
Appendices

This supplementary Appendix is two parts. In part A, we present two extensions to the baseline

model. The first considers a variant model in which bargaining failure results in a reversion to

the legal status quo. The second consider a different variation, in which judges may change their

dispositional votes after observing the proposed majority (and dissenting) opinions. As we make

clear, the results from our baseline model continue to hold more-or-less under these variations. In

part B, we present detailed proofs of the main results.

A. EXTENSIONS

A.1 Reversion to Status Quo

A legislature may propose changes to a given law repeatedly; however, unless one of those proposals

is accepted, it is understood that the existing law continues to be in effect. The same cannot be said

of courts. As we argued in Section 2, the mere fact that the court agrees to hear a case signals to the

community that the legal landscape is apt to change, even if the court fails to implement that change

in deciding the instant case. Thus, our preferred model specification does not include a status quo

policy but instead requires that the court, through the bargaining process, eventually settle on a new

policy.

Nevertheless, one might ask how our results would change if we instead assumed that failure to

agree resulted in reversion to the status quo ante. The bargaining procedure would be amended as

follows: in the event that a proposal is rejected, with probability δ a new proposer is selected and

bargaining continues; however, with probability 1 − δ, the bargaining terminates (exogenously), and

the policy reverts to the status quo.21 This might represent the rare set of cases where no majority

can be found to support any given opinion.

With this re-interpretation of the bargaining process, Proposition 1 (and all of the subsequent

21This is the bargaining protocol in Banks and Duggan (2006).
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results) continue to hold true22, replacing the disagreement utility with the utility of the status quo

policy. Thus, our analysis is not only perfectly compatible with this alternative formulation, but

demonstrates how to analyze it.

Of course, reversion to a status quo imposes different costs on different judges, depending on where

the status quo stands in relation to their ideal policy. As such, the equilibrium policies will be

different, even if the essential structure of the equilibrium is unchanged. One can show (see Banks

and Duggan (2006)) that, if the status quo lies outside the core (i.e. ysq < [xl, xr]), then with δ < 1,

there will be a range of equilibrium policies that are proposed in equilibrium, and that the social

acceptance set becomes narrower as the likelihood that bargaining fails gets smaller (i.e. δ becomes

larger). Moreover, as δ→ 1, equilibrium proposals converge to a unique policy, characterized by

the asymmetric Nash bargaining solution, as in Proposition 2. The analysis from section 3 carries

through exactly as described.

However, if the status quo lies within the core (i.e. ysq ∈ [xl, xr]), then for any δ, the only policy that

is equilibrium consistent is the status quo itself. (It turns out that, in this case, the status quo policy

exactly coincides with the asymmetric Nash bargaining solution, by construction, so Proposition 2

continues to hold, albeit trivially.)

Although we do not take up the issue of certiorari petitions in this paper, this last point may shed

some light on the issue. Since whenever the status quo lies within the core, the court will fail to

amend the existing rule, we should not expect the court to hear cases where such an outcome is

likely to obtain. Moreover, since the core consists of the interval between the median judge’s ideal,

and the ideal policy of the other decisive judge (which, in the event of a unanimous dispositional

22A minor technical caveat: In the baseline framework, it was sufficient that the dispositional loss function l

weakly satisfied the IDID property. Here, we strengthen that assumption, requiring the loss function to satisfy

the IDID property strictly. Of particular interest, the loss function associated with the absolute value policy

preferences that we highlighted in Example 1 only satisfies IDID weakly. However, the other cases presented

all satisfy the strict condition.
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vote, is also the median judge), it would be improvident for the court to grant cert on cases that

where the status quo ante lies too close to the median judge’s ideal policy. Furthermore, to the

extent that the Court does agree to here a case, we should expect larger coalitions and more strategic

voting, since the size of the core (which determines the likelihood of failing to amend the existing

rule) is decreasing in the size of the majority coalition.

Even when the status quo policy lies outside of the core (so that policies are chosen through a

genuine process of bargaining), its location affects the policies that will be chosen in equilibrium.

Interestingly, as the status quo policy becomes more extreme, the policy that is implemented is likely

to be more moderate (in the sense of being closer to the ‘middle’ of the core), ceteris paribus (see

Parameswaran and Rendleman (2019)). Thus, policy-making by the court exhibits path dependence,

with existing rules shaping the sorts of rules that courts can implement in the future.

A.2 Dissents and Competition for the Dispositional Majority

In the baseline model, we assumed that, once chosen, the composition of the dispositional majority

remained fixed. Since there is little evidence that dispositional coalitions shift between the initial

conference and the Court’s rendering of it final decision, we hold this assumption to be reasonable,

as an empirical matter. Nevertheless, it may be objected that this result ought to be a consequence

of our model, rather than an assumption. In this sub-section, we consider a variant model in which

stable dispositional coalitions arise in equilibrium.

Before outlining the variant model and results, let us briefly acknowledge the implications of our

baseline approach. In the baseline model, since the dispositional majority was fixed in the first

stage, the consequence of proposing a relatively ‘extreme’ policy in the second stage was simply

that the policy would be rejected and a counter-proposal made. However, if dispositional coalitions

were allowed to change, there may be an additional consequence; an extreme proposal might cause

sufficiently many judges to switch their dispositional votes, such that the original majority is lost.

