ONLINE SUPPLEMENTAL APPENDIX Motivated reasoning and democratic accountability American Political Science Review

Andrew T. Little* Keith E. Schnakenberg ${ }^{\dagger}$ Ian R. Turner ${ }^{\ddagger}$

September 2021

Contents

A Main examples 2
A. 1 Polarized partisanship. 2
A. 2 Confirmation bias. 3
A. 3 Spatial motivations. 3
B Proofs of results 4
B. 1 Proposition 1 4
B. 2 Lemma 1 5
B. 3 Proposition 2 6
B. 4 Proposition 3 8
B. 5 Corollary 2 10
B. 6 Remark 1 11

[^0]
A Main examples

In this section we provide the derivations for each of the three examples: polarized partisanship, spatial motivations, and confirmation bias. We also show when each optimal conclusion approaches the mean of the Bayesian belief. In general we have that each voter j forms an optimal conclusion by maximizing the following with respect to $\tilde{\theta}_{I}$,

$$
\begin{aligned}
\log f_{\theta_{I} \mid s}\left(\tilde{\theta}_{I} \mid s\right)+\delta v\left(a_{j}, \tilde{\theta}_{I}\right) & =\log \left(\frac{1}{\bar{\sigma}_{\theta} \sqrt{2 \pi}} e^{-\frac{\left(\tilde{\theta}_{I}-\bar{\mu}(s)\right)^{2}}{2 \bar{\sigma}_{\theta}^{2}}}\right)+\delta v\left(a_{j}, \tilde{\theta}_{I}\right) \\
& =-\log \left(\bar{\sigma}_{\theta}\right)-\frac{1}{2} \log (2 \pi)-\frac{\left(\tilde{\theta}_{I}-\bar{\mu}(s)\right)^{2}}{2 \bar{\sigma}_{\theta}^{2}}+\delta v\left(a_{j}, \tilde{\theta}_{I}\right) .
\end{aligned}
$$

Differentiating yields the general first-order condition:

$$
\begin{equation*}
-\frac{\tilde{\theta}_{I}-\bar{\mu}(s)}{\bar{\sigma}_{\theta}^{2}}+\delta \frac{\partial v\left(a_{j}, \tilde{\theta}_{I}\right)}{\partial \tilde{\theta}_{I}}=0 \tag{1}
\end{equation*}
$$

For each example we need only plug in the particular functional form for $v\left(a_{j}, \tilde{\theta}_{I}\right)$.

A. 1 Polarized partisanship.

In the first example in which voters are motivated to form 'large' conclusions (in absolute terms), in the direction of their affinities, we set $v\left(a_{j}, \tilde{\theta}_{I}\right)=\tilde{\theta}_{I} a_{j}$. Thus, $\frac{\partial v\left(a_{j}, \tilde{\theta}_{I}\right)}{\partial \tilde{\theta}_{I}}=a_{j}$. Plugging this into (1) we recover j 's optimal conclusion from the first example:

$$
\begin{aligned}
-\frac{\tilde{\theta}_{I}-\bar{\mu}(s)}{\bar{\sigma}_{\theta}^{2}}+\delta a_{j} & =0 \\
\tilde{\theta}_{I} & =\bar{\mu}(s)+\delta \bar{\sigma}_{\theta}^{2} a_{j}
\end{aligned}
$$

It is straightforward to see that the optimal conclusion approaches the mean of the Bayesian posterior when $\delta, \bar{\sigma}_{\theta}^{2}$, and a_{j} approach 0 :

$$
\begin{aligned}
\lim _{\delta \rightarrow 0}\left[\bar{\mu}(s)+\delta \bar{\sigma}_{\theta}^{2} a_{j}\right] & =\bar{\mu}(s), \\
\lim _{\bar{\sigma}_{\theta}^{2} \rightarrow 0}\left[\bar{\mu}(s)+\delta \bar{\sigma}_{\theta}^{2} a_{j}\right] & =\bar{\mu}(s), \\
\lim _{a_{j} \rightarrow 0}\left[\bar{\mu}(s)+\delta \bar{\sigma}_{\theta}^{2} a_{j}\right] & =\bar{\mu}(s) .
\end{aligned}
$$

A. 2 Confirmation bias.

In the second example we set $v\left(a_{j}, \tilde{\theta}_{I}\right)=-\tilde{\theta}_{I}^{2}$ so voters are motivated to form conclusions near their prior of 0 . Thus, $\frac{\partial v\left(a_{j}, \tilde{\theta}_{I}\right)}{\partial \tilde{\theta}_{I}}=-2 \tilde{\theta}_{I}$. This yields the first-order condition,

$$
\begin{aligned}
-\frac{\tilde{\theta}_{I}-\bar{\mu}(s)}{\bar{\sigma}_{\theta}^{2}}-2 \delta \tilde{\theta}_{I} & =0 \\
\tilde{\theta}_{I} & =\frac{\bar{\mu}(s)}{1+2 \delta \bar{\sigma}_{\theta}^{2}}
\end{aligned}
$$

In terms of when the optimal conclusion approaches the fully Bayesian benchmark we have:

$$
\begin{aligned}
\lim _{\delta \rightarrow 0}\left[\frac{\bar{\mu}(s)}{1+2 \delta \bar{\sigma}_{\theta}^{2}}\right] & =\bar{\mu}(s), \\
\lim _{\bar{\sigma}_{\theta}^{2} \rightarrow 0}\left[\frac{\bar{\mu}(s)}{1+2 \delta \bar{\sigma}_{\theta}^{2}}\right] & =\bar{\mu}(s),
\end{aligned}
$$

and that a_{j} does not impact distortions in this case.

