868	2
11172	1
12688	2
12799	1
11403	1
13940	1
13123	1
101009	2
11027	6
11934	1

Table A1-4: Distribution of Politicians across Prefectures

Province ID	N of Observations
11026	8
11141	2
11203	1
11371	1
11703	1
11901	1
12214	1
12669	5
12753	2
12824	1
12907	4
13098	1
13284	1
13867	8
20000	3

Table A1-5: Distribution of Politicians across Provinces

ADDITIONAL TABLES AND FIGURES FOR THE MAIN ANALYSIS

Table A1-6: Family Members' Occupations and Geography of Kinship Network: OLS Estimates

Dependent variable:		Local c	oncentratio	n of kin	
	(1)	(2)	(3)	(4)	(5)
Father official status	-0.073 (0.144)			-0.054 (0.128)	0.131 (0.341)
Grandfather official status		-0.032 (0.114)		-0.035 (0.105)	-0.385 (0.293)
Uncle official status			-0.128 (0.137)	-0.128 (0.142)	-0.021 (0.687)
Prefecture FE	No	No	No	No	Yes
Outcome mean	0.000	0.000	0.000	0.000	0.000
Outcome std.dev. Observations	1.000 40	1.000 40	1.000 40	1.000 40	1.000 40
R2	0.005	0.001	0.016	0.021	0.474

Notes: This table reports the results for the 40 politicians included in the main analysis. The dependent variable is an index on local concentration of kin, with higher values indicating more localized networks. The variables of interest are indicators on whether a family member (father, grandfather, or uncle) was a government official. *Uncle official status* equals 1 if at least one uncle was a government official. All variables are standardized. Robust standard errors clustered at the prefectural level in parentheses. ***, **, and * indicate statistical significance at the 1%, 5%, and 10% levels, respectively.

Table A1-7: Marginal Effect of *Local Concentration of Kin* on *Support for Reform* Conditional on *Kin Exposure to External Wars* and *Kin Exposure to Mass Rebellions*: OLS Estimates

Dependent variable:	Support for r	reform (continuous)	
	(1)	(2)	
Local concentration of kin	-0.187**	-0.214***	
	(0.073)	(0.068)	
Kin exposure to external wars	-0.394***		
-	(0.113)		
Local Concentration of kin*Kin exposure to external wars	-0.252		
	(0.219)		
Kin exposure to mass rebellions		-0.387***	
-		(0.107)	
Local Concentration of kin*Kin exposure to mass rebellions		-0.249	
		(0.184)	
Outcome mean	0.000	0.000	
Outcome std.dev.	1.000	1.000	
Observations	40	40	
R^2	0.178	0.177	

Notes: This table reports the results for the 40 politicians included in the main analysis. The variables of interest is an index on local concentration of kin, with higher values indicating more localized networks. Kin exposure to external wars is measured by $\sum_{k_i \in K_i} \sum_{w \in W} (1 + distance_{k_i,w})^{-1}$, where $distance_{k_i,w}$ is the "as the crow flies" distance (in kilometers) from politician *i*'s kin k_i to an external war battle w. The set W includes all external war battles fought between Song and non-Song regimes, such as Liao and Xixia, from 1016 to 1065. The set K_i includes all politician *i*'s kin members. This index increases as external war battles are closer. Kin exposure to mass rebellions is measured by $\sum_{k_i \in K_i} \sum_{w \in W} (1 + distance_{k_i,w})^{-1}$, where $distance_{k_i,w}$ is the "as the crow flies" distance (in kilometers) from politician *i*'s kin k_i to a mass rebellion battle w. The set W includes all mass rebellion battles from 1016 to 1065. The set K_i includes all politician *i*'s kin members. This index increases as mass rebellion battles are closer. All variables are standardized. Robust standard errors clustered at the prefectural level in parentheses. ***, **, and * indicate statistical significance at the 1%, 5%, and 10% levels, respectively.

