
Below is the Online Supplement for “A note on post-treatment selection in studying racial

discrimination in policing”.

A Average treatment effects conditional on the mediator

We assume the variables (D,M, Y ) are generated from a nonparametric structural equation

model: D = fD(✏D),M = fM (D, ✏M ), Y = fY (D,M, ✏Y ) where ✏D, ✏M , ✏Y are mutually

independent (Pearl 2009). Potential outcomes for M and Y can be defined by replacing

random variables in the functions by fixed values; for example, M(d) = fM (d, ✏M ), d = 0, 1.

Because the errors are independent, D, {M(0),M(1)}, and {Y (0, 0), Y (0, 1), Y (1, 0), Y (1, 1)}

are mutually independent (Richardson and Robins 2013). We also make the mandatory assumption

(Assumption 1). The derivations below do not need mediator monotonicity (M(1) � M(0)).

We next derive expressions of ATEM=1 and ATTM=1 using two basic causal effects: �M =

E[M(1)�M(0)], the racial bias in detainment, and �Y = E[Y (1, 1)� Y (0, 1)], the controlled

direct effect of race on police violence. To simplify the interpretation, we introduce a new variable

to denote the the principal stratum (see Figure 2 in KLM):

S =

8
>>>>>>>>>><

>>>>>>>>>>:

always stop (al), if M(0) = M(1) = 1,

minority stop (mi), if M(0) = 0,M(1) = 1,

majority stop (ma), if M(0) = 1,M(1) = 0,

never stop (ne), if M(0) = M(1) = 0,

Let S = {al,mi,ma, ne} be all possible values for S. Using this notation, we have

�M =
X

s2S
E[M(1)�M(0) | S = s]P(S = s) = P(S = mi)� P(S = ma).

By using the independence between M(d) and Y (d,m) and Assumption 1, it is easy to show
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that

✓ =

0

BBBBBBB@

E[Y (1)� Y (0) | S = al]

E[Y (1)� Y (0) | S = mi]

E[Y (1)� Y (0) | S = ma]

E[Y (1)� Y (0) | S = ne]

1

CCCCCCCA

=

0

BBBBBBB@

E[Y (1, 1)� Y (0, 1)]

E[Y (1, 1)� Y (0, 0)]

E[Y (1, 0)� Y (0, 1)]

E[Y (1, 0)� Y (0, 0)]

1

CCCCCCCA

=

0

BBBBBBB@

�Y

�Y + E[Y (0, 1)]

�E[Y (0, 1)]

0

1

CCCCCCCA

.

Average treatment effects, whether conditional on M or D or not, can be written as weighted

averages of the entries of ✓.

Proposition 1. Suppose there is no unmeasured mediator-outcome confounder (i.e. no U) in

Figure 1. Under Assumption 1, the estimands ATEM=1, ATTM=1, ATE = E[Y (1)� Y (0)], and

ATT = E[Y (1)� Y (0) | D = 1] can be written as weighted averages (wT✓)/(wT1) (1 is the

all-ones vector) with weights given by, respectively,

w(ATEM=1) =

0

BBBBBBB@

P(S = al)
⇥
P(S = ma) + �M

⇤
P(D = 1)

P(S = ma)P(D = 0)

0

1

CCCCCCCA

, w(ATTM=1) =

0

BBBBBBB@

P(S = al)

P(S = ma) + �M

0

0

1

CCCCCCCA

,

and

w(ATE) = w(ATT) =

0

BBBBBBB@

P(S = al)

P(S = mi)

P(S = ma)

P(S = ne)

1

CCCCCCCA

=

0

BBBBBBB@

P(S = al)

P(S = ma) + �M

P(S = ma)

P(S = ne)

1

CCCCCCCA

.

Proof. Let’s first consider ATEM=1. By using the law of total expectations, we can first decompose

it into a weighted average of principal stratum effects:

ATEM=1 = E[Y (1)� Y (0) | M = 1] =
X

s2S
E[Y (1)� Y (0) | M = 1, S = s] · P(S = s | M = 1).

We can simplify the principal stratum effects using recursive substitution of the potential outcomes
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and the assumption that D, {M(0),M(1)}, and {Y (0, 0), Y (0, 1), Y (1, 0), Y (1, 1)} are mutually

independent. For m0,m1 2 {0, 1},

E[Y (1)� Y (0) | M = 1,M(0) = m0,M(1) = m1]

=E[Y (1,M(1))� Y (0,M(0)) | M = 1,M(0) = m0,M(1) = m1]

=E[Y (1,m1)� Y (0,m0) | M = 1,M(0) = m0,M(1) = m1]

=E[Y (1,m1)� Y (0,m0) | M(0) = m0,M(1) = m1]

=E[Y (1,m1)� Y (0,m0)].

The third equality uses the fact that M ?? {Y (1,m1), Y (0,m0)} | {M(0),M(1)}, because given

{M(0),M(1)} the only random term in M = D ·M(1) + (1�D) ·M(0) is D. Thus ATEM=1

can be written as

ATEM=1 = ✓Tw(ATEM=1), where w(ATEM=1) =

0

BBBBBBB@

P(S = al | M = 1)

P(S = mi | M = 1)

P(S = ma | M = 1)

P(S = ne | M = 1)

1

CCCCCCCA

.