The threat of such defection creates an additional incentive for judges to moderate their proposals. It

is this additional incentive that we seek to explore.
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We modify the model as follows: after the initial dispositional vote, the judges divide into majority

and minority dispositional coalitions. As before, the most senior judge in the majority assigns to

some judge in the majority, the task of writing a majority opinion, and this opinion may be refined

through a sequence of counter-proposals. Similarly, the most senior judge in the minority assigns to

some judge in the minority, the task of writing a dissent. Having observed the two opinions, the

judges then take a second dispositional vote, with the understanding that whichever opinion receives

a majority will automatically become the opinion of the court.23 We retain the baseline assumption

that policy-making is purely consequentialist —opinion location matters only insofar as it affects the

judges’ actual policy utility. Thus, the role of the dissent is not as an expression of the minority’s

ideal rule, but as a competing potential majority opinion. The location of the dissent affects utility

only if it succeeds in causing the disposition of the court to switch.24

For concreteness, suppose xmed < z, so that the median judge’s ideal disposition is d = 1. Consider

the d = 0 and d = 1 dispositional coalitions. The former must agree on an opinion y0 ≥ z and the

latter must write an opinion y1 ≤ z.

We briefly note some features of incentives in this new setting. First, every judge who voted sincerely

would rather moderate their side’s opinion to guarantee that they were in the eventual majority, than

write an opinion that results in the eventual majority going to the other side. This should be intuitive;

the most moderate opinion consistent with one’s ideal disposition is preferred to any opinion that

rationalizes the opposite disposition. Thus, in the competition over opinions, there is a strong force

that pushes each coalition to moderate its opinion in order to win (or retain) a majority.

23In principle, if the dispositional coalitions change, we could allow for new majority and dissenting opinions

to be drafted, and for this process to continue ad infinitum, until a pair of opinions arise for which the

dispositional coalitions are stable. It suffices, however, in equilibrium, that there be a single additional round

of dispositional voting.
24As we noted in footnote 16, in a dynamic model, there might be a role for a dissent that has no immediate

policy consequence, but which sets the basis for a different policy to be adopted if the court revisits the issue

in the future.
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Second, since the support of the median judge is sufficient to win a majority, both sides will

‘moderate’ their opinions with a view to earning the support of the median judge. Notice that the

d = 1 coalition has a distinct advantage in this regard. They can always offer the median judge her

ideal policy y1 = xmed , whereas dispositional consistency restricts the d = 0 coalition to at best offer

y0 = z > xmed . Thus, in equilibrium, the d = 1 coalition will always prevail —the disposition of the

court will coincide with the ideal disposition of the median judge.

Third, although the majority opinion must be close to the median judge’s ideal, it need not coincide

with the median’s ideal policy. A majority opinion is incentive compatible if it is weakly preferred

by the median judge to the dissenting opinion. In equilibrium, the median judge must do at least as

well by joining the d = 1 coalition, as if she joined a d = 0 coalition offering the most moderate

policy satisfying dispositional consistency (i.e. when the dispositional consistency requirement is

binding on the dissent). Let ζ(z) be the policy (with ζ(z) < xmed < z) having the property that

uP(ζ(z), xmed) = uP(z, xmed)+ αuD(z, xmed). The median judge would be indifferent between voting

sincerely and endorsing opinion ζ(z), and voting strategically and endorsing opinion z (the most

moderate policy that the rationalizes the opposite disposition). Any policy in the interval [ζ(z), z] is

thus equilibrium incentive compatible for the d = 1 coalition.

Recall, d(z) denotes the disposition of the court if all judges voted sincerely, and M(z) denotes

the majority coalition when there is sincere voting. By construction, the sincere disposition must

coincide with the ideal disposition of the median judge. The above points, taken together, imply the

following:

Proposition 4. The game with competing opinions admits a unique CCPAE (d∗, M∗) satisfying:

1. The equilibrium disposition coincides with the sincere disposition, i.e. d∗ = d(z).

2. All judges who sincerely agree with the median will vote sincerely, while some judges who sincerely

disagree may vote strategically, i.e. M(z) ⊆ M∗.

3. The policies proposed in the policy-making stage are given by a modified version of Proposition 1,

in which proposals must additionally satisfy the incentive compatibility condition. (Formally, an
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equilibrium proposal y must satisfy: uP(y, xmed) ≥ uP(z, xmed) + αuD(z, xmed).)

4. The equilibrium is sustained by a (threatened) dissent, ydiss = z.

A few comments are worth noting. First, we stress that most of the results from the baseline model

continue to hold, even after adding competing dissents and allowing the composition of dispositional

coalitions to change. The policy-making results (section 3) are qualitative unchanged, and require

only a minor modification in the addition of the incentive compatibility constraint. Proposition 1,

appropriately modified, will continue to imply that whenever δ < 1, there will be range of potential

majority opinions, reflecting a degree of agenda control by the opinion authors. Furthermore, per

Proposition 2, as δ → 1, these opinions all converge to a unique policy that generically does not

coincide with the median judge’s ideal, and which is characterized by the (incentive compatibility

constrained) Nash bargaining solution. Most of the results from section 4 (dispositional voting) also

carry over, including Proposition 3 and Lemmas 2 and 3. The median judge remains dispositionally

pivotal (although with competing dissents, she is guaranteed to vote sincerely), and judges whose

ideal disposition coincides with the median judge’s will always vote sincerely. Moreover, judges

who sincerely disagree may vote strategically to participate in policy-making, and the likelihood of

strategic voting decreases as expressive utility becomes more salient.

Equilibrium in the model with competing opinions differs from the baseline in two ways. First, at

the adjudication stage, there is now a unique CCPAE, which renders the results in Corollary 1 moot.

Moreover, the disposition in this unique CCPAE coincides with median judge’s ideal. Second, at the

policy-making stage, there is an additional constraint (incentive compatibility) that affects the set of

profile of policies that may be offered in equilibrium. Indeed, adding this constraint is sufficient to

cause the results of the baseline and variant models to coincide.

Second, we briefly note that the equilibrium does not require that a dissent actually be constructed as

described —simply that the minority can credibly threaten to write such a policy (which they can).

