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1 Estimation

In this section, we introduce our estimation procedure.

1.1 Factorization of the Likelihood

The complete-data likelihood is

L(ζζζ,Θ | XT ,ST ,XC,W stat.,C)

= f(XT ,XC, | ζζζ,Θ,ST ,W stat.,C)

= f(XC | ζζζ,Θ,ST ,W stat.,C,XT ) f(XT | ζζζ,Θ,ST ,W stat.,C)

By sufficiency

= f(XC,SC | ζζζ,Θ,W stat.,C) f(XT | Θ,SC)

which is Equation 5.

Our stagewise estimation procedure is primarily motivated by computational consid-

erations. The partial-likelihood approach reduces computational complexity dramatically;

simultaneously estimating ζ and Θ on the full data would require repeated passes over XC,

which is typically too large to hold in memory.

However, the stagewise approach has properties that make it attractive for other reasons

as well. First, when the model is correctly specified, our approach remains unbiased with

respect to the auditory parameters; in this case, the only sacrifice is in efficiency loss relative

to joint maximization of the full likelihood. But in the presence of model misspecification—

which almost certainly exists with complex phenomena like human speech, e.g., if true hu-
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man speech contains more than M modes—the proposed approach can in fact outperform

full maximum likelihood. More generally, semi-supervised approaches that exploit both la-

beled and unlabeled data often underperform those that only use the former (Masanori and

Takeuchi, 2014). Intuitively, this is because unsupervised methods rarely recover the ana-

lyst’s preferred labels, and semi-supervised techniques are typically dominated by the much

larger unlabeled dataset.

Finally, we note that even with moderately sized training sets, the number of moments in

XT will be already be several orders of magnitude larger than the number of parameters, due

to the high-frequency nature of audio data, so that Θ is already reasonably well-estimated

from the training utterances alone.

1.2 Estimation of Lower-Level Auditory Parameters

To estimate the parameters of the M lower-level models, which each represent the auditory

characteristics of a particular speech mode, we employ a non-sequential training set of ex-

ample utterances that are assumed to be drawn from the same distribution as the primary

corpus (conditional on mode). In the main text, the audio features of the training set are

denoted XT , and the corresponding tone labels are ST . Here, we drop T for convenience

and work exclusively within the training set.
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Consider the subset with known mode Su = m.1 This group of utterances is assumed to

be drawn from a single shared Gaussian HMM, the speech model for mode m. Below, we

describe how lower-level parameters are estimated by standard HMM techniques. Interested

readers are referred to Zucchini and MacDonald (2009) for further discussion.

We first write down the likelihood function for parameters of the m-th mode. For each

utterance, at each moment t, the feature vector Xu,t could have been generated by any of

the K sounds associated with emotion m, so there are KTu possible sequences of unobserved

sounds by which the entire feature sequence Xu could have been generated. The u-th

utterance’s contribution to the observed-data likelihood is the joint probability of all observed

features, found by summing over every possible sequence of sounds. This yields

L(µm,Σm,Γm |X,S)

=
U∏
u=1

Pr(Xu,1 = xu,1, · · · ,Xu,Tu = xu,Tu | µm,k,Σm,k,Γm)1(Su=m)

=
U∏
u=1

(
δm>Pm(xu,1)

(
Tu∏
t=2

ΓmPm(xu,t)

)
1

)1(Su=m)

, (1)

where µm = (µm,k)k∈{1,...,K}, Σm = (Σm,k)k∈{1,...,K}, δm is a 1×K vector containing the initial

1In practice, because the perception of certain speech modes can be subjective (human coders

may disagree or be uncertain), training set mode labels Su may be a stochastic vector of

length M , S̃u = [Pr(Su = 1), . . . ,Pr(Su = M)], rather than a M -valued categorical variable.

In such cases the contribution of an utterance to the model for emotion m may be weighted

by the m-th entry, e.g. corresponding to the proportion of human coders who classified

the utterance as emotion m. After replacing 1(Su = m) with Pr(Su = m), the procedure

described in this appendix can be used without further modification.
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distribution of sounds (assumed to be the stationary distribution, a unit row eigenvector of

Γm), the matrices Pm(xu,t) ≡ diag
(
φD(xu,t|µm,k,Σm,k)

)
are K × K diagonal matrices in

which the (k, k)-th element is the (D-variate Gaussian) probability of xu,t being generated

by sound k, and 1 is a column vector of ones.

In practice, due to the high dimensionality of the audio features, we also regularize the

Σ terms to ensure invertibility by adding a small positive value (which may be thought of

as a prior) to its diagonal. We recommend setting this regularization parameter, along with

the number of sounds, by selecting values that maximize the training set’s cross-validated

naïve probabilities (i.e., based on mode prevalence and emission probabilities, ignoring con-

text). This procedure asymptotically selects the closest approximation, in terms of the

Kullback–Leibler divergence, to the true data-generating process among the candidate mod-

els considered (van der Laan, Dudoit, and Keles, 2004).

The parameters µm,k, Σm,k, and Γm can in principle be found by directly maximizing

this likelihood. However, given the vast number of parameters to optimize over, we estimate

using the Baum-Welch algorithm for expectation-maximization with hidden Markov models.

In what follows, we describe this procedure as it relates to the estimation of the lower-

level audio parameters. Baum-Welch involves maximizing the complete-data likelihood of

Equation 2, which differs from equation 1 in that it also incorporates the probability of the
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unobserved sounds.

U∏
u=1

Pr(Xu,1 = xu,1, · · · ,Xu,Tu = xu,Tu , Ru,1 = ru,1, · · · , Ru,Tu = ru,Tu | µm,∗,Σm,∗,Γm)1(Su=m)

=
U∏
u=1

(
δmru,1 φD(xu,1|µm,ru,1 ,Σm,ru,1) ×

Tu∏
t=2

Pr(Ru,t = ru,t | Ru,t−1 = ru,t−1) φD(Xu,t|µm,ru,t ,Σm,ru,t)

)1(Su=m)

=
U∏
u=1

(
K∏
k=1

(
δmk φD(xu,1|µm,k,Σm,k)

)1(Ru,1=k) ×

Tu∏
t=2

(
K∏
k=1

(
K∏
k′=1

(
Γmk,k′

)1{Ru,t=k′,Ru,t−1=k′} φD(Xu,t|µm,k,Σm,k)1(Ru,t=k)

)))1(Su=m)

,

(2)

1.2.1 E step

This procedure relies heavily on the joint probability of (i) all feature vectors up until time

t and (ii) the sound at t, given in equation 3. These probabilities are efficiently calculated

for all t in a single recursive forward pass through the feature vectors.