Figure A1-7: Marginal Effect of *Local Concentration of Kin* on *Support for Reform* Conditional on *Kin Exposure to External Wars*

Notes: This graph plots the marginal effects of Local concentration of kin on Support for reform, conditional on Kin exposure to external wars. Appendix Table A1-7 (column (1)) reports the regression estimates. Kin exposure to external wars is measured by $\sum_{k_i \in K_i} \sum_{w \in W} (1 + distance_{k_i,w})^{-1}$, where $distance_{k_i,w}$ is the "as the crow flies" distance (in kilometers) from politician *i*'s kin k_i to an external war battle w. The set W includes all external war battles fought between Song and non-Song regimes, such as Liao and Xixia, from 1016 to 1065. The set K_i includes all politician *i*'s kin members. This index increases as external war battles are closer. All variables are standardized. The shaded area is the 95% confidence interval, which is based on standard errors that are clustered at the prefectural level. I use the algorithm proposed by Hainmueller, Mummolo, and Xu (2019) and implement it using Stata's *interflex* command.

Notes: This graph plots the marginal effects of *Local concentration of kin* on *Support for* reform, conditional on *Local exposure to mass rebellions*. Appendix Table A1-7 (column (2)) reports the regression estimates. *Kin exposure to mass rebellions* is measured by $\sum_{k_i \in K_i} \sum_{w \in W} (1 + distance_{k_i,w})^{-1}$, where $distance_{k_i,w}$ is the "as the crow flies" distance (in kilometers) from politician *i*'s kin k_i to a mass rebellion battle w. The set W includes all mass rebellion battles from 1016 to 1065. The set K_i includes all politician *i*'s kin members. This index increases as mass rebellion battles are closer. All variables are standardized. The shaded area is the 95% confidence interval, which is based on standard errors that are clustered at the prefectural level. I use the algorithm proposed by Hainmueller, Mummolo, and Xu (2019) and implement it using Stata's *interflex* command.

Figure A1-9: OLS Estimates with Different Matrilineal Discount Rates *Notes:* This figure shows the OLS estimates of *Local concentration of kin* with various "matrilineal discounts" on *Support for reform.* All regressions control for *Father migration* and hometown prefecture fixed effects (same with column (4) of Table 2). All variables are standardized. Bars show 90% confidence intervals, and lines 95% confidence intervals. Standard errors are clustered at the prefectural level.

Figure A1-10: OLS Estimates Dropping One Politician at a Time *Notes:* This figure shows the OLS estimates of *Local concentration of kin* on *Support for reform*, dropping one politician at a time. All regressions control for *Father migration* and hometown prefecture fixed effects (same with column (4) of Table 2). All variables are standardized. Bars show 90% confidence intervals, and lines 95% confidence intervals. Standard errors are clustered at the prefectural level.

Figure A1-11: OLS Estimates using Randomly Assigned Political Attitudes *Notes:* This figure shows the OLS estimates of *Local concentration of kin* on *Support for reform.* Politicians with unknown political attitudes are randomly assigned an attitude (0,1) by flipping a coin (i.e., drawing from the Bernoulli distribution). All regressions control for *Father migration* and hometown prefecture fixed effects (same with column (4) of Table 2). All variables are standardized. Bars show 90% confidence intervals, and lines 95% confidence intervals. Standard errors are clustered at the prefectural level.

Dependent variable:	Support for re	eform (dichotomous)
	(1)	(2)
Local concentration of kin	-0.208 ^{***} (0.072)	-0.188* (0.092)
Father migration		-0.157^{***} (0.025)
Prefecture FE	No	Yes
Outcome mean	0.000	0.000
Outcome std.dev.	1.000	1.000
Observations	40	40
R^2	0.043	0.673

Table A1-8: Geography of Kinship Network and *Support for Reform*: OLS Estimates with Dichotomous Dependent Variable

Notes: Dependent variable is a dichotomous measure of support for the state-building reform. All variables are standardized. Robust standard errors clustered at the prefectural level in parentheses. ***, **, and * indicate statistical significance at the 1%, 5%, and 10% levels, respectively.