Finally, the equilibrium with competing dissents may be thought of as a ‘median voter theorem with

frictions’. There is clearly a (Bertrand-competition-like) force that pushes the equilibrium policy
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closer to the median judge’s ideal. However, the requirement that the dissent be dispositionally

consistent, along with the expressive cost of voting insincerely, make the dissenting opinion an

imperfect substitute to the majority opinion, from the perspective of the median judge. This allows

other judges in the dispositional majority to pull the majority opinion slightly away from the median’s

ideal, subject to incentive compatibility. Hence, a range of majority opinions are equilibrium

consistent and policy needn’t converge all the way to the median’s ideal.

B. PROOFS

Proof of Proposition 1. The proof is similar to that in Parameswaran and Murray (2019). Since uP

is non-concave, we must first establish that equilibria must be in no-delay pure strategies. Let

vP(F(y); F(x)) = uP

(
F−1(F(y)); F−1(F(x))

)
= uP(y, x)

= −
�����∫ F−1(F(y))

F−1(F(x))
l(z − x)dF(z)

�����
be the policy utility after re-scaling the policy space. Notice that vP is concave in F(y):

∂2vP

∂F(y)2
= −

����l′ (y − x)) · 1
f (F(y))

���� < 0

Now, take any (possibly mixed) profile of strategies in the continuation game. Let σ(y, t) be the

implied distribution over outcomes, where σ(y, t) is the probability that policy y is agreed to at

time t. Let ∆uP(y, x) = uP(y, x) − uP(D, x) be the utility gain over disagreement of policy y for

a judge with ideal policy x. Similarly, define ∆vP(F(y), F(x)). Let ŷ be the policy defined by:

F(ŷ) = ∑∞
t=0

∫ F(x)
F(x) σ(F(y), t) · δ

t F(y)dy.
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Then, the judge i’s continuation payoff (over disagreement) if the current proposal is rejected is:

δ∆U(xi) = δ
∞∑

t=0

∫ x

x
σ(y, t) · δt

∆uP(y, xi)dy

= δ

( ∞∑
t=0

∫ F(x)

F(x)
σ(F(y), t) · δt dy

)
·
∞∑

t=0

∫ F(x)

F(x)

σ(F(y), t) · δt(∑∞
t=0

∫ F(x)
F(x) σ(F(y), t) · δt dy

)∆vP(F(y), F(xi))dy

≤ δ
( ∞∑

t=0

∫ F(x)

F(x)
σ(F(y), t) · δt dy

)
· ∆vP(F(ŷ), F(xi))

< ∆uP(ŷ, xi)

where we use the facts that vP is concave, and that δ
∑∞

t=0
∫ F(x)

F(x) σ(F(y), t) · δ
t dy ≤ δ < 1. Hence,

there is a policy ŷ that is strictly preferred by every judge to the continuation game. It is immediate,

then, that there is a proposal for every judge that is socially acceptable and preferable to the

continuation game. Moreover, since uP is strictly quasi-concave, this policy is unique. Hence, every

equilibrium must be in pure strategies and no-delay.

The acceptance set for any judge i is Ai = {y ∈ [x, x] | ∆uP(y, xi) ≥ δ∆U(xi)}. Since uP(y; xi)

is strictly quasi-concave in y, each individual acceptance set is an interval Ai = [yi
, yi]. Let

C ⊂ {1, ...,m} be any coalition containing at least k members. Then, the coalitional acceptance set

AC = ∩i∈C Ai is also an interval. Moreover, since each Ai (and thus each AC) contains ŷ, the social

acceptance set A = ∪C AC must be an interval as well. Denote A =
[
y, y

]
.

Given this social acceptance set, the optimal offers for each agent are:

yi =



y xi ≤ y

xi xi ∈
(
y, y

)
y xi ≥ y

For notational convenience, we often denote uP(y, xi) by ui(y). For any x ∈ X , let P (x) = ∑
xi≤x pi.
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(The proof allows for pi’s to be different, although we typically focus on the case of pi =
1
m .) Then,

given social acceptance set
[
y, y

]
, the expected utility of each judge i is:

Ui

(
y, y

)
= P

(
y
)

ui

(
y
)
+

∑
j: x j∈

(
y,y

) p jui

(
x j

)
+ (1 − P (y)) ui (y)

The remainder of the proof proceeds in two steps. First, we show that in any equilibrium, y = y
r

and y = yl . Next, using this fact, we show that the equilibrium is a fixed point of a mapping, and

that the mapping admits a unique fixed point. This suffices to prove uniqueness of the equilibrium.

Step 1. For any player i, suppose ui

(
y
)
≤ (1 − δ) ui(D)+δUi

(
y, y

)
— i.e. that∆ui(y) < δ∆Ui(y, y).

Since policy preferences satisfy the single crossing property, it must be that: ∆u j

(
y
)
< δ∆U j

(
y, y

)
for any j with x j > xi. To see this, suppose not; i.e. suppose ∆u j

(
y
)
≥ δU j

(
y, y

)
. Then:

∆ui(y) − ∆u j(y) < δ[∆Ui

(
y, y

)
− ∆U j

(
y, y

)
]

Recall, by the single crossing condition, that xi < x j implies ∂
∂y (∆ui − ∆u j) ≤ 0 (see footnote 8).

Then:

∆Ui

(
y, y

)
− ∆U j

(
y, y

)
= P

(
y
) [
∆ui

(
y
)
− ∆u j

(
y
)]
+

∑
j: x j∈

(
y,y

) p j

[
∆ui

(
x j

)
− ∆u j

(
x j

)]
+ (1 − P (y))

[
∆ui (y) − ∆u j (y)

]
≤ ∆ui

(
y
)
− ∆u j

(
y
)

But by assumption, ∆ui

(
y
)
−∆u j

(
y
)
< δ

[
∆Ui− j

]
≤ δ

(
∆ui(y) − ∆u j(y)

)
, which is a contradiction.