αu,t,k = f(Xu,1 = xu,1, · · · ,Xu,t = xu,t, Ru,t = k)

αu,t = [αu,t,1, . . . , αu,t,K ]

= δ>u P
m(xu,1)

(
t∏

t′=2

ΓmPm(xu,t′)

)
(3)

It also relies on the conditional probability of (i) all feature vectors after t given (ii) the

sound at t (equation 4). These are similarly calculated by backward recursion through the
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utterance.

βu,t,k = f(Xu,t+1 = xu,t+1, · · · ,Xu,Tu = xu,Tu | Ru,t = k)

βu,t = [βu,t,1, . . . , βu,t,K ]>

=

(
Tu∏

t′=t+1

ΓmPm(xu,t′)

)
1 (4)

The E step involves substituting (i) the unobserved sound labels, 1(Ru,t = k), and (ii)

the unobserved sound transitions, 1(Ru,t = k′, Ru,t−1 = k), with their respective expected

values, conditional on the observed training features Xu and the current estimates of Θm =

(µm,k,Σm,k,Γm).

For (i), combining equations 1, 3 and 4 immediately yields the expected sound label

E
[
1(Ru,t = k) |Xu, Su = m, Θ̃

]
∝ α̃u,t,k β̃u,t,k, (5)

where the tilde denotes the current approximation based on parameters from the previous

M step; αu,t,k and βu,t,k are the k-th elements of αu,t and βu,t respectively; and L̃mu is the

u-th training utterance’s contribution to L̃m.
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For (ii), after some manipulation, the expected sound transitions can be expressed as

E[1(Ru,t = k′, Ru,t−1 = k) |Xu, Su = m, Θ̃]

= Pr(Ru,t = k′, Ru,t−1 = k,Xu | Θ̃) / Pr(Xu | Θ̃)

= Pr(Xu,1, · · · ,Xu,t−1, Ru,t−1 = k | Θ̃) Pr(Ru,t = k′ | Ru,t−1 = k, Θ̃) ×

Pr(Xu,t | Ru,t = k′) Pr(Xu,t+1, · · · ,Xu,Tu | Ru,t = k′) / Pr(Xu | Θ̃)

∝ α̃u,t−1,k Γ̃mk,k′ φD(xu,t|µ̃m,k, Σ̃m,k) βu,t,k′ . (6)

1.2.2 M Step

After substituting equations 5 and 6 into the complete-data likelihood (equation 2), the M

step involves two straightforward calculations. First, the conditional maximum likelihood

update of the transition matrix Γm follows from equation 6:

Γ̃mk,k′ =

∑U
1=1 1(Su = m)

∑Tu
t=2 E

[
1(Ru,t = k′, Ru,t−1 = k) |Xu, Θ̃

]
∑U

1=1 1(Su = m)
∑Tu

t=2

∑K
k′=1 E

[
1(Ru,t = k′, Ru,t−1 = k) |Xu, Θ̃

] (7)

Second, the optimal update of the k-th sound distribution parameters are found by fitting

a Gaussian distribution to the feature vectors, with the weight of the t-th instant being given

by the expected value of its k-th label.
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Γ̃mk,k′ =

∑U
u=1 1(Su = m)

∑Tu
t=2 E

[
1(Ru,t = k′, Ru,t−1 = k) |Xu, Θ̃

]
∑U

u=1 1(Su = m)
∑Tu

t=2

∑K
k′=1 E

[
1(Ru,t = k′, Ru,t−1 = k) |Xu, Θ̃

] (8)

µ̃m,k =
U∑
u=1

1(Su = m)X>uW
m,k
u (9)

Σ̃m,k =
U∑
u=1

1(Su = m)
(
X>u diag

(
Wm,k

u

)
Xu

)
− µ̃m,kµ̃m,k > (10)

where Wm,k
u ≡

∑U
u=1 1(Su = m) [E [1(Ru,1 = k) |Xu,Θ] , · · · ,E [1(Ru,Tu = k) |Xu,Θ]]>∑U

u=1 1(Su = m)
∑Tu

t=1 E [1(Ru,t = k) |Xu,Θ]

1.3 Unmodeled Autocorrelation

If the Gaussian HMM model of speech described in Equations 3–4 were correctly speci-

fied, then the tone of any new utterance could be classified with well-calibrated posterior

probabilities based on its auditory characteristics (setting aside conversation context) by the

simple application of Bayes’ rule, Pr(Su = m|Xu,Θ) = Pr(Xu|Su=m,Θ) Pr(Su=m)∑M
m′=1 Pr(Xu|Su=m′,Θ) Pr(Su=m′)

, where

Pr(Xu|Su = m,Θ) = δm>Pm(xu,1)
(∏Tu

t=2 ΓmPm(xu,t)
)

1 as in Appendix 1.2.

However, this speech model—like all simplified models of complex human behavior—is

misspecified, with implications for its resulting predictions. In particular, our model assumes

that the auditory features in successive moments are conditionally independent, given their

respective sounds. This can be seen by noting that Xu,1 and Xu,2 are d-separated by Ru,1

and Ru,2 in Figure 2. In other words, the expected difference in audio between moment t

and t + 1 should be no greater than the difference between t and t + 10, as long as a vowel

is being spoken.

This assumption makes the model analytically tractable, much as the bag-of-words as-
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sumption facilitates text analysis. Like the bag-of-words assumption, it is also clearly violated

by actual human behavior. A speaker’s vocal tract is physically incapable of changing much

in a few milliseconds, but this autocorrelation in features goes unmodeled. Thus, the model

mistakenly perceives the information content of an utterance to be Tu data points, when in

fact it may be much less. The practical implication is that mode probabilities produced by the

aforementioned approach will drift toward zero and one, leading to dramatic miscalibration.

To address this issue, we use a corrective factor,
(
δm>Pm(xu,1)

(∏Tu
t=2 ΓmPm(xu,t)

)
1
)ρ

.

This scales back the utterance’s contribution to the log likelihood multiplicatively, reducing

the utterance’s “effective value” to ρTu. The corrective factor is estimated from out-of-sample

data by maximizing the total log corrected probabilities of the correct class.