Dependent variable:	Support for re	Support for reform (trichotomous)		
	(1)	(2)		
Local concentration of kin	-0.201 ^{***} (0.055)	-0.231 ^{***} (0.070)		
Father migration		-0.010 (0.013)		
Prefecture FE	No	Yes		
Outcome mean	0.000	0.000		
Outcome std.dev.	1.000	1.000		
Observations	68	68		
R^2	0.041	0.575		

Table A1-9: Geography of Kinship Network and *Support for Reform*: OLS Estimates with Trichotomous Dependent Variable

Notes: Dependent variable is a trichotomous measure of support for the state-building reform. All variables are standardized. Robust standard errors clustered at the prefectural level in parentheses. ***, **, and * indicate statistical significance at the 1%, 5%, and 10% levels, respectively.

Table A1-10: Geography of Kinship Network and *Support for Reform*: OLS Estimates with Policy-Relevant Sample

Dependent variable:	Support for reform (continuous)		
	(1)	(2)	
Local concentration of kin	-0.285 ^{***} (0.082)	-0.445 ^{***} (0.100)	
Father migration		-0.145 ^{***} (0.027)	
Prefecture FE	No	Yes	
Outcome mean	0.000	0.000	
Outcome std.dev.	1.000	1.000	
Observations	32	32	
R^2	0.081	0.741	

Notes: Sample includes only policy-relevant politicians. All variables are standardized. Robust standard errors clustered at the prefectural level in parentheses. ***, **, and * indicate statistical significance at the 1%, 5%, and 10% levels, respectively.

Dependent variable:	Support for reform (continuous)			
	(1)	(2)		
Local concentration of kin (politician)	-0.179 ^{**} (0.070)	-0.598*** (0.138)		
Father migration		-0.208 ^{***} (0.063)		
Prefecture FE	No	Yes		
Outcome mean	0.000	0.000		
Outcome std.dev.	1.000	1.000		
Observations	30	30		
R^2	0.032	0.891		

Table A1-11: Geography of Kinship Network and *Support for Reform*: OLS Estimates with Politician's Own Marriage Network

Notes: The variable of interest is an index on local concentration of kin, who were connected with the politician through his own marriage(s) (rather than his children's marriages). All variables are standardized. Robust standard errors clustered at the prefectural level in parentheses. ***, **, and * indicate statistical significance at the 1%, 5%, and 10% levels, respectively.

Second stage				
Dependent variable:	Support for r	Support for reform (continuous)		
	(1)	(2)		
Local concentration of kin	-0.242***	-0.625***		
	(0.091)	(0.057)		
Father migration		-0.161***		
		(0.021)		
Prefecture FE	No	Yes		
Outcome mean	0.000	0.000		
Outcome std.dev.	1.000	1.000		
Observations	30	30		
R^2	0.069	0.835		
First	stage			
Dependent variable:	Local concentration of kin			
	(1)	(2)		
Local concentration of kin (politician)	0.738***	0.956***		
	(0.089)	(0.018)		
Father migration		0.075***		
C C		(0.008)		
Prefecture FE	No	Yes		
Outcome mean	0.000	0.000		
Outcome std.dev.	1.000	1.000		
Observations	30	30		
F-stat of excluded instrument	68.77	2,855.86		
R^2	0.545	0.820		

Table A1-12: Geography of Kinship Network and *Support for Reform*: IV Estimates with Politician's Own Marriage Network

Notes: This table presents the two-stage least-squares estimates of the effects of *Local concentration of kin* on *Support for reform*. The upper panel presents the second-stage results, while the bottom panel presents the first-stage results. The variable of interest in the upper panel is an index on local concentration of kin, who were connected with the politician through his children's marriages. The variable of interest in the lower panel is an index on local concentration of kin, who were connected with the politician through his children's marriages. The variable of interest in the lower panel is an index on local concentration of kin, who were connected with the politician through his own marriage(s). All variables are standardized. Robust standard errors clustered at the prefectural level in parentheses. ***, **, and * indicate statistical significance at the 1%, 5%, and 10% levels, respectively.