Similarly, ATTM=1, ATE, and ATT can also be written as weighted averages of the entries of ✓,

where the weights are

w(ATTM=1) =

0

BBBBBBB@

P(S = al | D = 1,M = 1)

P(S = mi | D = 1,M = 1)

P(S = ma | D = 1,M = 1)

P(S = ne | D = 1,M = 1)

1

CCCCCCCA

, w(ATE) = w(ATT) =

0

BBBBBBB@

P(S = al)

P(S = mi)

P(S = ma)

P(S = ne)

1

CCCCCCCA

.

Next we compute the conditional probabilities for the principal strata in w(ATEM=1) and

w(ATTM=1). By using Bayes” formula, for any m0,m1 2 {0, 1},

P(M(0) = m0,M(1) = m1 | M = 1)
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/P(M(0) = m0,M(1) = m1) · P(M = 1 | M(0) = m0,M(1) = m1)

=P(M(0) = m0,M(1) = m1) ·
1X

d=0

P(M = 1, D = d | M(0) = m0,M(1) = m1)

=P(M(0) = m0,M(1) = m1) ·
1X

d=0

1{md=1} P(D = d | M(0) = m0,M(1) = m1)

=P(M(0) = m0,M(1) = m1) ·
1X

d=0

1{md=1} P(D = d).

The last two equalities used M = M(D) and D ?? {M(0),M(1)}. For this, it is straightforward

to obtain the form of w(ATEM=1) in Proposition 1. Similarly,

P(M(0) = m0,M(1) = m1 | D = 1,M = 1) / P(M(0) = m0,M(1) = m1) · 1{m1=1}.

From this we can derive the form of w(ATTM=1) in Proposition 1.

Proposition 2. Under the same assumptions as above, PIE = �M · E[Y (1, 1)] and PDE =

�Y · E[M(0)].

Proof. This follows from the definition of pure direct and indirect effects and the following identity,

E
⇥
Y (d,M(d000))

⇤
= E

⇥
Y (d, 1) | M(d0) = 1

⇤
· P(M(d0) = 1) = E

⇥
Y (d, 1)

⇤
· P(M(d0) = 1),

for any d, d0 2 {0, 1}.

Using the forms of weighted averages in Proposition 1, we can make the following observation

on the sign of the causal estimands when �M and �Y are both nonnegative or both nonpositive:

Corollary 1. Let the assumptions in Proposition 1 be given. If �M � 0 and �Y � 0, then

ATE = ATT � 0. Conversely, if �M  0 and �Y  0, then ATE = ATT  0. However, both of

these properties are not true for ATEM=1 and the second property is not true for ATTM=1.

The fact that ATT and ATE would have the same sign as �M when �M and �Y have the

same sign follows immediately from Proposition 2. However, this important property does not
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hold for ATEM=1 and ATTM=1. Here are some concrete counterexamples:

(i) When �M = �Y = 0.01, P(S = al) = 0.1, P(S = ma) = 0.05, E[Y (0, 1)] = 0.1, and

P(D = 1) = 0.01, we have ATEM=1 = �0.003884.

(ii) When �M = �Y = �0.01, P(S = al) = 0.1, P(S = ma) = 0.05, E[Y (0, 1)] = 0.1, and

P(D = 1) = 0.99, we have ATEM=1 = 0.002514.

(iii) When �M = �Y = �0.01, P(S = al) = 0.1, P(S = ma) = 0.05, E[Y (0, 1)] = 0.1, and

P(D = 1) = 0.01, we have ATTM=1 = 0.0026.

Heuristically, this is due to the fact that all of the causal estimands above, including �M ,

�Y , ATE, ATEM=1, and ATTM=1, only measure some weighted average treatment effect for

police detainment and/or use of force. Conditioning on the post-treatment M may correspond

to unintuitive weights. The possibility that ATEM=1 and ATE can have different signs can be

understood from the following iterated expectation:

ATE = ATEM=1 P(M = 1) + E[Y (1)� Y (0) | M = 0]P(M = 0).

In this decomposition, the second term may be nonzero and have the opposite sign of ATEM=1.

An inexperienced researcher might be tempted to drop the second term because of Assumption 1,

as Y (0, 0) = Y (1, 0) = 0 with probability 1. However, conditioning on M = 0 is not the same

as the intervention that sets M = 0. This means that we cannot deduce E[Y (d) | M = 0] = 0

from Y (d, 0) = 0, because E[Y (d) | M = 0] = E[Y (d,M(d)) | M = 0] is not necessarily equal

to E[Y (d, 0) | M = 0].

The fundamental problem driving this paradox is that conditioning on the post-treatment

variable M alters the weights on the principal strata, as shown in Proposition 1. ATEM=1 and

ATTM=1 then depend on not only the racial bias in detainment and use of force (captured

by �M and �Y ) but also the baseline rate of violence E[Y (0, 1)] and the composition of race

P(D = 1). For instance, in the first counterexample above, even though the minority group

D = 1 is discriminated against in both detainment and use of force, because the baseline violence
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is high and the minority group is extremely small, ATEM=1 becomes mostly determined by the

smaller bias (captured by P(S = ma) = P(M(0) = 1,M(1) = 0)) experienced by the much

larger majority group.