1.4 Estimation of Upper-Level Conversation Parameters

We now describe our procedure for estimating the conversation flow parameters by max-

imizing the observed-data likelihood of Equation 5 with respect to ζ, which amounts to

maximizing f(XC | ζζζ,Θ,W stat.,C). This is equivalent to estimating both the unobserved SC

and parameters ζ by maximizing the expected complete-data log likelihood. (All analysis in

this subsection is of the primary corpus, so we drop the C indicator for compactness.) For

complete generality, we also introduce a conversation index v ∈ {1, . . . , V }. The number of

utterances in conversation v is denoted Uv; metadata, speech modes and audio features for

utterance u in conversation v are respectively Wv,u, Sv,u and Xv,u.
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First, the complete-data likelihood of the primary corpus is

ln f(X,S | ζζζ,Θ,W stat.)

= ln

(
V∏
v=1

δv,Sv,1f(xv,1|Sv,1 = s1,Θ)
Uv∏
u=2

Pr(Sv,u = sv,u|Sv,u−1 = sv,u−1)f(xv,u|Sv,u = sv,u,Θ)

)

=
V∑
v=1

M∑
m=1

ln δ1(Sv,1=m)
v,m +

V∑
v=1

Uv∑
u=1

M∑
m=1

ln f(xv,u|Sv,u = m,Θm)1(Sv,1=m)

+
V∑
v=1

Uv∑
u=2

M∑
m=1

M∑
m′=1

∆
1(Sv,u−1=m,Sv,u=m′)
v,u,m,m′

=
V∑
v=1

M∑
m=1

1(Sv,1 = m) ln δv,m +
V∑
v=1

Uv∑
u=1

M∑
m=1

1(Sv,1 = m) ln f(xv,u|Sv,u = m,Θm)

+
V∑
v=1

Uv∑
u=2

M∑
m=1

M∑
m′=1

1(Sv,u−1 = m,Sv,u = m′) ln
exp

(
Wv,u(Sv,u′<u)

>ζm
)∑M

m′=1 exp (Wv,u(Sv,u′<u)>ζm′)
,

where Wv,u(Sv,u′<u) = [W stat.>
v,u ,W dyn.

v,u (Sv,u′<u)
>]>. δv indicates the initial distribution of

speech modes for conversation v.

Because the time-varying transition matrix, ∆v,u, is a multinomial logistic function of

conversation context, Wv,u—which is itself a potentially complex function of unobserved

prior speech modes—deriving the closed-form expectation of the complete-data likelihood is

intractable. We therefore replace this expectation with the following blockwise procedure

that sweeps through the unobserved variables sequentially.

1. The metadata Wv,u depends on conversation history, but the previous mode is un-

observed. Therefore, for each utterance, we create a separate metadata vector for

each possible prior mode. (This is computationally infeasible for longer-range sum-

maries of conversation history e.g., aggregate anger expressed over the course of a

debate, so we recommend a mean-field approximation for dynamic metadata based
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on utterances older than u − 1.) This step produces M possible metadata vectors,

W̃v,u(Ẽ[Sv,u′<u−1], Su−1 = 1) through W̃v,u(Ẽ[Sv,u′<u−1], Su−1 = M).

2. Each possible metadata vector implies a vector of probabilities for the next utterance,

∆̃m = [P̃r(Su = 1|Su−1 = m), . . . , P̃r(Su = M |Su−1 = m)] =
exp(W̃u(Ẽ[Sv,u′<u−1],Su−1=m)>ζ̃m)∑M

m′=1 exp(W̃u(Ẽ[Sv,u′<u−1],Su−1=m)>ζ̃m′)
.

Stack these into a transition matrix, ∆̃.

3. Compute Ẽ[1(Sv,u = m)] and Ẽ[1(Sv,u−1 = m,Sv,u = m′)], using a forward-backward

algorithm that is essentially identical to Equations 5 and 6. We find that the use of

the corrected emission probabilities, described in Appendix 1.3, is crucial in this step.

Again, tildes indicate the best guess for each variable at the current iteration. The max-

imization step for ζ then reduces to weighted constrained multinomial logistic regression

in which all possible transitions are included, weighted by Ẽ[1(Sv,u−1 = m,Sv,u = m′)]. A

constraint on the mode-specific intercepts ensures that the fitted probabilities agree with the

known tone proportions; this is implemented by first computing the relaxed update for ζ in

each iteration, then imposing the constraint. The estimated initial mode, δv follows directly

from the expected value of [1(Sv,1 = m)]. All in all, the use of this alternative procedure

leads to a smaller improvement of the EM objective function than the full (infeasible) E-step

would. Nevertheless, algorithms using such partial E- or M-steps ultimately converge to a

local maximum, as does traditional expectation-maximization (Neal and Hinton, 1998).

1.5 Bootstrapping

Because each bootstrapped speech-mode model’s parameters only enter the upper model

through how well or poorly they explain a particular utterance’s observed auditory features,
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the upper model is unaffected by likelihood invariance issues such as the label-switching

problem. However, to the extent that some bootstrapped model runs are trapped in local

modes and do not attain the global optimum, resulting upper-level confidence intervals will

be wider (that is, more conservative), reflecting both true uncertainty and the additional

random variation in the selected local mode. This pitfall may be addressed by standard

optimization procedures such as simulated-annealing EM or running multiple chains.

2 Audio Features

Table 1 lists the primary features we calculate for each utterance. In addition, we calculate

interactions between and derivatives of these primary features.

Feature (#) Description

energy (1) sound intensity, in decibels: log10
√
x2t

ZCR (1) zero-crossing rate of audio signal
autocorrelation (1) Cor(xt, xt−1)
TEO (1) Teager energy operator: log10 x2t − xt−1xt+1

F0 (2) fundamental, or lowest, dominant frequency of speech
signal (closely related to perceived pitch; tracked by two
algorithms)

formants (6) harmonic frequencies of speech signal, determined by
shape of vocal tract (lowest three formants and their
bandwidths)

MFCC (13) Mel-frequency cepstral coefficients (characterizing the
shape of the frequency spectrum, after transforming and
binning the spectrum to approximate human perception
of sound intensity)

Table 1: Audio features extracted for each moment. Parenthesized values indicate the
number of scalars extracted per moment. We also include interactions between (i) energy and
zero-crossing rate, and (ii) Teager energy operator and fundamental frequency, for a total
of 27 primary features. In addition, first and second finite differences are often informative.
For example, vocal jitter and shimmer are respectively described by the first differences in
F0 and energy.
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3 Case Study of Alabama Legislative Black Caucus v. Alabama

Here, we illustrate the model using excerpts from Alabama Legislative Black Caucus v. Al-

abama, a racial gerrymandering case heard by the Supreme Court in 2014.2 While this

example represents only a small portion from a single case, it demonstrates many of the

conversation dynamics that motivate our model. We begin by discussing the legal question

and positions of the justices, then walk through instances of information-seeking questions,

skeptical attacks on the opposing side, and defensive interventions. We then show how MASS

parameters map onto the primary theoretical quantities of interest.