A. 3 Spatial motivations.

In the final example where voters are motivated to match their conclusions to their affinity for the incumbent we set $v\left(a_{j}, \tilde{\theta}_{I}\right)=-\left(a_{j}-\tilde{\theta}_{I}\right)^{2}$. Accordingly, $\frac{\partial v\left(a_{j}, \tilde{\theta}_{I}\right)}{\partial \tilde{\theta}_{I}}=2\left(a_{j}-\tilde{\theta}_{I}\right)$. Plugging in to (1) we have,

$$
\begin{aligned}
-\frac{\tilde{\theta}_{I}-\bar{\mu}(s)}{\bar{\sigma}_{\theta}^{2}}+\delta 2\left(a_{j}-\tilde{\theta}_{I}\right) & =0 \\
\tilde{\theta}_{I} & =\frac{\bar{\mu}(s)+2 \delta a_{j} \bar{\sigma}_{\theta}^{2}}{1+2 \delta \bar{\sigma}_{\theta}^{2}}
\end{aligned}
$$

which can be rewritten as

$$
\tilde{\theta}_{I}=\frac{1}{1+2 \delta \bar{\sigma}_{\theta}^{2}} \bar{\mu}(s)+\frac{2 \delta \bar{\sigma}_{\theta}^{2}}{1+2 \delta \bar{\sigma}_{\theta}^{2}} a_{j} .
$$

We can characterize when the optimal conclusion approaches the mean of the Bayesian posterior as follows:

$$
\begin{aligned}
\lim _{\delta \rightarrow 0}\left[\frac{\bar{\mu}(s)+2 \delta a_{j} \bar{\sigma}_{\theta}^{2}}{1+2 \delta \bar{\sigma}_{\theta}^{2}}\right] & =\bar{\mu}(s), \\
\lim _{\bar{\sigma}_{\theta}^{2} \rightarrow 0}\left[\frac{\bar{\mu}(s)+2 \delta a_{j} \bar{\sigma}_{\theta}^{2}}{1+2 \delta \bar{\sigma}_{\theta}^{2}}\right] & =\bar{\mu}(s), \\
\lim _{a_{j} \rightarrow 0}\left[\frac{\bar{\mu}(s)+2 \delta a_{j} \bar{\sigma}_{\theta}^{2}}{1+2 \delta \bar{\sigma}_{\theta}^{2}}\right] & =\frac{\bar{\mu}(s)}{1+2 \delta \bar{\sigma}_{\theta}^{2}} .
\end{aligned}
$$

Since $1+2 \delta \bar{\sigma}_{\theta}^{2}>1$, a voter with $a_{j}=0$ only has a conclusion equal to the Bayesian mean if $\bar{\mu}(s)$ is exactly equal to zero (which happens with probability zero). So, motivated reasoning still manifests in this case even for completely "neutral" voters.

B Proofs of results

B. 1 Proposition 1

Proposition 1. Under Assumption 1:

(i) there exists a unique optimal conclusion $\tilde{\theta}_{I}^{*}\left(s, a_{j}, \delta ; \hat{e}\right)$ for each voter $j \in N$,
(ii) if $\frac{\partial^{2} v\left(a_{j}, \tilde{\theta}_{I}\right)}{\partial a_{j} \partial \tilde{\theta}_{I}}>0$, then the optimal conclusion is strictly increasing in the voter affinity $\left(\frac{\partial \tilde{\theta}_{I}^{*}}{\partial a_{j}}>0\right)$, and the strength of this relationship is increasing in the directional motive ($\frac{\partial^{2} \tilde{\theta}_{I}^{*}}{\partial a_{j} \partial \delta}>0$), and
(iii) the optimal conclusion is strictly increasing in the signal of performance ($\frac{\partial \tilde{\theta}_{1}^{*}}{\partial s}>0$), and if v is strictly concave in θ, then the strength of this relationship is strictly decreasing in the directional motive ($\frac{\partial^{2} \tilde{\theta}_{I}^{*}}{\partial s \partial \delta}<0$).