Dependent variable:	Support for reform (continuous)			
	(1)	(2)	(3)	(4)
Local concentration of kin (IHS)	-0.367 ^{***} (0.124)	-0.590* (0.343)		
Local concentration of kin (square root)			-0.665 ^{***} (0.216)	-1.051 [*] (0.543)
Father migration		-0.124 ^{**} (0.060)		-0.126** (0.055)
Prefecture FE	No	Yes	No	Yes
Outcome mean	0.000	0.000	0.000	0.000
Outcome std.dev.	1.000	1.000	1.000	1.000
Observations	40	40	40	40
R^2	0.057	0.713	0.059	0.717

Table A1-13: Geography of Kinship Network and *Support for Reform*: OLS Estimates with Transformed Independent Variables

Notes: Variable of interest in columns (1)-(2) is the inverse hyperbolic sine (IHS) of *Local concentration of kin. Local concentration of kin* (*IHS*) \equiv ln[*Local concentration of kin* + (*Local concentration of kin*² + 1)^{1/2}]. For advantages of using IHS transformation, see Burbidge, Magee, and Robb (1988). Variable of interest in columns (3)-(4) is the square root of *Local concentration of kin.* All variables are standardized. Robust standard errors clustered at the prefectural level in parentheses. ***, **, and * indicate statistical significance at the 1%, 5%, and 10% levels, respectively.

Dependent variable:	Support for reform (continuous)	
-	(1)	(2)
Local concentration of kin/N of children	-0.278 ^{***} (0.089)	-0.452* (0.261)
Father migration		-0.107 ^{**} (0.050)
Prefecture FE	No	Yes
Outcome mean	0.000	0.000
Outcome std.dev.	1.000	1.000
Observations	40	40
R^2	0.077	0.738

Table A1-14: Geography of Kinship Network and *Support for Reform*: OLS Estimates with Local Concentration of Kin Weighted by Number of Children

Notes: Variable of interest is an index on local concentration of kin divided by the number of children. All variables are standardized. Robust standard errors clustered at the prefectural level in parentheses. ***, **, and * indicate statistical significance at the 1%, 5%, and 10% levels, respectively.

Dependent variable:	Support for reform (continue		
	(1)	(2)	
Local concentration of kin (relational distance discount)	-0.215 ^{***} (0.073)	-0.381*** (0.133)	
Father migration		-0.128*** (0.038)	
Prefecture FE	No	Yes	
Outcome mean Outcome std.dev.	0.000 1.000	0.000 1.000	
Observations R^2	40 0.046	40 0.719	

Table A1-15: Geography of Kinship Network and *Support for Reform*: OLS Estimates with Relational Distance Weighted Independent Variable

Notes: Variable of interest is an index on local concentration of kin (relational distance discount). All variables are standardized. Robust standard errors clustered at the prefectural level in parentheses. ***, **, and * indicate statistical significance at the 1%, 5%, and 10% levels, respectively.