Hence, ∆ui

(
y
)
≤ δ∆Ui

(
y, y

)
implies that ∆u j

(
y
)
< δ∆U j

(
y, y

)
whenever x j > xi. We can

similarly show that ∆ui (y) ≤ δ∆Ui

(
y, y

)
implies ∆u j (y) < δ∆U j

(
y, y

)
whenever x j < xi.

Suppose y < y
r
, then any proposal y ∈

[
y, y

r

)
will be rejected by agent r and all agents j > r.

But since r = k, this implies that fewer than k agents will accept the proposal, which means it
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cannot be in the acceptance set. Hence y ≥ y
r
. Suppose y > y

r
. Take any proposal y ∈

(
y

r
, y

)
.

By construction ∆ur (y) > δ∆U
[
y, y

]
, and so u j (y) > δ∆U

[
y, y

]
for all agents j < r. But since

r = k, this implies that at least k agents will accept proposal y. But this contradicts the assumption

that y is outside the acceptance set. Hence y = y
r
. We can similarly show that y = yl .

Step 2. We now show that the equilibrium exists and is unique. For each i, define ζ
i
(z) =

miny∈X {y ≤ xi | ∆ui (y) ≥ δ∆Ui (y, z)} and ζ i (z) = maxy∈X {y ≥ xi | ∆ui (y) ≥ δ∆Ui (z, y)}. Since

ui is continuous and X compact, then ζ
i
and ζ i are both continuous. Note also that:

ζ ′
j
(y) =


δ(1−P(y))

1−δP
(
ζ
j
(y)

) · u′j (y)

u′j
(
ζ
j
(y)

) ζ
j
(y) > x

0 ζ
j
(y) = x

and:

ζ
′
i (y) =


δP(y)

1−δ+δP(ζ i(y)) ·
u′i(y)

u′i(ζ i(y))
ζ i (y) < x

0 ζ i (y) = x

By the previous step, we know that y = yl and y = y
r
. Hence, y = ζ l

(
y
)
and y = ζ

r
(y). Let

H (y) = ζ l

(
ζ

r
(y)

)
. H is continuous since ζ

r
and ζ l are both continuous. It follows that if

[
y, y

]
is

an equilibrium acceptance set, then y is a fixed point of H, and y = ζ
r
(y). Since X is compact and

H is continuous and onto X , it follows by Brouwer’s fixed point theorem that H admits a fixed point

y. Hence, an equilibrium of the bargaining exists.

To establish that H has a unique fixed point, it suffices to show that H′ (y) < 1 for any y that is a fixed

point. (If there exist multiple fixed points, then H′ ≥ 1 for at least one fixed point.) By construction:

H′ (y) =


A (y) ·

u′
l

(
y
)

u′
l
(y) ·

u′r (y)
u′r

(
y
) x < y ≤ y < x

0 y = x or y = x

10
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where y = ζ
r
(y) < min {xr, y}, and A (y) =

δP
(
ζ
r
(y)

)
1−δ+δP(y)

δ(1−P(y))
1−δP

(
ζ
r
(y)

) ∈ (0, 1).

Suppose H (y) ≥ 1. Then at least one of

�����u′
l

(
y
)

u′
l
(y)

����� > 1 or

����� u′r (y)
u′r

(
y
)
����� > 1. There are several cases to

consider. First, suppose

����� u′r (y)
u′r

(
y
)
����� > 1. Since y < min {xr, y} then u′r

(
y
)
> 0. If y ≤ y ≤ xr , then

0 ≤ u′r (y) ≤ u′r
(
y
)
, which contradicts

����� u′r (y)
u′r

(
y
)
����� > 1. Hence y < xr < y, and so u′r (y) < 0. Suppose

additionally xl ≤ y < y. Then u′l
(
y
)
< 0 and u′l (y) < 0. Hence u′r (y)

u′r
(
y
) < −1, and

u′
l

(
y
)

u′
l
(y) > 0, and so

H < 0, which cannot be. Hence y < xl ≤ xr < y, and so:

u′l
(
y
)

u′l (y)
· u′r (y)

u′r
(
y
) = −l

(
y − xl

)
l (y − xl)

· l (y − xr)
−l

(
y − xr

) ≤ 1

since l (z) is weakly increasing for z < 0 and weakly decreasing for z > 0. Hence H < 1, which

cannot be, and so

����� u′r (y)
u′r

(
y
)
����� ≤ 1.

Next, suppose that

�����u′
l

(
y
)

u′
l
(y)

����� > 1.Since y > max
{
xl, y

}
, then u′l (y) < 0. If xl ≤ y ≤ y, then

u′l (y) ≤ ul

(
y
)
≤ 0, which contradicts that

�����u′
l

(
y
)

u′
l
(y)

����� > 1. Hence y < xl < y, and so u′l
(
y
)
> 0.

Suppose additionally that y < y ≤ xr . Then u′r
(
y
)
> 0 and u′r (y) > 0. Hence u′r (y)

u′r
(
y
) > 0, and

u′
l

(
y
)

u′
l
(y) < −1, and so H < 0, which cannot be. Hence y < xl ≤ xr < y. But we know that this implies

H < 1, which also cannot be. Hence our initial supposition was wrong; H′ (y) � 1. Hence, H′ < 1

and so H admits a unique fixed point. �

Proof of Lemma 1 . Recall, the acceptance set is A = [yr, yl], where yr = min{y ≥ x | ∆ur(y) ≥

δ∆Ur(y, yl)}, and yl = max{y ≤ x | ∆ul(y) ≥ δ∆Ul(yr, y)}. Now, by construction ∆ul(yr) ≥

∆ul(yl), since l will accept yr . Then, since u is strictly quasi-concave, ∆ul(y) > ∆ul(yl) for all

y ∈ (yr, yl). Similarly, ∆ur(y) > ∆ur(yr) for all y ∈ (yr, yl). Hence ∆Ul(yr, yl) > ∆ul(yl) and
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∆Ur(yr, yl) > ∆ur(yr) whenever yr < yl .