Proof of Proposition 1. The first-order condition for an optimal conclusion is

$$
\begin{equation*}
-\frac{\tilde{\theta}_{I}-\bar{\mu}(s)}{\bar{\sigma}_{\theta}^{2}}+\delta \frac{\partial v\left(a_{j}, \tilde{\theta}_{I}\right)}{\partial \tilde{\theta}_{I}}=0 . \tag{2}
\end{equation*}
$$

For part (i). The first term is linear and strictly decreasing in $\tilde{\theta}_{I}$, and the second term is weakly decreasing in $\tilde{\theta}_{I}$, and so

$$
\lim _{\theta \rightarrow \infty}\left[-\frac{\tilde{\theta}_{I}-\bar{\mu}(s)}{\bar{\sigma}_{\theta}^{2}}+\delta \frac{\partial v\left(a_{j}, \tilde{\theta}_{I}\right)}{\partial \theta}\right]=-\infty
$$

and

$$
\lim _{\theta \rightarrow-\infty}\left[-\frac{\tilde{\theta}_{I}-\bar{\mu}(s)}{\bar{\sigma}_{\theta}^{2}}+\delta \frac{\partial v\left(a_{j}, \tilde{\theta}_{I}\right)}{\partial \tilde{\theta}_{I}}\right]=\infty .
$$

Thus, we have $-\frac{\theta_{I}-\bar{\mu}(s)}{\bar{\sigma}_{\theta}^{2}}+\delta \frac{\partial v\left(a_{j}, \tilde{\theta}_{I}\right)}{\partial \tilde{\theta}_{I}}>0$ for some $\tilde{\theta}_{I}<0$ and $-\frac{\tilde{\theta}_{I}-\bar{\mu}(s)}{\bar{\sigma}_{\theta}^{2}}+\delta \frac{\partial v\left(a_{j}, \tilde{\theta}_{I}\right)}{\partial \tilde{\theta}_{I}}<0$ for some $\theta>0$. By continuity, there exists some $\tilde{\theta}_{I}^{*}\left(s, a_{j}, \delta ; \hat{e}\right)$ that solves (2). Strict concavity of the objective function implies that this is the unique maximum.

For part (ii), applying the implicit function theorem to (2) gives

$$
\frac{\partial \tilde{\theta}_{I}^{*}}{\partial a_{j}}=-\frac{\delta \frac{\partial^{2} v\left(a_{j}, \tilde{\theta}_{I}\right)}{\partial \tilde{\theta}_{I} \partial a_{j}}}{-\frac{1}{\bar{\sigma}_{\theta}^{2}}+\delta \frac{\partial^{2} v}{\partial \hat{\theta}_{I}^{2}}}=\frac{\frac{\partial^{2} v\left(a_{j}, \tilde{\theta}_{I}\right)}{\partial \tilde{\theta}_{I} \partial a_{j}}}{\frac{1}{\delta \bar{\sigma}_{\theta}^{2}}-\frac{\partial^{2} v}{\partial \hat{\theta}_{I}^{2}}}
$$

If $\frac{\partial^{2} v\left(a_{j}, \tilde{\theta}_{I}\right)}{\partial a_{j} \partial \tilde{\theta}_{I}}=0$ then this derivative is zero.
If $\frac{\partial^{2} v\left(a_{j}, \tilde{I}_{I}\right)}{\partial a_{j} \partial \tilde{\theta}_{I}}>0$, then the numerator of the right-most expression is strictly positive, and the denominator must be strictly positive since $\frac{1}{\bar{\sigma}_{\theta}^{2}}>0$ and $\delta \frac{\partial^{2} v}{\partial \tilde{\theta}_{I}^{2}} \leq 0$, which implies $\frac{\partial \tilde{\theta}^{*}}{\partial a_{j}}>0$. Further, the denominator is decreasing in δ, and hence $\frac{\partial \tilde{\theta}_{I}^{*}}{\partial a_{j}}$ is strictly increasing in δ.

For part (iii), implicitly differentiating the first-order condition with respect to s gives

$$
\frac{\partial \tilde{\theta}_{I}^{*}}{\partial s}=-\frac{\frac{\bar{\mu}^{\prime}(s)}{\bar{\sigma}_{\theta}^{2}}}{-\frac{1}{\bar{\sigma}_{\theta}^{2}}+\delta \frac{\partial^{2} v}{\partial \hat{\theta}_{I}^{2}}}=\frac{\frac{\bar{\mu}^{\prime}(s)}{\bar{\sigma}_{\theta}^{2}}}{\frac{1}{\bar{\sigma}_{\theta}^{2}}-\delta \frac{\partial^{2} v}{\partial \hat{\theta}_{I}^{2}}}
$$

The numerator and denominator in the right-most expression are both strictly positive, hence $\frac{\partial \tilde{\theta}^{*}}{\partial s}>$ 0. If $\frac{\partial^{2} v}{\partial \dot{\theta}_{I}^{2}}=0$ then this derivative is not a function of δ, and if $\frac{\partial^{2} v}{\partial \dot{\theta}_{I}^{2}}<0$ it is decreasing in δ.