As background, Alabama Legislative Black Caucus v. Alabama considered the legality of

Alabama’s 2012 redistricting efforts. The plan came after the 2010 census found substantial

population decline in state legislative districts with a majority of black voters, necessitating

the expansion of these districts’ boundaries. (Reapportionment was required to comply

with Reynolds v. Sims—yet another decision against the state of Alabama—which ruled

overrepresentation of rural, predominantly white, voters in the Alabama state legislature

unconstitutional under the Fourteenth Amendment’s equal protection clause and the “one

person, one vote” principle.) In response to these population shifts, the Republican-led

legislature sought to pack black voters into a small number of already Democratic-dominated

districts—for example, 14,500 people were added to State Senate District 26, of whom only

35 were non-black. Ultimately, the court ruled that the use of race as a “predominant”

factor, even when only applied to a subset of districts rather than statewide, constituted

2The full argument is available at https://www.oyez.org/cases/2014/13-895, along with

background on the case, the ruling, and dissents.
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illegal racial gerrymandering.

In what follows, we consider legal jockeying in oral arguments over a contentious and

highly consequential debate: Whether Section 5 of the Voting Rights Act (VRA), prohibiting

retrogression in minorities’ “ability to elect their preferred candidates,” meant that Alabama

had to continually maintain or increase the numerical percentage of black voters in black-

dominated districts. If so, the state’s consideration of race would be “narrowly tailored”

to meeting its VRA obligations, and thus legal.3 We focus in particular on questioning by

Justices Breyer and Scalia, who respectively wrote the majority and dissenting opinions, as

well as by Justice Kennedy, who cast the pivotal vote.

Panel 1 in Figure 1 presents a condensed transcript of one instance when this issue arose

during arguments by a liberal advocate representing the Alabama Democratic Conference.

Early on, Justice Scalia takes the position that the state was legally bound to maintain

or increase black percentages. His stance was far from novel, as it had already been dis-

cussed extensively in briefs and lower-court decisions available to all justices. But Justice

Scalia repeats the point nonetheless, questioning the liberal advocate not only skeptically,

3The ruling concluded that the Republican legislature “relied heavily upon a mechanically

numerical view as to what counts as forbidden retrogression... And the difference between

that view and the more purpose-oriented view reflected in the statute’s language can matter.

Imagine a majority-minority district with a 70% black population... it would seem highly

unlikely that... reduc[ing] the percentage of the black population from, say, 70% to 65%

would have a significant impact on the black voters’ ability to elect their preferred candidate.

And, for that reason, it would be difficult to explain just why a plan that uses racial criteria

predominately to maintain the black population at 70% is “narrowly tailored” to achieve a

“compelling state interest,” namely the interest in preventing Section 5 retrogression.
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but sarcastically—theatrically drawing out his words and even exclaiming “gee.” The ploy

appears to be effective. Justice Kennedy follows up on the topic, skeptically wondering why

it was legal for Democrats to disperse black voters, but not for Republicans to concentrate

them: a “one-way ratchet.” Sensing a threat, Justice Breyer attempts to smooth things over

with a matter-of-fact legal analysis of Easley v. Cromartie.4 Again, the discussion hardly

contained new information. In briefs by both the Alabama Black Legislative Caucus and the

state of Alabama, 167 pages were devoted to analysis relating to Easley v. Cromartie. And

more to the point, five of the nine justices had been serving on the Supreme Court when

that very case was decided there in 2001.

In contrast, Panel 1 depicts an exchange—in the very same case—where the roles are

reversed during questioning of the conservative advocate. Here, Justice Kennedy again seeks

to clarify whether the legislature’s consideration of race was a permissible attempt to comply

with VRA obligations. Justice Breyer attacks, asserting that since Alabama’s actions were

indefensible under Section 5, “I don’t know what the defense is possibly going to be.” He

seizes the opportunity to push a step further, suggesting that the Republican legislature has

no case and should give up—prompting Justice Scalia to wade into the exchange defensively.

These excerpts provide a clear illustration of conversational flow: how one speaker’s

communication causes a subsequent speaker to communicate differently in response. In

Justice Sotomayer’s 2019 words, Justices Scalia and Breyer are “raising points through the

questions that we want our colleagues to consider,” then intervening in response to one

4Easley v. Cromartie ruled that the burden of proof is on the complainant, who must show

“legislature could have achieved its legitimate political objectives in alternative [non-racial]

ways.”
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another. In this section, we show how MASS can detect systemic patterns in speech patterns

like these, allowing analysts to move beyond isolated anecdotes and test theories about oral

argumentation using justices’ expressions of skepticism.

To demonstrate how the MASS is able to do this, in Figure 1 (duplicated here for conve-

nience) we turn to a close examination of two prototypical utterances by Justice Breyer. We

first discuss the sounds of which each utterance is composed, along with their auditory pro-

files. Consider Justice Breyer’s skeptical mode of speech—the tone in which he rhetorically

exclaims “Now if that’s so, they don’t have Section 5 to rely on as a defense!” He commu-

nicates through a sequence of sounds that, simplistically, we might categorize into “vowel,”

“consonant,” and “silence.”5 In Panel 1, we show that our generative model of skeptical

speech mirrors this structure: Vowels (dark red) are sustained for a few moments (horizon-

tally arrayed cells) before Justice Breyer transitions to consonants (light red strikethrough)

and eventually pauses in silence (white) between words6. One such transition is depicted in

Figure 1.D.2. Just as a human can recognize phonemes from their auditory characteristics,

our model automatically learns to distinguish vowels (based on their higher autocorrelation,

as encoded in µskeptical,vowel) from consonants (high zero-crossing rate), as shown in Figure 1.