Now, for every δ < 1, ∆ul(yl)
∆Ul(yr,yl) = δ =

∆ur (yl)
∆Ur (yr,yl) , and so as δ→ 1, we need ∆Ul(yr, yl) −∆ul(yl) → 0

and ∆Ur(yr, yl) − ∆ur(yr) → 0. But this requires yl − yr → 0. Hence A = [yr, yl] → [µ, µ] as

δ→ 1. �

Proof of Proposition 2 . Take any i ∈ {1, ...,m}, and suppose µ ∈
(
xi−1, xi ) . Then, by Lemma 1,

there exists δ̄ < 1 s.t. for δ > δ̄, xi−1 < yr (δ) < yl (δ) < xi. (For clarity, we make explicit the

dependence of yr and yl on δ.) Then, by Proposition 1, all judges j ∈ {1, .., i − 1} will propose yr

and all judges j ∈ {i, .., n} will propose yl . Again by Proposition 1, this implies that:

∆ur

(
yr

)
= δ

[
(1 − Pi)∆ur

(
yr

)
+ Pi∆ur (yl)

]
(1)

∆ul (yl) = δ
[
(1 − Pi)∆ul

(
yr

)
+ Pi∆ul (yl)

]
(2)

where Pi =
∑

j≥i p j . By the implicit function theorem, this system of equations pins down yr and yl

in terms of the model parameters.

Now, let E [y] = (1 − Pi) yr + Piyl . Note, by construction, that yr < E [y] < yl . Then yl − E [y] =
1−Pi

Pi

(
E [y] − yr

)
. We affect the following change of variables: Let ε = E [y] − yr . Then, we have:

yr = E [y] − ε and yl = E [y] + 1−Pi

Pi
ε. Equations (1) and (2) become:

(1 − δ (1 − Pi))∆ur (E [y] − ε) = δPi∆ur

(
E [y] + 1 − Pi

Pi
ε

)
(3)

(1 − δPi)∆ul

(
E [y] + 1 − Pi

Pi
ε

)
= δ (1 − Pi)∆ul (E [y] − ε) (4)

By the implicit function theorem, and since u is continuously differentiable, we have:


(1 − δ (1 − Pi)) u′r

(
yr

)
− δPiu′r (yl) − (1 − δ (1 − Pi)) u′r

(
yr

)
− δ (1 − Pi) u′r (yl)

(1 − δPi) u′l (yl) − δ (1 − Pi) u′l
(
yr

) (
1−Pi

Pi
− δ (1 − Pi)

)
u′
l
(yl) + δ (1 − Pi) u′l

(
yr

) 
©«

∂E[y]
∂δ

∂ε
∂δ

ª®®¬ =
12
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©«
(1 − Pi)∆ur

(
yr

)
+ Pi∆ur (yl)

Pi∆ul (yl) + (1 − Pi)∆ul
(
yr

) ª®®¬
Taking limits as δ→ 1, we have:


0 −u′r (µ)

0 1−Pi

Pi
u′l (µ)


©«

limδ→1
∂E[y]
∂δ

limδ→1
∂ε
∂δ

ª®®¬ =
©«

ur (µ)

ul (µ)

ª®®¬
These imply that:

lim
δ→1

∂ε

∂δ
= −ur (µ)

u′r (µ)
=

Pi

1 − Pi

ul (µ)
u′l (µ)

The second equality provides an equation that uniquely defines the limit equilibrium.

Next, we note that equation defining µi coincides with the first order condition of the ith Nash

Bargaining problem. Recall, that problem was: maxy∈X (∆ul(y))1−Pi (∆ur(y))Pi . Since utilities are

concave (after rescaling the space), the maximizer must be the solution to the first order condition:

(1 − Pi)
ulP,y(bi−1,i)
ulP(bi−1,i) + Pi

urP,y(bi−1,i)
urP(bi−1,i) = 0. Re-arranging gives the desired result.

Notice that bi−1,i is increasing in Pi. (To see this, re-arrange the first order condition to give:
u′
l(bi−1,i)

u′r(bi−1,i) ·
ur(bi−1,i)
ul(bi−1,i) = −

Pi

1−Pi
. We know that b ∈

[
xl, xr

]
. By single-peakedness, over this region we

know that ul (b) is strictly decreasing in b and ur (b) is strictly increasing in b, and so ur (b)
ul(b) is strictly

decreasing in b. Similarly, by concavity (after transformation) of u, u′l (b) is decreasing in b and

u′r (b) is increasing in b, and so u′r (b)
u′
l
(b) is weakly decreasing in b. Hence, the left hand term is strictly

decreasing in b. The right hand term is also strictly decreasing in P. Hence, as P increases, so must

b.) Then, since Pi is decreasing in i, it follows that bi−1,i is decreasing is as well.

Since we conjectured µ ∈
(
xi−1, xi ) , then the limit equilibrium policy coincides with ith Nash

Bargaining solution provided that xi−1 < bi−1,i < xi. Now, since xi is increasing and bi−1,i is

decreasing in i, then by the definition of i∗, xi < bi,i+1 for all i < i∗ and xi ≥ bi,i+1 for all i ≥ i∗.