B. 2 Lemma 1

Lemma 1. Under Assumptions 1 and 2,
(i) the optimal conclusion is linear in a_{j} and s. In particular, it can be written:

$$
\begin{equation*}
\tilde{\theta}_{I}^{*}\left(s, a_{j}, \delta ; \hat{e}\right)=\alpha_{0}+\alpha_{1} a_{j}+\beta(s-\hat{e}), \tag{3}
\end{equation*}
$$

where $\alpha_{1} \geq 0$ and $\beta \geq 0$.
(ii) α_{1} is strictly increasing in δ if and only if $\frac{\partial^{2} v\left(a_{j}, \tilde{\theta}_{I}\right)}{\partial \tilde{\theta}_{I} \partial a_{j}}>0$.
(iii) β is strictly decreasing in δ if and only if v is strictly concave in $\tilde{\theta}_{I}$.

Proof of Lemma 1. Recall that the first-order condition for an optimal conclusion is

$$
-\frac{\tilde{\theta}_{I}-\bar{\mu}(s)}{\bar{\sigma}_{\theta}^{2}}+\delta \frac{\partial v\left(a_{j}, \tilde{\theta}_{I}\right)}{\partial \tilde{\theta}_{I}}=0 .
$$

With assumption 2, we can write $\frac{\partial v\left(a_{j} \tilde{\theta}_{I}\right)}{\partial \tilde{\theta}_{I}}=\gamma_{0}+\gamma_{\theta} \tilde{\theta}_{I}+\gamma_{a} a_{j}$. Solving for $\tilde{\theta}_{I}$ yields

$$
\begin{aligned}
\tilde{\theta}_{I} & =\frac{\bar{\mu}(s)+\gamma_{0} \delta \bar{\sigma}_{\theta}^{2}+a_{j} \delta \gamma_{a} \bar{\sigma}_{\theta}^{2}}{1-\delta \gamma_{\theta} \bar{\sigma}_{\theta}^{2}} \\
& =\frac{\frac{\sigma_{\varepsilon}^{2}(s-\hat{e})}{\sigma_{\varepsilon}^{2}+\sigma_{\theta}^{2}}+\gamma_{0} \delta \bar{\sigma}_{\theta}^{2}+a_{j} \delta \gamma_{a} \bar{\sigma}_{\theta}^{2}}{1-\delta \gamma_{\theta} \bar{\sigma}_{\theta}^{2}} \\
& =\underbrace{\frac{\gamma_{0} \delta \bar{\sigma}_{\theta}^{2}}{1-\delta \gamma_{\theta} \bar{\sigma}_{\theta}^{2}}}_{=\alpha_{0}}+\underbrace{\frac{\delta \gamma_{a} \bar{\sigma}_{\theta}^{2}}{1-\delta \gamma_{\theta} \bar{\sigma}_{\theta}^{2}}}_{=\alpha_{1}} a_{j}+\underbrace{\frac{\sigma_{\varepsilon}^{2}}{\left(\sigma_{\varepsilon}^{2}+\sigma_{\theta}^{2}\right)\left(1-\delta \gamma_{\theta} \bar{\sigma}_{\theta}^{2}\right)}}_{=\beta}(s-\hat{e})
\end{aligned}
$$

Since $\delta \geq 0, \gamma_{\theta} \leq 0$, and $\bar{\sigma}_{\theta}^{2}>0,1-\delta \gamma_{\theta} \bar{\sigma}_{\theta}^{2} \geq 0$, i.e., the denominators of all three fractions in this expression are positive. This implies that β is strictly positive, and α_{1} is weakly positive (and strictly positive if the numerator is strictly positive).

For part (ii), given the linear specification $\frac{\partial^{2} v\left(a_{j} ; \tilde{\theta}_{I}\right)}{\partial \tilde{\theta}_{I} \partial a_{j}}=0$ if and only if $\gamma_{a}=0$, which implies $\alpha_{1}=0 . \frac{\partial^{2} v\left(a_{j}, \tilde{\theta}_{I}\right)}{\partial \tilde{\theta}_{I} \partial a_{j}}>0$ when $\gamma_{a}>0$, in which case $\frac{\partial \alpha_{1}}{\partial \delta}>0$.

For part (iii), given the linear specification $\frac{\partial^{2} v\left(a_{j}, \tilde{\theta}_{I}\right)}{\partial \tilde{\theta}_{I}^{2}}=\gamma_{\theta}$. The weak concavity assumption in this specification is that $\gamma_{\theta} \leq 0$, with $\gamma_{\theta}<0$ capturing strict concavity. If $\gamma_{\theta}=0$, then $\beta=\frac{\sigma_{\varepsilon}^{2}}{\sigma_{\varepsilon}^{2}+\sigma_{\theta}^{2}}$, which is not a function of δ. If $\gamma_{\theta}<0$, then $\frac{\partial \beta}{\partial \delta}<0$.