5We note that sound labels, like topic labels in latent Dirichlet allocation text models, are

subjective descriptions of component distributions in unsupervised learning models. How-

ever, human speech is highly structured. Across a wide range of applications, we consistently

find that HMMs recover states that correspond closely to theoretically motivated phoneme

groups.
6Because each moment describes just milliseconds of audio, glottal stops and short pauses

between words are an observable component of speech.
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Figure 1: An illustrative example. Panel A contains an excerpt from Alabama Legislative
Black Caucus v. Alabama, where Justices Scalia, Kennedy, and Breyer utilize neutral and
skeptical tones in questioning. Call-outs highlight successive utterance-pairs in which the
speaker shifted from one mode to another (B.3), and continued in the same tone of voice (B.1
and B.2). Panels C.1 and C.2 illustrate the use of loudness (text size) and pitch (contours)
in a single utterance: in the neutral mode of speech (C.1), speech varies less in pitch and
loudness when compared to skeptical speech (C.2). On the basis of these and other features,
MASS learns to categorize sounds into vowels (dark squares), consonants (light), and pauses
(white). Call-outs D.1 and D.2 respectively identify sequential moments in which a “neutral”
vowel is sustained (transition from the dark blue sound back to itself, indicating repeat) and
the dark red “skeptical” vowel transitions to the light red consonant. Panel E shows the
differing auditory characteristics of the “skeptical” vowel and consonant, which are perceived
by the listener.



Why does this matter? It is on the basis of these constituent sounds that MASS is able

to discern differences between rhetorical styles. As Figure 1.A makes clear, MASS contains

a parallel “neutral” model for Justice Breyer’s speech alongside the “skeptical” model. While

neutral speech also uses vowels and consonants, the auditory profiles of these sounds differ

dramatically. Figure 1.C.2 (in which word size reflects decibel-scale energy) demonstrates

Breyer’s use of modulation for emphasis when advancing his argument (“if that’s so...”) and

his soaring pitch when expressing incredulity and exasperation (“don’t have... a defense!”)

Thus, Σskeptical,vowel captures higher variance in loudness and pitch when compared to neutral

speech (Figure 1.C.1), where every word is delivered at near-constant volume and relatively

flat pitch. Differences in average pitch—often a marker of emotional engagement—are rep-

resented in the µ terms. Finally, shifts in cadence, like when Breyer briefly loses his train of

thought before continuing “uh... ratchet”, manifest in the Γ matrices.

These models of skeptical and neutral speech enable analysts to categorize hundreds or

even thousands of hours of previously unheard speech. But learning to recognize skepti-

cal speech is only the beginning for MASS. The most important questions in the analysis

of political speech relate to its ebb and flow—when and why a speaker chooses to deploy

a particular tone. After learning to distinguish tone in the lower stage (Equations 3–4),

MASS moves on to model the entire Supreme Court’s conversational flow by estimating the

contextual determinants of speech tone (Equations 1–4). While scholars can easily listen to

and compare a few short audio recordings, the amount of time required to digest an entire

session’s worth of argumentation—dozens of cases, each containing hundreds of utterances—

rapidly grows infeasible. MASS makes it possible to identify broad patterns in the drivers

of political speech, analyzing large-scale audio corpora while still incorporating human judg-
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ment about tone and expressed emotion. In Section4.2, we develop a procedure for doing

so; Algorithm 1 describes the steps in detail. Broadly speaking, the model learns to identify

micro-level patterns, such as those described above, based on a moderately sized training

set of human-provided examples. MASS then uses this knowledge to crudely categorize ev-

ery utterance spoken. Finally, based on their sequence and contextual covariates, MASS

identifies patterns in tone usage, then uses these patterns to iteratively refine its utterance

predictions and the flow-of-speech parameters.

4 Validating the Model

4.1 Facial Validity of Predicted Skepticism

Before proceeding to more substantial results, we first demonstrate the face validity of MASS

predictions in a qualitative examination of machine-generated utterance labels. Table 4.1

presents twenty randomly sampled example utterances that lie in the top decile of predicted

skepticism and neutrality. Results suggest high face validity: utterances characterized by the

model as skeptical include gentle mockery and doubtful questions, whereas model-predicted

neutral utterances are factual statements and straightforward legal analysis.
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Skeptical Speech Neutral Speech
And that helps women. Mr. Frederick?
It said the rationale is unconscionable. And because it’s a regulated industry, the regu-

lator in your view is doing one of the worst jobs
in history.

You think the answer to that is clearly no. And – and the difference between the monitoring
and what happened in the past is memories are
fallible, computers aren’t.

Isn’t it arguably in part to protect consumers? Then if the Polynesian boat is permanently in
the museum, there’s a lot of objective evidence
of that, it would not be a vessel.

The reason that they want to appeal is they want
to win.

What about the – this as I understand it, came
up originally as arbitration under the – wasn’t it
under the collective bargaining contract?

But the lower court said it shouldn’t be weighed
against the State, period.

You’re talking about a very narrow range of
cases, because I take it your principal position
is it – it would be unusual that the defendant
needs to be competent in order for the lawyer
effectively to represent him on habeas.

Well, that’s simply because, as we said in Al-
legheny Pittsburgh, the basis for considering the
equal protection claim is the rights that you’re
given under State law.

I mean, Justice Ginsburg wrote the majority, and
she said the reference to regulatory authority of
a State, which is a different reference, I agree,
should be read to preserve, not preempt tradi-
tional prerogative for the State.

It did command a majority of the Court, it is
authoritative decision, and there are obviously
different views among different judges about the
extent to which they are the same or not.

If you start talking about significant effect, with-
out those last words, “ deregulatory purpose ” I
suddenly worry about the following: That every
city in the United States depends upon towing
to regulate parking within the city.

And to go back to Justice Sotomayor’s question,
as long as it’s rational in at least some instances
directly to pick out those States, at least one or
two of them, then doesn’t the statute survive a
facial challenge?

Suppose a jurisdiction has the policy of requiring
every inmate who is arrested and is going to be
held in custody to disrobe and take a shower and
apply medication for the prevention of the spread
of lice and is observed while this is taking place
from some distance by a corrections officer, let’s
say 10 feet away.

You made him give it to him. So what’s wrong
with his saying, you go give it to somebody?
Now, if it’s too much trouble, the judge can say
he can’t make you go to a lot of trouble. If it’s
giving it to somebody who might really do every-
thing he wants, we’ll guard against that.

Well, Buckman – Buckman was arguably a lit-
tle bit different, in that there’s a concern ex-
pressed in that case that requiring allowing the
State suit to go forward would cause manufac-
turers to basically inundate the agency with pro-
posals and warning revisions, so that there would
be so many things that the agency wouldn’t even
be able to process them, and they would become
meaningless to the consumers.