Moreover, for i < i∗, xi−1 ≤ xi < bi,i+1 ≤ bi−1,i, which is inconsistent. Similarly, for i > i∗,

bi−1,i ≤ xi−1 ≤ xi, which is inconsistent. Hence, if bi−1,i ∈
(
xi−1, xi ) , then i = i∗. Note however, that
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the converse need not be true. Setting i = i∗ gives two possibilities: (i) xi∗−1 < bi∗−1,i∗ < xi∗ , or (ii)

xi∗−1 ≤ xi∗ ≤ bi∗−1,i∗ (with at least one inequality strict). The former case is equilibrium consistent,

and since the equilibrium is unique, we have µ = bi∗−1,i∗ .

Suppose the latter case prevails. It follows that the limit equilibrium is not contained in any of

the open intervals
{
(xi−1, xi)

}m−1
i=1 , and so µ ∈

{
x1, ..., xm

}
. (In fact, since yr < xr and yl > xl for

all δ, and since limδ→1 yr = µ = limδ→1 yl , then xl ≤ µ ≤ xr , and so µ ∈
{

xl, ..., xr
}
.) Suppose

µ = xi for some i ∈ {l, ..., r}. Let I = { j |x j = xi} and denote I = {i−, ..., i+}, where i− ≤ j ≤ i+

for all j ∈ I. (Obviously, I may be a singleton, in which case i− = i = i+.) Let Π−i =
∑

j<i− p j and

Π+i =
∑

j>i+ p j and Πi =
∑

j∈I p j . Then, for δ sufficiently large, (1) becomes:

ur(yr
) = δ

[
Π
−
i ur(yr

) + Πiur(xi) + Π+i ur(yl)
]

Since y
r
< xi < yl , there exists τ ∈ (0, 1) s.t. xi = τyr + (1 − τ)yl . We can write (1) as:

ur(yr) = δ
[
(Π−i + Πiτ)ur(yr) + (Π+i + Πi(1 − τ))ur(yl)

]
+ δ

[
Πiτ(ur(yr

) − ur(xi)) + Πi(1 − τ)(ur(yl) − ur(xi))
]

(5)

Notice (5) is the sum of two terms, with the first term being analogous to the expression in (1), and

the second term being a ‘correction’ term.

We repeat the procedure for equation (2), and then apply the change of basis method above, and

take limits as δ → 1. Since yr → xi and yl → xi, the ‘correction’ term in (5) goes to zero. It

follows that µ = b(ρ∗), where ρ∗ = Π+i + Πi(1 − limδ→1 τ(δ)). Now, there must be some k s.t.

bk,k+1 < b(ρ∗) = xi < bk−1,k . Moreover, it must be that k ∈ I, since bi+,i++1 < b(ρ∗) < bi−−2,i−−1,

by construction. But then, we can choose i appropriately s.t. bi,i+1 < xi < bi−1,i. But this requires

i = i∗. �

Proof of Lemma 2. Let z be an arbitrary case. Suppose d∗ = 0. (The other scenario is analogous.)
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Recall M0 =
{

j | x j > z
}
. Moreover, all feasible second stage policies must satisfy y ≥ z. Suppose

there is a j, such that j ∈ M0 and j < M∗. Then the payoff to j of choosing d = 1 must exceed that

of choosing d = 1, which implies:

[
uP(γ(M), x j) − uP

(
γ(M ∪ { j}), x j

)]
+ αl(z − x j) > 0

By assumption 1, the term in square brackets is non-positive, since joining the coalition cannot

make the policy worse from j’s perspective. Moreover, the second term is negative by construction.

Hence the LHS is negative, which is a contradiction. Hence j ∈ M∗. �

Lemma 4. Let (d, M) and (d, M′) both be adjudication (Nash) equilibria, and suppose M ⊂ M′.

Then (d, M) is not coalition-proof.

Proof of Lemma 4. Suppose (d, M) and (d, M′) are both adjudication (Nash) equilibria, with

M ⊂ M′. Since M and M′ are both equilibrium coalitions, it (generically)must be that |M′| ≥ |M+2|,

where |X | denotes the cardinality of set X . (To see this, note that if M′ = M ∪ {i} where i < M , then

it must be that judge i is exactly indifferent between joining the majority coalition or not; otherwise,

i would have a strictly improving unilateral deviation. This indifference is non-generic and requires

an exact alignment of the case, the equilibrium policies chosen by the respective coalitions, and the

salience parameter α.)

Note by Lemma 2 that Md(z) ⊆ M ⊂ M′. WLOG, suppose d = 1. Then, by part 1 of Assumption

1, γ(M) ≤ γ(M′ \ { j}) ≤ γ(M′) for every j ∈ M′ \ M, since M ⊂ M′ \ { j}. Moreover, for all

j ∈ M′ \ M, γ(M) ≤ γ(M′) ≤ z < x j . Now, since M′ is a Nash equilibrium coalition, then

uP(γ(M′), x j) + αl(z, x j) ≥ uP(γ(M′ \ { j}), x j) for each j ∈ M′ \ M , and given the above ordering,

we know that uP(γ(M′ \ { j}), x j) ≥ uP(γ(M), x j). Hence uP(γ(M′), x j) + αl(z, x j) ≥ uP(γ(M), x j)

for all j ∈ M′ \M , and this inequality will generically be strict for some j. Hence, the joint deviation

from M to M′ is Pareto improvement within the deviating coalition.

We must also show that this deviation is stable. Suppose not. Then there exists a (strict) sub-coalition
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C ⊂ M′ \ M that would deviate back to voting sincerely. It must be that C contains at least two

judges, since otherwise it is a unilateral deviation, which cannot be, since M′ is a Nash equilibrium

coalition. (This implies that M′ \ M contains at least 3 judges.) Take some k ∈ C. By construction,

M′ \ C ⊂ M′ \ {k} ⊂ M′, and so γ(M′ \ C) ≤ γ(M′ \ {k}) ≤ γ(M′). Since the deviation from the

deviation is profitable, we have: uP(γ(M′\C), xk) > uP(γ(M′, xk))+αl(z, xk) ≥ uP(γ(M′\{k}), xk),

where the second inequality follows from the fact that M′ is an equilibrium coalition. Hence

uP(γ(M′ \ C), xk) > uP(γ(M′ \ {k}), xk), which cannot be since γ(M′ \ C) ≤ γ(M′ \ {k}) < xk .