B. 3 Proposition 2

Proposition 2. Under assumption 2:
(i) If $a_{m}=0$ or the election is a dead heat ($\mu_{c}-\mu_{\eta}-a_{m}-\alpha_{0}-\alpha_{1} a_{m}=0$), then polarization has no impact on incumbent effort.
(ii) If $a_{m} \neq 0$, then increasing polarization (i.e. increases in α_{1}) increases effort when the incumbent is behind $\left(\mu_{c}-\mu_{\eta}-a_{m}-\alpha_{0}-\alpha_{1} a_{m}<0\right)$ and $a_{m}>0$ or the incumbent is ahead $\left(\mu_{c}-\mu_{\eta}-\right.$ $a_{m}-\alpha_{0}-\alpha_{1} a_{m}>0$) and $a_{m}<0$, and decreases effort otherwise.

Proof of Proposition 2. By Corollary 1 the incumbent is reelected if

$$
\tilde{\theta}_{I}^{*}\left(s, a_{m}, \delta ; \hat{e}\right)+a_{m}+\eta_{I} \geq \mu_{C}+\eta_{C} .
$$

Substituting the linear form of θ^{*} from Lemma 1 and the definition of the signal s we can express this conditions as

$$
\alpha_{0}+\alpha_{1} a_{m}+\beta\left(\theta_{I}+\varepsilon+e-\hat{e}\right)+a_{m}+\eta_{I} \geq \mu_{C}+\eta_{C}
$$

Re-arranging to place all random variables on the same side gives:

$$
\beta \theta_{I}+\beta \varepsilon+\eta_{I}-\eta_{c} \geq \mu_{c}-a_{m}-\alpha_{0}-\alpha_{1} a_{m}-\beta(e-\hat{e})
$$

Since θ_{I}, ε, and $\eta_{I}-\eta_{C}$ are all normal (and independent), the sum of the left-hand side is normal with mean μ_{η} and variance $\beta^{2} \sigma_{\theta}^{2}+\beta^{2} \sigma_{\varepsilon}^{2}+\sigma_{\eta}^{2}$. The probability of reelection given an effort level e from the Incumbent's perspective is then

$$
\operatorname{Pr}[R=1 \mid e]=1-\Phi\left(\frac{\mu_{c}-a_{m}-\alpha_{0}-\alpha_{1} a_{m}-\beta(e-\hat{e})-\mu_{\eta}}{\sqrt{\beta^{2} \sigma_{\theta}^{2}+\beta^{2} \sigma_{\varepsilon}^{2}+\sigma_{\eta}^{2}}}\right) .
$$

If the incumbent could exert no effort and the voter knew this ($e=\hat{e}=0$), the re-election probability is less than $1 / 2$ if and only if $\mu_{c}-\mu_{\eta}-a_{m}-\alpha_{0}-\alpha_{1} a_{m}<0$, which is why we refer to this condition as indicating when the incumbent is "behind". (This property also implies the equilibrium probability of re-election when voters correctly infer $e=\hat{e}$ will be less than $1 / 2$.) Conversely, if $\mu_{c}-\mu_{\eta}-a_{m}-\alpha_{0}-\alpha_{1} a_{m}>0$ then the re-election probability is above $1 / 2$, and we say the incumbent is "ahead".

The marginal effect of effort on reelection is

$$
\frac{\partial \operatorname{Pr}[R=1 \mid e]}{\partial e}=\frac{\beta}{\sqrt{\beta^{2} \sigma_{\theta}^{2}+\beta^{2} \sigma_{\varepsilon}^{2}+\sigma_{\eta}^{2}}} \phi\left(\frac{\mu_{c}-a_{m}-\alpha_{0}-\alpha_{1} a_{m}-\beta(e-\hat{e})-\mu_{\eta}}{\sqrt{\beta^{2} \sigma_{\theta}^{2}+\beta^{2} \sigma_{\varepsilon}^{2}+\sigma_{\eta}^{2}}}\right)
$$

The equilibrium effort level depends on this marginal return evaluated at the point where the voter expectation is correct, i.e., $e=\hat{e}$:

$$
\left.\frac{\partial \operatorname{Pr}[R=1 \mid e]}{\partial e}\right|_{e=\hat{e}}=\frac{\beta}{\sqrt{\beta^{2} \sigma_{\theta}^{2}+\beta^{2} \sigma_{\varepsilon}^{2}+\sigma_{\eta}^{2}}} \phi\left(\frac{\mu_{c}-\mu_{\eta}-a_{m}-\alpha_{0}-\alpha_{1} a_{m}}{\sqrt{\beta^{2} \sigma_{\theta}^{2}+\beta^{2} \sigma_{\varepsilon}^{2}+\sigma_{\eta}^{2}}}\right)
$$