tration						
Dependent variable:		Supp	ort for refo	rm (continuo	(sn	
	(1)	(2)	(3)	(4)	(5)	(9)
Herfindahl index of kin concentration (county)	-0.271 ^{**} (0.114)	-0.481 (2.050)				
Herfindahl index of kin concentration (prefecture)			-0.300** (0.122)	-0.493 (1.270)		
Herfindahl index of kin concentration (province)					-0.266** (0.124)	-0.248 (1.375)
Father migration		-0.063 (0.122)		-0.081 (0.118)		-0.043 (0.053)
N of kin	-0.460*** (0.115)	-0.423** (0.173)	-0.476*** (0.111)	-0.466*** (0.115)	-0.463 ^{***} (0.108)	-0.383 (0.237)
Prefecture FE	No	Yes	No	Yes	No	Yes
Outcome mean	0.000	0.000	0.000	0.000	0.000	0.000
Outcome std.dev.	1.000	1.000	1.000	1.000	1.000	1.000
Observations	40	40	40	40	40	40
R^2	0.175	o.687	0.188	007.0	0.172	0.683
Notes: Variable of interest is a Herfindahl index or	n the concer	itration of	kin. The F	lerfindahl in	dex is const	ructed as
$\sum_{j \in J} kinpercent_j^2$, where $kinpercent_j$ is the share operative prefecture (columns (3)-(4)), or province (columns (of kin meml (5)-(6)). Th	bers in adm e set J incl	inistrative u udes all the	unit j – cour administrati	nty (column ve units in	s (1)-(2)), which kin
members live. This index increases as more relatives is bust standard errors clustered at the prefectural level	are concentra in parenthes	ated in a feves.	v localities. and * indica	All variables te statistical	are standard significance	lized. Ro- at the 1%.
5%, and 10% levels, respectively.	- 				0	

Ċ C ۶ C C (. Table

Dependent variable:	Support for reform (continuous)			
	(1)	(2)	(3)	(4)
Local concentration of kin	-0.198** (0.092)	-0.364* (0.187)	-0.244 ^{***} (0.066)	-0.406** (0.184)
Degree centrality	-0.204 (0.185)	-0.175 (0.723)		
Bonacich power			-0.039 (0.169)	0.117 (0.937)
Father migration		-0.160 (0.126)		-0.154 (0.238)
Prefecture FE	No	Yes	No	Yes
Outcome mean	0.000	0.000	0.000	0.000
Outcome std.dev.	1.000	1.000	1.000	1.000
Observations	40	40	40	40
R^2	0.101	0.742	0.064	0.733

Table A1-17: Geography of Kinship Network and *Support for Reform*: OLS Estimates with Alternative Centrality Measures

Notes: Covariate in columns (1)-(2) is *Degree centrality* – the number of ties a politician had in the marriage network among 137 politicians. Covariate in columns (3)-(4) is *Bonacich power* – a centrality measure that takes into account how many ties a politician had and how many ties the politicians in the neighborhood had. All variables are standardized. Robust standard errors clustered at the prefectural level in parentheses. ***, **, and * indicate statistical significance at the 1%, 5%, and 10% levels, respectively.

Dependent variable:	Support for reform (continuous)		
	(1)	(2)	
Local concentration of kin	-0.186* (0.104)	-0.248 (0.300)	
Children group (2-3 children)	-0.445 (0.340)	-0.526 (1.108)	
Children group (>3 children)	0.238 (0.327)	0.205 (0.977)	
Father migration		-0.137 (0.093)	
Prefecture FE	No	Yes	
Outcome mean	0.000	0.000	
Outcome std.dev.	1.000	1.000	
Observations	40	40	
R^2	0.123	0.753	

Table A1-18: Geography of Kinship Network and *Support for Reform*: OLS Estimates Controlling for Number of Children Flexibly

Notes: Variable of interest is an index on local concentration of kin. Children group is an ordinal variable with three categories: 1 child, 2-3 children, and more than 3 children. The latter two groups enter the regressions, with the first group as the reference group. All variables are standardized. Robust standard errors clustered at the prefectural level in parentheses. ***, **, and * indicate statistical significance at the 1%, 5%, and 10% levels, respectively.