We make some further comments on the above paradox. First of all, the second counterexample

can be eliminated if we additionally assume P(D = 1) < 0.5, that is D = 1 indeed represents

the minority group. With this benign assumption, one can show that ATEM=1 < 0 whenever

�M ,�Y < 0. Furthermore, it can be shown that ATTM=1 < 0 whenever �M ,�Y > 0. So in a

very rough sense we might say that as causal estimands, ATEM=1 is unfavorable for the minority

group (because ATEM=1 can be negative even if both �M ,�Y > 0) and ATTM=1 is unfavorable

for the majority group (because ATTM=1 can be positive even if both �M ,�Y < 0).

Our second comment is about the first counterexample. We can eliminate such possibility

by assuming mediator monotonicity P(S = ma) = 0, or in other words, by assuming that the

majority race group is never discriminated against in any police-civilian encounter. KLM indeed

used mediator monotonicity to obtain bounds on ATEM=1 and ATTM=1. So a supporter of

the estimand ATEM=1 may argue that if one is willing to assume mediator monotonicity, there

is no paradox regarding ATEM=1. However, it is worthwhile to point out that under mediator

monotonicity, the pure indirect effect is guaranteed to be nonnegative because �M = P(S =

mi) � P(S = ma) = P(S = mi) � 0. Empirical researchers should be mindful of and clearly

communicate the consequences of the mediator monotonicity assumption unless it is compelling

in the specific application. See KLM’s discussion after their Assumption 2 on when mediator

ignorability may be violated. This concern can be alleviated if future work can incorporate non-zero

P(S = ma) as sensitivity parameters in KLM’s bounds.
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B Derivation of the causal risk ratio

To simplify the derivation, we will omit the conditioning on X = x below. Fix a d 2 {0, 1}. Using

Assumption 1, E[Y (d) | M(d) = 0] = E[Y (d, 0) | M(d) = 0] = 0. Therefore

E[Y (d)] = E[Y (d) | M(d) = 1] · P(M(d) = 1)

= E[Y (d, 1) | M(d) = 1] · P(M(d) = 1)

= E[Y (d, 1) | M(d) = 1, D = d] · P(M(d) = 1)

= E[Y | M = 1, D = d] · P(M(d) = 1).

The third equality above uses treatment ignorability: D ?? Y (d, 1) | M(d) (this follows from

the single world intervention graph corresponding to Figure 1); the last equality follows from the

consistency (or stable unit value treatment) assumption for potential outcomes. By further using

D ?? M(d), we have P(M(d) = 1) = P(M(d) = 1 | D = d) = P(M = 1 | D = d). Plugging

this into the last display equation, we have

E[Y (d)] = E[Y | M = 1, D = d] · P(M = 1 | D = d), d = 0, 1.

Thus we have recovered KLM’s Proposition 2 (point identification of ATE) without assuming

their Assumption 2 (mediator monotonicity) and Assumption 3 (relative nonseverity of racial

stops). To get the causal risk ratio, we only needs to take a ratio between E[Y (1)] and E[Y (0)]

and apply Bayes’ formula to cancel P(M = 1).

C Implementation details of the empirical analysis

To estimate encounter rates in our empirical analysis using the PPCS data we used the following

three survey questions:

The following are questions about any time in the last 12 months when police have

initiated contact with you. In the last 12 months, have you:
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V11 Been stopped by the police while in a public place, but not a moving vehicle?

This includes being in a parked vehicle.

V13 Been stopped by the police while driving a motor vehicle?

V21 Have you been stopped or approached by the police in the last 12 months for

something I haven’t mentioned?

We created two binary measures as indicators of police encounters. The first measure (Stop

in Public in Table 1) was 1 for being stopped by the police if the respondent answered Yes to

either V11 or V21 and 0 otherwise. We used V13 as the measure for being stopped in a motor

vehicle (MV Stop in Table 1).

In our alternative analysis (labelled as PPCS* in Table 1), the stop indicators are weighted by

the responses to the following question :

V30 Thinking about the times you initiated contact with the police and the times

they initiated contact with you, how many face-to-face contacts did you have

with the police during the last 12 months?

In that analysis, we excluded outliers with more than 30 reported contacts with the police.

D Stratified analysis by age and gender

Our identification (3) of the causal risk ratio depends on conditioning on all the confounders in

X. Here we report the results of an additional analysis where the police-civilian encounters were

stratified by the age and gender of the civilian. Similarly, the survey respondents were also by

their age and gender. The same analysis that generated Table 1 were repeated for each stratum,

and the results are reported in Figure D.1. It appears that gender is an important effect modifier

but age is not.
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Figure D.1: Results of the stratified analysis of the NYPD Stop-and-Frisk dataset by age and
gender. The estimated risk ratio is truncated at 100.
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