If the marginal return to effort at $e=\hat{e}$ is increasing in a_{m}, then Incumbent's expected utility satisfies increasing differences in $\left(e, a_{m}\right)$ which implies that effort is monotone increasing in a_{m}. (Milgrom and Shannon 1994). Conversely, if the marginal return to effort is decreasing in a_{m}, then equilibrium effort must be decreasing in a_{m}. Thus, the marginal effect of divergence on effort has the same sign as $\frac{\partial^{2} \operatorname{Pr}[R=1 \mid e]}{\partial \alpha_{1} \partial e}$ at $e=\hat{e}$. This derivative is:

$$
\left.\frac{\partial^{2} \operatorname{Pr}[R=1 \mid e]}{\partial \alpha_{1} \partial e}\right|_{e=\hat{e}}=-a_{m} \frac{\beta}{\beta^{2} \sigma_{\theta}^{2}+\beta^{2} \sigma_{\varepsilon}^{2}+\sigma_{\eta}^{2}} \phi^{\prime}\left(\frac{\mu_{c}-\mu_{\eta}-a_{m}-\alpha_{0}-\alpha_{1} a_{m}}{\sqrt{\beta^{2} \sigma_{\theta}^{2}+\beta^{2} \sigma_{\varepsilon}^{2}+\sigma_{\eta}^{2}}}\right)
$$

We now consider six cases:

1. $a_{m}=0$. In this case we clearly have $\left.\frac{\partial^{2} \operatorname{Pr}[R=1 \mid e]}{\partial \alpha_{1} \partial e}\right|_{e=\hat{e}}=0$.
2. The incumbent is behind and $a_{m}>0$. The incumbent is behind if $\mu_{c}-\mu_{\eta}-a_{m}-\alpha_{0}-\alpha_{1} a_{m}>$ 0 . This implies that $\phi^{\prime}\left(\frac{\mu_{c}-\mu_{\eta}-a_{m}-\alpha_{0}-\alpha_{1} a_{m}}{\sqrt{\beta^{2} \sigma_{\theta}^{2}+\beta^{2} \sigma_{\varepsilon}^{2}+\sigma_{\eta}^{2}}}\right)<0$ since the standard normal distribution is strictly decreasing at strictly positive values. Thus, for $a_{m}>0$ we have $\left.\frac{\partial^{2} \operatorname{Pr}[R=1 \mid e]}{\partial \alpha_{1} \partial e}\right|_{e=\hat{e}}>0$.
3. The incumbent is behind and $a_{m}<0$. For $a_{m}<0$ the sign is reversed and $\left.\frac{\partial^{2} \operatorname{Pr}[R=1 \mid e]}{\partial \alpha_{1} \partial e}\right|_{e=\hat{e}}<0$.
4. The incumbent is ahead and $a_{m}>0$. The incumbent is ahead if $\mu_{c}-\mu_{\eta}-a_{m}-\alpha_{0}-\alpha_{1} a_{m}<$ 0 . This implies that $\phi^{\prime}\left(\frac{\mu_{c}-\mu_{\eta}-a_{m}-\alpha_{0}-\alpha_{1} a_{m}}{\sqrt{\beta^{2} \sigma_{\theta}^{2}+\beta^{2} \sigma_{\varepsilon}^{2}+\sigma_{\eta}^{2}}}\right)>0$. Thus, for $a_{m}>0$ we have $\left.\frac{\partial^{2} \operatorname{Pr}[R=1 \mid e]}{\partial \alpha_{1} \partial e}\right|_{e=\hat{e}}<$ 0 .
5. The incumbent is ahead and $a_{m}<0$. For $a_{m}<0$ the sign is reversed and $\left.\frac{\partial^{2} \operatorname{Pr}[R=1 \mid e]}{\partial \alpha_{1} \partial e}\right|_{e=\hat{e}}>0$.
6. The remaining cases are the knife-edged case where $a_{m} \neq 0$ but the election is ex ante "tied", i.e., $\mu_{c}-\mu_{\eta}-a_{m}-\alpha_{0}-\alpha_{1} a_{m}=0$. The marginal effect of increasing α_{1} is equal to zero since $\phi^{\prime}\left(\frac{\mu_{c}-\mu_{\eta}-a_{m}-\alpha_{0}-\alpha_{1} a_{m}}{\sqrt{\beta^{2} \sigma_{\theta}^{2}+\beta^{2} \sigma_{\varepsilon}^{2}+\sigma_{\eta}^{2}}}\right)=0$, but once α_{1} increases this will push the incumbent to be ahead if $a_{m}>0$ and behind if $a_{m}<0$, and so this folds into the cases 3 and 4 hold.

Putting this together, we have shown that effort is increasing in α_{1} when the incumbent is behind and $a_{m}>0$ or ahead and $a_{m}<0$, has no effect on effort when $a_{m}=0$, and decreases effort otherwise. This completes the proof.

B. 4 Proposition 3

Proposition 3. Under assumption 2, equilibrium incumbent effort is reduced by desensitization effects of motivated reasoning (e^{*} is increasing in β).