Dependent variable:	Support for reform (continuous)			
	(1)	(2)	(3)	(4)
Local concentration of kin	-0.262 ^{***} (0.067)	-0.400 ^{***} (0.101)	-0.247 ^{***} (0.069)	-0.408*** (0.139)
Politician's highest rank	0.144 (0.149)	-0.102 (0.406)		
Politician's first rank			-0.117 (0.142)	-0.149 (0.441)
Father migration		-0.148* (0.080)		-0.163 (0.115)
Prefecture FE	No	Yes	No	Yes
Outcome mean	0.000	0.000	0.000	0.000
Outcome std.dev.	1.000	1.000	1.000	1.000
Observations	40	40	40	40
R^2	0.083	0.736	0.076	0.740

Table A1-19: Geography of Kinship Network and *Support for Reform*: OLS Estimates Controlling for Politician's Highest or First Rank

Notes: Variable of interest is an index on local concentration of kin. A politician's rank ranges from 1 to 6, with higher numbers indicating higher ranks. Politician's highest rank is the highest rank the politician held during Shenzong's reign. Politician's first rank is the first rank the politician held during Shenzong's reign. All variables are standardized. Robust standard errors clustered at the prefectural level in parentheses. ***, **, and * indicate statistical significance at the 1%, 5%, and 10% levels, respectively.

Dependent variable:	Support for reform (continuous)
Local concentration of kin	-0.018**
	(0.008)
Observations	137

Table A1-20: Geography of Kinship Network and *Support for Reform*: OLS Estimates with Imputed Datasets

Notes: Multiple imputation is a Monte Carlo technique in which the missing values are replaced by multiple simulated versions. In Rubin's (1996) method for 'repeated imputation' inference, each of the simulated complete datasets is analyzed by standard methods, and the results are later combined to produce estimates and confidence intervals that incorporate missing-data uncertainty. I use Stata's *mi* suit of commands to create 20 imputations for each missing value in the dependent variable and independent variable. I then fit an OLS model separately on each of the 20 imputed datasets and combine the results. Robust standard errors clustered at the prefectural level in parentheses. ***, **, and * indicate statistical significance at the 1%, 5%, and 10% levels, respectively.

Dependent variable: Support for reform (continuous) (1)(2)-0.250*** Local concentration of kin -0.287*** (0.069)(0.049)0.160*** Father migration (0.001)**Provincial FE** No Yes Outcome mean 0.000 0.000 Outcome std.dev. 1.000 1.000 Observations 40 40 \mathbb{R}^2 0.062 0.461

Table A1-21: Geography of Kinship Network and *Support for Reform*: OLS Estimates with Province Fixed Effects

Notes: Column (2) controls for province fixed effects. All variables are standardized. Robust standard errors clustered at the provincial level in parentheses. ***, **, and * indicate statistical significance at the 1%, 5%, and 10% levels, respectively.

|--|

Observables	AET Ratio
Combination (1): All covariates, including prefecture f.e.	13.650
Combination (2): Only prefecture f.e.	15.328

Notes: This table reports the "AET ratio" based on Altonji, Elder, and Taber (2005) and implemented by Chaudoin, Hays, and Hicks's (2018) Stata command *poet*. The higher is the ratio, the stronger selection on unobservables needs to be, relative to observables, to explain away the entire effect.

References for the Online Appendix:

Altonji, Joseph G, Todd E Elder, and Christopher R Taber. 2005. "Selection on Observed and Unobserved Variables: Assessing the Effectiveness of Catholic Schools." *Journal of Political Economy* 113 (1): 151–184.

Burbidge, John B., Lonnie Magee, and A. Leslie Robb. 1988. "Alternative Transformations to Handle Extreme Values of the Dependent Variable." *Journal of the American Statistical Association* 83 (401): 123–127.

Chaudoin, Stephen, Jude Hays, and Raymond Hicks. 2018. "Do We Really Know the WTO Cures Cancer?" *British Journal of Political Science* 48 (4): 903–928.

CHGIS. 2018. China Historical Geographic Information System.

Hainmueller, Jens, Jonathan Mummolo, and Yiqing Xu. 2019. "How Much Should We Trust Estimates from Multiplicative Interaction Models? Simple Tools to Improve Empirical Practice." *Political Analysis* 27 (2): 163–192.

Rubin, Donald B. 1996. "Multiple Imputation after 18+ Years." *Journal of the American Statistical Association* 91 (434): 473–489.