Hence, the deviation is stable. �

Lemma 5. Let (d, M) be an adjudication (Nash) equilibrium. There exists a connected coalition

M′ with |M′| = |M | and such that (d, M′) is also an adjudication (Nash) equilibrium coalition.

Moreover, (d, M′) can be sustained as an adjudication equilibrium over a (weakly) larger range of

values of α than (d, M).

Proof of Lemma 5. Let (d, M) be an adjudication (Nash) equilibrium, and suppose M is not

connected. WLOG, suppose d = 1, so that, by Lemma 2, M1 (z) ⊂ M. Since M1 is a connected

coalition and M is disconnected, M must contain members of M0 (z). Then there exists i < j with

i, j ∈ M0 (z), i < M and j ∈ M . Then z < xi ≤ x j . Let M′ be identical to M except that judge j is

replaced by judge i. By part 2 of Assumption 1, it must be that γ(M) = γ(M′). (To see this, note

that replacing judge i with j causes the social acceptance set to be unchanged, since both judges will

make the same proposal y.) Since M is an equilibrium, it must be that:

uP(γ(M), x j) + αl(z − x j) ≥ uP(γ(M − { j}), x j) (6)

and:

uP(γ(M ∪ {i}), xi) + αl(z − xi) < uP(γ(M), xi) (7)
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We seek to show that M′ is also an equilibrium coalition. It suffices to show that:

uP(γ(M′), xi) + αl(z − xi) ≥ uP(γ(M′ − {i}), xi) (8)

and:

uP(γ(M′ ∪ { j}), x j) + αl(z − x j) < uP(γ(M′), x j) (9)

If xi = x j , it is trivial to do so, since i and j have identical preferences. Suppose xi < x j . Note that:

{[
uP(γ(M), x j) − uP(γ(M − { j}), x j)

]
+ αl(z − x j)

}
−

{[
uP(γ(M ′), xi) − uP(γ(M ′ − {i}), xi)

]
+ αl(z − xi)

}
=

(∫ γ(M)

γ(M−{ j })
l(y − x j)dy + αl(z − x j)

)
−

(∫ γ(M)

γ(M−{ j })
l(y − xi)dy + αl(z − xi)

)
=

∫ x j

xi

∂

∂x

[∫ γ(M)

γ(M−{ j })
l(y − x)dy + αl(z − x)

]
dx

= −
∫ x j

xi

[∫ γ(M)

γ(M−{ j })
l ′(y − x)dy + αl ′(z − x)

]
dx

≤0

where the final line follows from the fact that γ(M − { j}) < γ(M) ≤ z < xi < x j and that, by the

IDID property, l′(y − x) > 0 for all y < x. It follows that (6) implies (8). By a similar argument, we

can show that (7) implies (9). Hence, M′ is an equilibrium coalition as well.

Moreover, if xi < x j , then the inequality above is strict, and continues to be so for some α′ > α and

even for some γ(M′) < γ(M). �

Proof of Proposition 3. The existence of an adjudication (Nash) equilibrium follows by standard

game theoretic results. We now establish the existence of a CCPAE. Let (d0, M0) be an adjudication

(Nash) equilibrium, and suppose it is a candidate to be a CCPAE. By Lemma 4, we know that there is

no larger adjudication equilibrium with the same case disposition (i.e. there is no M′ with M0 ⊂ M′

s.t. (d0, M′) is an adjudication equilibrium). If (d0, M0) is not a CCPAE, then there must exist some
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other coalition C0 and induced disposition d′0 s.t. all the members of M0 ∩C0 prefer to deviate from

(d0, M0) to (d′0,C0). Moreover, no subset of the deviators M0 ∩ C0 should have a strict incentive to

deviate from C0. Immediately, this implies that (d′0,C0) is an adjudication (Nash) equilibrium.

By construction, it cannot be that d′0 = d0, since any smaller coalition inducing the same case

disposition must be inferior for the deviating judges (by Lemma 4). Hence d′0 = 1 − d0. Using

the same logic as in Lemma 5, if C0 is disconnected, we can always find some other coalition

C′0 that is connected and which implies a strictly favorable deviation for the judges in M0 ∩ C′0.

Hence, it is WLOG to focus on deviations by connected coalitions. Hence (d1,C0) is a connected

adjudication (Nash) equilibrium, where d1 = 1 − d0. Let (d1, M1) be the largest connected coalition

that implements case disposition d1 = 1 − d0. Clearly C0 ⊆ M1. (d1, M1) is the only other candidate

for a CCPAE. Suppose it is not. Then, by the same argument, there must be some connected

C1 ⊆ M0, s.t. (d0,C1) is preferred by all judges in the deviating coalition M1 ∩C1, and this deviating

coalition is stable.