4.2 Textual Characteristics of Expressed Skepticism

Results from Section 4.1, which suggest that humans such as the reader (presumably) can

validate model-predicted skepticism using utterance text—in extreme cases, at the least—

indicate that auditory channel carries emotional information that can be detected by MASS.

But they also suggest that skepticism is partially conveyed through textual channels as well.

Could tone be extracted directly from the text without the need for complex audio mod-

els? To assess whether the auditory channel in fact conveys new information or is merely

duplicative, we attempted to predict expressed skepticism using utterance transcripts. For

each utterance, word counts were computed after stemming, stopping, and pruning words

that appeared in fewer than ten utterances. A cross-validated elastic net was then applied to

the utterance-term matrix, producing a maximum accuracy of 59.8%. Moreover, the textual

classifier was only able to achieve this accuracy by predicting the dominant class (neutral

speech, 59.4% of labeled utterances) for virtually every observation. Additional measures

of classification performance, including for within-speaker classification, are reported in Ap-

pendix 4.4.

Next, to rule out the possibility that the roughly 1,600 hand-labeled utterances were

too small of a training corpus, we analyze the full corpus. To do so, we treat MASS fitted

probabilities of skepticism (based on audio features and conversation context) as the outcome.

We then employ a post-LASSO procedure in which a cross-validated LASSO-logistic model

is estimated, then an unregularized logistic regression is fit on the selected terms (Belloni,

Chernozhukov, and Wei, 2016).

The resulting coefficient estimates, plotted in Figure 2, demonstrate that there are ex-
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Figure 2: Textual Signals of Justice Skepticism. Each panel depicts a regression of
MASS-predicted skepticism on word counts. Within each justice’s utterances, candidate
terms that may predict skepticism (selected by logistic LASSO) are arrayed on the y-axis. For
each term, points and horizontal error bars depict post-LASSO logistic regression estimates
and confidence intervals. Thin light blue (thick dark red) error bars reflect 95% confidence
intervals that (do not) overlap zero.

traordinarily few consistent textual indicators of expressed skepticism—the vast majority

are statistically indistinguishable from zero at conventional levels. In Figure 3, we arbitrar-

ily discard speaker-terms with p-values exceeding 0.05, then investigate the remainder more

closely.

For Justice Stephen Breyer, an expressive orator who is by far the most frequently speak-

ing justice, less than 50 such terms exist. For illustrative purposes, we focus on Breyer’s

“broad,” “indeed,” and “marry,” the three terms most heavily associated with his predicted

skepticism. While these terms are not obviously associated with negative sentiments, a

closer examination sheds light on Breyer’s usage in his freewheeling and at times theatrical

questioning:
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Figure 3: Strong Textual Signals of Justice Skepticism. Each panel depicts a regression
of MASS-predicted skepticism on word counts, within a justice’s utterances. Words that
predict skepticism are arrayed on the y-axis. Reported terms are the subset of post-LASSO
terms with post-selection logistic regression confidence intervals (error bars) that do not
overlap zero. Highly specific terms (i.e., used in fewer than five cases) are not depicted.

• BROAD (legal doctrine): “It’s that second part, that the doctrine extends the doctrine

to statutes that, while they may be clear, are far too broad, well beyond what any

sensible prosecutor would even want to prosecute.”

• INDEED (rhetorical device): “And indeed, you’re complicating it even further for the

reason that I really meant my question to be aimed at you, you know.”

• MARRY (issue on which Breyer uses sarcasm heavily): “So if I marry two people in

Washington D.C. and they happen to move to New York, you are saying that New York

doesn’t have to recognize that marriage because it doesn’t comport with the marriage
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of New York; is that your point?”

Conversely, Justice Breyer’s neutral-leaning terms include technical terms (“prosecutor,”

“tort,” and “argument”) as well as the fairly innocuous (“thought” and “imagine”). While

this particular justice’s textual cues are plausible, however, his colleagues are far more dif-

ficult to read using word frequencies alone—perhaps because they signal their position in

subtle ways, or perhaps because text is just a poor indicator of expressed emotion. For all

other justices, we identify fewer than ten informative words through this procedure; more-

over, their cumulative predictive power is virtually nonexistent.

4.3 Auditory Characteristics of Expressed Skepticism

The preceding results show that the textual channel is—at best—a noisy, idiosyncratic, or

simply weak signal of a justice’s expressed skepticism. What, then, distinguishes skeptical

questioning from neutral speech? To demonstrate, we interpret MASS results by investigat-

ing the auditory characteristics of median justice Anthony Kennedy’s speech. For Kennedy,

we found that a moderately regularized speech model with K = 3 latent sounds minimized

the total cross-validated likelihood of out-of-sample auditory features. Three well-separated

sound classes can be consistently observed across model runs. We subjectively characterize

these as “voiced speech” such as vowels, in which the vocal cords vibrate (high autocorrela-

tion); “unvoiced speech,” such as fricatives and sibilants, in which vocal cords are not used

(moderate energy and zero-crossing rate); and “silence” (low energy). Using an alignment

procedure described below, we identify the three sounds in each bootstrapped model. For

illustrative purposes, we compare the auditory characteristics of voiced skeptical speech to
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voiced neutral speech. The top panel of Figure 4 shows that when speaking skeptically,

Kennedy speaks more loudly and with higher average pitch, a consequence of tensed vocal

cords. Moreover, his modulation of pitch—which rises during questions and falls sharply dur-

ing emphatic statements—is markedly larger in skeptical speech, as indicated by its higher

pitch variance. We do not, however, observe similar modulation in energy: Kennedy is sim-

ply louder across the board when expressing skepticism. Finally, in the bottom panel, we

contrast Justices Kennedy and Sotomayor to demonstrate that these speech dynamics are not

entirely unique to individual speakers. While speaker baselines do vary—Sotomayor speaks

more softly on average, and her voice is roughly six semitones higher—both communicate

their skepticism by elevating pitch and raising their voices, among other auditory cues.
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Figure 4: Auditory characteristics of neutral and skeptical speech.In the top panel,
each dark red × (light blue ◦) represents a converged EM run for auditory parameters using a run-
specific bootstrap draw of skeptical (neutral) training utterances for Justice Kennedy. Coordinates
in a bivariate scatterplot are based on elements of µskeptical, voiced (µneutral, voiced) and the diagonal of
Σskeptical, voiced (Σneutral, voiced). For example, the top right panel demonstrates that when speaking
skeptically, Justice Kennedy’s voice is markedly louder and exhibits more variation in pitch, relative
to his neutral speech. The bottom panel compares the same parameters for Justice Sotomayor’s
skeptical (neutral) voiced speech, depicted with dark red M (light blue �). While her voice is
generally higher and quieter, on average, Sotomayor also communicates skepticism by elevating her
pitch and speaking more loudly.