Proof of Proposition 3. From the proof of Proposition 2 we have the following marginal effect of effort on reelection:

$$
\begin{equation*}
\left.\frac{\partial \operatorname{Pr}[R=1 \mid e]}{\partial e}\right|_{e=\hat{e}}=\frac{\beta}{\sqrt{\beta^{2} \sigma_{\theta}^{2}+\beta^{2} \sigma_{\varepsilon}^{2}+\sigma_{\eta}^{2}}} \phi\left(\frac{\mu_{c}-a_{m}-\alpha_{0}-\alpha_{1} a_{m}}{\sqrt{\beta^{2} \sigma_{\theta}^{2}+\beta^{2} \sigma_{\varepsilon}^{2}+\sigma_{\eta}^{2}}}\right) . \tag{4}
\end{equation*}
$$

To save on notation, let

$$
\begin{aligned}
g(\beta) & :=\frac{1}{\sqrt{\beta^{2} \sigma_{\theta}^{2}+\beta^{2} \sigma_{\varepsilon}^{2}+\sigma_{\eta}^{2}}} \\
h(\beta) & :=\beta g(\beta) \text { and } \\
\chi & :=\mu_{c}-\mu_{\eta}-a_{m}-\alpha_{0}-\alpha_{1} a_{m} .
\end{aligned}
$$

We can now rewrite the marginal effect of effort as

$$
\left.\frac{\partial \operatorname{Pr}[R=1 \mid e]}{\partial e}\right|_{e=\hat{e}}=h(\beta) \phi(g(\beta) \chi) .
$$

The effect of increasing β has the same sign as $\left.\frac{\partial^{2} \operatorname{Pr}[R=1 \mid e]}{\partial \beta \partial e}\right|_{e=\hat{e}}$. Evaluating this derivative gives us:

$$
\left.\frac{\partial^{2} \operatorname{Pr}[R=1 \mid e]}{\partial \beta \partial e}\right|_{e=\hat{e}}=h^{\prime}(\beta) \phi(g(\beta) \chi)+h(\beta) \phi^{\prime}(g(\beta) \chi) \chi g^{\prime}(\beta)
$$

We will show that this expression is always strictly positive by separately showing that (I) $h^{\prime}(\beta) \phi(g(\beta) \chi)>$ 0 and (II) $h(\beta) \phi^{\prime}(g(\beta) \chi) \chi g^{\prime}(\beta) \geq 0$ which implies that the sum is positive.

For (I), dividing the numerator and denominator by β gives that:

$$
h(\beta)=\frac{1}{\sqrt{\sigma_{\theta}^{2}+\sigma_{\varepsilon}^{2}+\sigma_{\eta}^{2} / \beta^{2}}}
$$

Since the denominator is strictly decreasing in β, it is immediate that $h^{\prime}(\beta)>0$, and since $\phi(\cdot)>0$ (as this is the pdf of a standard normal random variable), we have $h^{\prime}(\beta) \phi(g(\beta) \chi)>0$.

For (II), first note that $h(\beta)>0$ and $g^{\prime}(\beta)<0$, so the claim is equivalent to $\phi^{\prime}(g(\beta) \chi) \chi \leq 0$. Since χ can take on any real value there are three cases:

1. $\chi=0$. In this case $\phi^{\prime}(g(\beta) \chi) \chi=0$.
2. $\chi>0$. Then $\phi^{\prime}(g(\beta) \chi)<0$ since $g(\beta)>0$ and the normal distribution is increasing up to its mode at 0 (i.e., $\phi(x)>0$ for $x<0$). So $\phi^{\prime}(g(\beta) \chi) \chi<0$.
3. $\chi<0$. Then $\phi^{\prime}(g(\beta) \chi)>0$ since $\phi(x)<0$ for $x>0$. So, $\phi^{\prime}(g(\beta) \chi) \chi<0$.

Thus, we have $\beta \chi g^{\prime}(\beta) \phi^{\prime}(g(\beta) \chi) \geq 0$ in every case. This shows that $\left.\frac{\partial^{2} \operatorname{Pr}[R=1 \mid e]}{\partial \beta \partial e}\right|_{e=\hat{e}}>0$, which implies that desensitization reduces effort.

B. 5 Corollary 2

Corollary 2. Under Assumptions 1 and 2, if there is desensitization $\left(\frac{\partial^{2} v\left(a_{j}, \tilde{\theta}_{I}\right)}{\partial \bar{\theta}_{I}^{2}}<0\right)$ or divergence affects the median voter $\left(a_{m} \neq 0\right.$ and $\left.\frac{\partial^{2} v\left(a_{j}, \tilde{\theta}_{I}\right)}{\partial \tilde{\theta}_{I} \partial a_{j}}>0\right)$, then as $\delta \rightarrow \infty, e^{*} \rightarrow 0$.
Proof of Corollary 2. Recall the equilibrium marginal return to effort is:

$$
\begin{equation*}
\left.\frac{\partial \operatorname{Pr}[R=1 \mid e]}{\partial e}\right|_{e=\hat{e}}=\frac{\beta}{\sqrt{\beta^{2} \sigma_{\theta}^{2}+\beta^{2} \sigma_{\varepsilon}^{2}+\sigma_{\eta}^{2}}} \phi\left(\frac{\mu_{c}-a_{m}-\alpha_{0}-\alpha_{1} a_{m}}{\sqrt{\beta^{2} \sigma_{\theta}^{2}+\beta^{2} \sigma_{\varepsilon}^{2}+\sigma_{\eta}^{2}}}\right) . \tag{5}
\end{equation*}
$$

To prove the result we need to show that either of the two stated conditions implies that this term approaches 0 as $\delta \rightarrow \infty$.