Since each deviation flips the case disposition, and coalitions are connected, then the median judge

must be a member of the deviating coalition in each case. WLOG, suppose d0 = 0 and d1 = 1. We

have:

uP(γ(C0), xmed) + 1[z < xmed]l(z − xmed) > uP(γ(M0), xmed) + 1[z > xmed]l(z − xmed) (10)

and

uP(γ(C1), xmed) + 1[z > xmed]l(z − xmed) > uP(γ(M1), xmed) + 1[z < xmed]l(z − xmed) (11)

Suppose xmed < z. By assumption 1, γ(C0) ≤ γ(M1) ≤ z ≤ γ(M0) ≤ γ(C1). It cannot be that

xmed ≤ γ(M1), otherwise uP(γ(M1), xmed) > uP(γ(C1), xmed), which contradicts (10). Hence:

γ(C0) ≤ γ(M1) < xmed < z ≤ γ(M0) ≤ γ(C1). But then, by the strict quasi-concavity of uP,

uP(γ(M0), xmed) ≥ uP(γ(C1), xmed) > uP(γ(M1), xmed) ≥ uP(γ(C0), xmed). But (10) implies that
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uP(γ(C0), xmed) > uP(γ(M0), xmed). We have a contradiction. By a symmetric argument, we can

show that a contradiction arises in the scenario that xmed > z. Hence, it cannot be that both (d0, M0)

and (d1, M1) are both not CCPAE. Existence is established.

Establishing the equilibrium properties is straight-forward. Fix a case z. Suppose (d, M) is a CCPAE.

By Lemma 2, Md ∈ M . Suppose Md , ∅. Then, by the ordering over judges, 1 ∈ Md if d = 1 and

n ∈ Md if d = 0. Since M is connected and contains at least k = n+1
2 agents, then n+1

2 ∈ M . Hence

either {1, ..., n+1
2 } ⊂ M or { n+1

2 , ..., n} ⊂ M. (If Md = ∅, then the result follows provided that we

rule out equilibria that relies upon a majority of judges voting strategically, but not those judges

with the lowest cost of doing so.) �

Proof of Corollary 1. To show part (1), let (d, M) and (d′, M′) be distinct CCPAE, and suppose

that d = d′. Then, by Lemma 2, Md(z) ⊂ M and Md ′(z) ⊂ M′. Since M and M′ are connected,

this implies (WLOG) that M ⊂ M′. But then, by Lemma 4, M cannot be coalition-proof, which is a

contradiction. Hence, d , d′. Since distinct CCPAE must have distinct dispositions, and there are

only two possible dispositional values, then there can be at most two CCPAE.

Next, we establish part (2). Fix some case z. For j = {1, .., n−1
2 }, define:

α j(z) =
uP(γ({ j + 1, ..., n}), x j) − uP(γ({ j, ..., n}), x j)

l(z − x j)

If x j < z, so that j’s ideal disposition is d = 1, then whenever α > α j(z), there cannot be an

adjudication equilibrium in which j is the left-most judge who votes strategically. Similarly, for

j = { n+3
2 , ..., n} define:

α j(z) =
uP(γ({1, , ..., j − 1}), x j) − uP(γ({1, ..., j}), x j)

l(z − x j)

If x j > z, so that j’s ideal disposition d = 0, then whenever α > α j(z), there cannot be an
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adjudication equilibrium in which j is the right-most judge who votes strategically. Finally, define:

α n+1
2
(z) =

uP(γ({1, ..., n+1
2 }), xmed) − uP(γ({ n+1

2 , ..., n}), xmed)
l(z − xmed )

Recall M1(z) and M0(z) are the coalitions that arise if judges vote sincerely. Since n is odd, one of

these will be larger than the other. We refer to the larger coalition as the ‘sincere majority coalition’

and the smaller coalition as the ‘sincere minority coalition’.

We consider two scenarios. First, suppose |M1(z)| − |M0(z)| ≥ 2. This implies that if judges vote

sincerely, the size of the majority and minority coalitions will differ by at least two. Then, for

all α ≥ 0, there exists an adjudication (Nash) equilibrium in which all members of the sincere

majority coalition vote sincerely. (To see why, note that if all judges in the sincere majority coalition

vote sincerely, then no judge is pivotal over the case disposition. The result is then an immediate

consequence of Lemma 2. Note, of course, that judges in the sincere minority might nevertheless

have an incentive to vote strategically.)

We show that, for α sufficiently large, there cannot be an adjudication (Nash) equilibrium which

implements the opposite disposition. Suppose there is. By Lemma 5, we know that it suffices to

focus on connected equilibria. Suppose M1(z) > M0(z) + 1, so that the sincere disposition is d = 1.

The connected majority coalitions that implement the opposite disposition (d = 0) and satisfy

Lemma 2 are of the form: { j, , , n}, where j ∈ {1, .., n+1
2 } ⊆ M1(z). Define α(z) = max{α1, ..., α n+1

2
}.

By construction, if α > α(z), then none of these coalitions is consistent with an adjudication

equilibrium. Hence, if α > α(z), there cannot be any adjudication equilibria that implement the

sincere minority’s preferred disposition. Hence, any adjudication equilibrium must implement the

sincere majority’s preferred disposition. By previous arguments, there is a unique CCPAE that

achieves this.

Suppose instead that M0(z) > M1(z) + 1, so that the sincere disposition is d = 0. Then the result

obtains by defining α(z) = max{α n+1
2
, ..., n}.
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Next, consider the scenario where |M1(z) − M0(z)| = 1, so that, if all judges vote sincerely, the

median is pivotal. This scenario differs from the previous one only insofar as the median judge

may have an incentive to vote strategically for α low enough, even if all other judges in the sincere

majority vote sincerely. Again, first suppose that xmed < z, so that the sincere disposition is d = 1.

Define:

α(z) = min
{
max{α1, ..., α n+1

2
},max{α n+3

2
, ..., αn}

}
Following the same logic, there is a unique equilibrium provided that α > α(z). Supposing instead

that xmed > z, then the result obtains by defining:

α(z) = min
{
max{α1, ..., α n−1

2
},max{α n+1

2
, ..., αn}

}
�

Proof of Lemma 3. Follows immediately from the proofs of Proposition 3 and Corollary 1. �
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