We now describe the technical details of the sound alignment procedure employed above.

To identify sounds that consistently recur across the M speech modes and B trained boot-

strap models, we employ an ad-hoc but effective alignment approach consisting of the fol-

lowing steps. First, we take the MBK separate µ vectors, each representing the estimated

average value of a sound for a particular bootstrap training set, and cluster these values

using the k-means algorithm. The result of this procedure is MK distinct reference points

in audio-feature space, which in the main-text example corresponded to the subjective cate-

gories “voiced speech/vowel”, “unvoiced speech/consonant”, and “silence.” In each of theMB

trained models, we then determine the optimal one-to-one assignment of the K (unlabeled)

sounds to the K reference categories such that the cumulative Mahalanobis distance of each

sound to its assigned reference point is minimized.

This procedure produces an approximation to the far more difficult task of assigning each

sound to a category while minimizing the total within-category Mahalanobis distances under

the constraint of no duplicate assignments. The latter task involves optimizing over KMB

permutations, whereas the former consists of only MB separate K-to-K matching problems

using the procedure of Hansen and Klopfer (2006).

4.4 Audio, Text, and Human Classification Performance

To validate the out-of-sample performance of the model, we treat the lower-level HMMs as

auditory classifiers. (True out-of-sample performance of the full model is difficult to evaluate,

because of dependencies introduced when modeling context and conversation flow.) As in

the full model, bootstrap aggregation (bagging) is used to improve stability. Out-of-bag
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(OOB, see e.g. Hastie, Tibshirani, and Friedman, 2001, 15.3.1) performance is computed as

follows. First, for labeled utterance u, we take all of the speaker’s bootstrap speech models

in which the utterance was out-of-bag (i.e., the roughly 1
e
bootstrap resamples in which u

was not drawn). For each bootstrap draw, the likelihood of utterance u is computed under

the trained neutral and skeptical models, then converted to predicted tone probabilities of

u. Predicted probabilities are then averaged over models. Results reflect the performance of

a classifier that uses 1 − 1
e
≈ 63% of the full training set. Across all speakers, we find that

68% of utterances are correctly classified (F1 = 0.554). Speaker-specific results and other

measures of performance are reported in Figure 5, along with measures of text classifier

performance discussed in Appendix 4.2.

To assess the difficulty of the task, we contrasted the performance of supervised audio

and text classifiers with that of non-expert human coders. A total of 40 native English

speakers were recruited on a crowdworking site and assigned to one of eight justices (five

coders per justice). Coders listened to all training utterances for their assigned justice,

attempting to recover ground-truth labels. Figure 5 reports results from this evaluation

in two ways. First, non-expert predictions were aggregated by majority vote, producing

a set of committee predictions that were 70% correct, on average. We then disaggregated

non-expert coders and found that individuals were able to recover the ground-truth label in

65% of utterances. However, individuals often disagreed in their assessment of whether a

particular utterance constituted skepticism, averaging a low Cronbach’s alpha of 0.50 across

justices. Speaker-specific results are reported in Figure 5.
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Figure 5: Out-of-sample performance. Red circles (blue crosses) indicate the perfor-
mance of models trained on audio (text). As a point of reference, we also report the per-
formance of individual coders (orange square) and coder predictions aggregated by majority
vote (green triangle). Justices initials on the horizontal axis indicate speaker-specific results,
and leftmost values indicate pooled results. For each performance measure, horizontal black
lines denote the value that would be obtained by randomly guessing according to the baseline
proportion of each class. The top-left panel shows that for all speakers except Justice Scalia,
text classifiers almost always predict the dominant class. (In fact, speaker-specific text clas-
sifiers for Justices Kennedy and Breyer predict skepticism for every single utterance, and
those for Justices Ginsburg and Alito predict neutrality for each one. As a result, negative
(positive) predictive value for the opposite class cannot be computed for these justices in the
panels in the second row from the bottom.



4.5 Comparison to Black (2011)

We compute Black et al.’s 2011 two text-based measures of justice affect as follows. Words

in the top decile of “pleasantness” in the most recent Dictionary of Affect in Language (DAL)

are defined as “extremely pleasant.” The proportion of extremely pleasant words is defined

straightforwardly as the count of pleasant words uttered by a justice toward a side, divided

by the number of total directed words. Finally, we compute the difference in proportions by

taking the pleasantness proportion of speech directed at the liberal side, then subtracting the

conservative-directed proportion; this forms the first textual measure of directed affect. Note

that under this procedure, the difference in proportions is undefined (and hence dropped)

when a justice makes no utterances toward a particular side. This procedure is repeated

for “extremely unpleasant” words, or words in the bottom “pleasantness” decile of DAL, to

form the second textual measure. The most common pleasant and unpleasant words in

Supreme Court questioning, defined in this way, are reported in Table 2. Key divergences

from Black et al. (2011) are that (1) we use the most recent DAL (Whissell, 2009), rather

than the original (Whissell, 1989), and (2) we operationalize sides in terms of Supreme

Court Database (SCDB, Spaeth et al., 2014) liberal/conservative classifications (as in our

main analysis) instead of petitioner/respondent. The latter coding decision makes justice

fixed effects in the following analysis more informative.

Next, we compute a directly analogous measure of directed skepticism. We average

predicted skepticism probabilities of utterances directed at the liberal side, then subtract

the average of conservative-directed utterances. In this procedure, we use only the lower-

level audio classification results, rather than the contextualized predictions from the full
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model, because the full model incorporates voting as a covariate (and its predictions would

therefore have have leaked information about the intended test of validity). This forms our

third measure of directed affect.

Finally, we create a binary outcome of each justice’s vote. This variable takes on a 1

(0) if a justice voted for the liberal (conservative) side in a case. (Observations are dropped

if a justice had no recorded vote in the SCDB or sides cannot be categorized by ideology.)