As shown in the proof of Lemma 1 , in the linear case the β term is given by:

$$
\beta=\frac{\sigma_{\varepsilon}^{2}}{\left(\sigma_{\varepsilon}^{2}+\sigma_{\theta}^{2}\right)\left(1-\delta \gamma_{\theta} \bar{\sigma}_{\theta}^{2}\right)}
$$

The proof of Lemma 1 also shows that $\frac{\partial^{2} \nu\left(a_{j}, \tilde{\theta}_{I}\right)}{\partial \tilde{\theta}_{I}^{2}}<0$ if and only if $\gamma_{\theta}<0$, and if this holds then as $\delta \rightarrow \infty, \beta \rightarrow 0$. Equation 5 is bounded above by:

$$
\left.\frac{\partial \operatorname{Pr}[R=1 \mid e]}{\partial e}\right|_{e=\hat{e}} \leq \frac{\beta}{\sqrt{\beta^{2} \sigma_{\theta}^{2}+\beta^{2} \sigma_{\varepsilon}^{2}+\sigma_{\eta}^{2}}} \phi(0)
$$

(This follows from the fact that ϕ is maximized at 0 .). From this it follows that as $\beta \rightarrow 0$, $\left.\frac{\partial \operatorname{Pr}[R=1 \mid e]}{\partial e}\right|_{e=\hat{e}} \rightarrow 0$ (regardless of how δ affects α_{1}), and hence $e^{*} \rightarrow 0$. This completes the proof for any case with desensitization.

For the remaining case, recall that:

$$
\alpha_{1}=\frac{\delta \gamma_{a} \bar{\sigma}_{\theta}^{2}}{1-\delta \gamma_{\theta} \bar{\sigma}_{\theta}^{2}}
$$

Since we have already proven the result when there is desensitization, it is sufficient to show the result for the case where divergence affects the median voter ($a_{m} \neq 0$ and $\frac{\partial^{2} v\left(a_{j}, \tilde{\theta}_{I}\right)}{\partial \tilde{\theta}_{I} \partial a_{j}}>0$), under the assumption of no desensitization, or $\gamma_{\theta}=0$. Plugging in $\gamma_{\theta}=0$ we have $\alpha_{1}=\delta \gamma_{a} \bar{\sigma}_{\theta}^{2} \cdot \frac{\partial^{2} v\left(a_{j}, \tilde{\theta}_{I}\right)}{\partial \tilde{\theta}_{I} \partial a_{j}}>0$ implies $\gamma_{a}>0$, so as $\delta \rightarrow \infty, \alpha_{1} \rightarrow \infty$.

If $a_{m} \neq 0$, then as $\delta \rightarrow \infty$ the right-hand side of equation (5) approaches zero, since $\alpha_{1} \rightarrow \infty$ as $\delta \rightarrow \infty$ and $\lim _{x \rightarrow \pm \infty} \phi(x)=0$. (Since there is no desensitization, δ does not affect the outer term.) Hence $\left.\frac{\partial \operatorname{Pr}[R=1 \mid e]}{\partial e}\right|_{e=\hat{e}} \rightarrow 0$, and $e^{*} \rightarrow 0$.

B. 6 Remark 1

Remark 1. Suppose Assumption 2 holds and voter affinities are normally distributed with mean μ_{a} and variance σ_{a}^{2}. Further, let $a_{m}=0, \mu_{a}=0$, and $\frac{\partial \beta}{\partial \delta}=0$ so that there is divergence but no desensitization. Then motivated reasoning can affect incumbent vote share even when it does not affect equilibrium effort.

Proof of Remark 1. Follows from argument/derivations in text given Proposition 2 showing that when $a_{m}=0$ belief divergence does not affect effort and the fact that there is no belief desensitization effects when $\frac{\partial \beta}{\partial \delta}=0$.

References

Milgrom, Paul and Chris Shannon. 1994. "Monotone Comparative Statics." Econometrica 62(1):157-180.

[^0]: *Associate Professor, Department of Political Science, University of California, Berkeley. Contact: andrew.little@berkeley.edu.
 ${ }^{\dagger}$ Associate Professor, Department of Political Science, Washington University in St. Louis. Contact: keschnak@wustl.edu.
 ${ }^{\ddagger}$ Assistant Professor, Department of Political Science, Yale University. Contact: ian.turner@yale.edu.