The voting outcome is regressed on the three directed affect covariates defined above; our

expectations are that directed pleasantness textual measure will correlate positively with

the voting outcome, whereas the directed unpleasantness textual measure and the directed

skepticism auditory measure will correlate negatively. Figure 6 (duplicated below for ease

of reference) reports coefficients on directed-affect covariates from three linear probability

model specifications: (1) a “baseline” with no controls; (2) justice fixed effects, which absorb

general liberal or conservative leanings; and (3) justice fixed effects and case fixed effects,

which additionally absorb deficiencies in one side’s legal arguments. We regard (3) as a

particularly stringent test. All results are reported with standard errors clustered on case.

Across all specifications, we consistently find that the “pleasantness” textual measure is

not significantly correlated with voting, thus replicating one result from Black et al. (2011).

We also replicate their finding that the “unpleasantness” textual measure is negatively asso-

ciated with voting, as expected, although it loses statistical significance when including case

fixed effects. However, directed skepticism, as measured in the audio, is a far stronger predic-

tor of voting patterns: a one-standard-deviation increase in this measure is associated with

a change in voting that is consistently three times larger than the corresponding increase for

unpleasantness, and this finding is robust across all specifications considered.
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Table 2: Common pleasant (unpleasant) words in justice speech. Uses of the top
20 most common words in the top (bottom) decile of word pleasantness, as defined by
the Dictionary of Affect in Language, in Supreme Court justice speech. The proportional
contribution of each word to the measure of direct affect is computed by dividing a word’s
count by the total number of pleasant (unpleasant) words used.

Pleasant Unpleasant
Word Count Prop. Words Counts Prop.
well 2912 0.11 not 7697 0.20
justice 1269 0.05 no 2630 0.07
like 1253 0.05 other 2307 0.06
us 845 0.03 mean 2144 0.06
read 648 0.02 argument 1295 0.03
talking 568 0.02 can’t 1183 0.03
reasonable 559 0.02 problem 733 0.02
money 487 0.02 trial 529 0.01
agree 458 0.02 over 522 0.01
good 456 0.02 police 504 0.01
clear 451 0.02 without 504 0.01
yes 418 0.02 wrong 497 0.01
respect 387 0.01 against 473 0.01
view 385 0.01 nothing 466 0.01
correct 373 0.01 guess 406 0.01
interest 345 0.01 tax 394 0.01
sense 305 0.01 number 343 0.01
agreement 282 0.01 violation 284 0.01
company 280 0.01 unless 273 0.01
marriage 243 0.01 off 262 0.01
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Figure 6: Predicting justice votes with directed skepticism and directed affective
language. Horizontal errorbars represent point estimates and 95% confidence intervals from
regressions of justice votes on directed pleasant words, directed unpleasant words, and our
audio-based directed skepticism. Red circles correspond to a specification with no additional
controls; blue triangles report results from a specification with speaker fixed effects; and
black squares are from a specification with speaker and case fixed effects.



4.6 Predicted Skepticism by Justice, Issue, and Target

In this section, we present exploratory analyses of how each justice differentially expresses

skepticism depending on the legal issue and the target side’s ideology. Table 3 presents

issue areas in which justices appear to be strongly ideological, based on patterns of directed

skepticism.

We first compute average skepticism within groups of utterances, using predicted values

obtained from dynamic specification described in Section . Groups are defined by unique

combinations of justice, issue area, and ideology of the target side. The latter measures

are based on Supreme Court Database classifications (Spaeth et al., 2014). (Note that the

specification does not include issue area or justice-issue interactions. We regard these results

as suggestive, and scholars interested in issue-specific speech patterns are encouraged to

model this behavior explicitly to avoid inadvertently attenuating estimates.)

Within each justice-issue, we then compare the average level of skepticism in utterances

directed toward the liberal and conservative sides; results are reported for justice-issues with

a substantial difference. Consistent with their known ideological predispositions, Justices

Breyer and Ginsburg consistently express greater skepticism toward the conservative side,

and Justice Scalia expresses greater skepticism toward the liberal side. However, the issue

areas in which we observe strong ideological disparities vary by justice and appear to track

the intensity of justice preferences. For example, Scalia holds strong views on the right to

free speech, and this position manifests in the eight-percentage-point higher use of skepti-

cism toward liberal advocates on First Amendment cases, relative to conservative advocates.

Similarly, Justice Ginsburg is seen as a strong defender of civil rights, and uses five per-
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centage points more skepticism toward conservative advocates on this issue. (Table 3 also

highlights major differences in justice baselines; the notoriously stone-faced Justice Ginsburg

uses relatively little discernible skepticism in general, so that this gap represents a two-thirds

increase.) Finally, the table shows that Kennedy—consistent with his position as median

voter—can be more skeptical of either the conservative or liberal side, depending on issue

area.

Table 3: Directed Skepticism by Justice, Issue, and Target. Each row presents sum-
mary statistics that aggregate justice utterances on cases in a particular issue area. The final
columns indicate the average predicted skepticism in speech directed toward conservative
parties, liberal parties, and the difference in means. Results are shown only for justice-issues
in which the absolute difference in directed skepticism exceeds five percentage points.

Justice Issue Con. Lib. Diff.
SB Economic Activity 0.56 0.50 -0.06
SB First Amendment 0.49 0.38 -0.11
SB Other 0.53 0.48 -0.05
RBG Civil Rights 0.15 0.09 -0.05
RBG Economic Activity 0.17 0.11 -0.06
RBG Other 0.18 0.10 -0.08
AK Criminal Procedure 0.55 0.62 0.07
AK First Amendment 0.60 0.50 -0.10
AS Economic Activity 0.46 0.51 0.05
AS First Amendment 0.47 0.55 0.08

5 communication R Package

In this section, we briefly describe our accompanying R package, communication (Duarte

et al., 2020). Because the package is continually maintained and continues to be extended,

researchers interested in conducting analyses with MASS will be best served by the latest

package documentation. Here, we note the high-level features of our accompanying package

and describe innovations over existing software.
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First and most importantly, communication includes an efficient C++ implementation of

MASS, the model that is the primary focus of this paper. To our knowledge, there is no

other structural model available for the analysis of speech dynamics.

Second, communication implements a number of preprocessing steps that, while not

the focus of this paper, are critical for any applied research using speech data. Among

many other utilities, these include input/output functions compatible with common file

formats; fast extraction of auditory features that are generally understood to distinguish

abstract categories of human communication; objects for corpus and metadata management;

and functions for segmentation and human labeling of utterances. Notably, these tools are

made available in R for the first time, increasingly the lingua franca of computational social

scientists.
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