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Abstract

Drug traffickers sometimes share profits peacefully. Other times they
fight. We propose a model to investigate this variation, focusing on
the role of the state. Seizing illegal goods can paradoxically increase
traffickers’ profits, and higher profits fuel violence. Killing kingpins
makes crime bosses short-sighted, also fueling conflict. Only by tar-
geting the most violent traffickers can the state reduce violence with-
out increasing supply. These results help explain empirical patterns
of violence in drug war, which is less studied than interstate or civil
war but often as deadly.
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A Formal statements and proofs of propositions and lem-

mas

A.1 Properties of the production and survival functions

For clarity, we first state all assumptions we make on the production func-

tion:

Assumption 1. The production function q(xi, Ri, e) satisfies the following prop-
erties:

1. It it is twice-differentiable, increasing in both factors of production, and
decreasing in enforcement ( ∂q

∂xi
> 0, ∂q

∂Ri
> 0, and ∂q

∂e < 0).

2. The marginal productivity of both factors of production is decreasing ( ∂2q
∂x2

i
<

0 and ∂2q
∂R2

i
< 0).

3. Enforcement reduces the marginal productivity of both factors of production
( ∂2q

∂e∂xi
< 0 and ∂2q

∂e∂Ri
< 0)

4. It is homogeneous of degree one in (xi, Ri) (i.e., it has constant returns to
scale).

The following lemma states several results that are useful throughout:

Lemma A. The following properties of q(xi, Ri, e) are a consequence of assump-
tion 1:

1. Routes and drugs are complementary production factors ( ∂2q
∂xi∂Ri

> 0).

2. q(·) is concave in (xi, Ri).

The survival rate of drugs w(xi, Ri, e) = 1
x q(xi, Ri, e) can be written as w(ri, e),

where ri =
Ri
xi

. It satisfies the following properties:
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3. It is increasing in the inverse route saturation rate ri ( ∂w
∂ri

> 0).

4. The marginal productivity of ri is decreasing (∂2w
∂r2

i
< 0).

Proof. For 1, ∂2q
∂xi∂Ri

= x ∂2w
∂xi∂Ri

+ ∂w
∂Ri

. By the chain rule, ∂w
∂Ri

= ∂w
∂ri

∂ri
∂Ri

and
∂2w

∂xi∂Ri
= ∂2w

∂r2
i

∂ri
∂Ri

∂ri
∂xi

+ ∂w
∂ri

∂2ri
∂xi∂Ri

. The derivatives of ri can be readily calculated.

Substituting everything in the initial expression for the cross derivative of

q yields ∂2q
∂xi∂Ri

= �Ri
x2

i

∂2w
∂r2

i
, which is positive due to the decreasing marginal

productivity of ri. For 2, homogeneity and complementarity of routes and

drugs imply that the function is quasiconcave. Quasiconcavity and homo-

geneity of degree one imply concavity. 3 and 4 can be easily checked by

finding the derivatives of w with respect to Ri, holding xi fixed.

A.2 Functional form of the contest success function

We start by stating that the functional form for our contest success func-

tion can be motivated axiomatically as the only form that satisfies four

characteristics:

Lemma B. Consider a contest success function Ri(gi, G�i) that satisfies the fol-
lowing properties:

1. If cartel i spends zero and some other cartel spends a nonzero quantity, then
Ri = 0.

2. The sum of routes held by all cartels is equal to one.

3. The functional form is symmetric across all cartels.

4. The functional form is homogeneous of degree zero.

Then the contest success function takes the following form:

Ri(gi, G�i) =
gi

gi + G�i
. (11)
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Proof. If m cartels spend g and every other cartel spends zero, 1 =

Â Ri(gi, G�i) = mR(g, (m � 1)g) = mR(1/m, 1 � 1/m) =) R(1/m, 1 �
1/m) = 1

m . If p cartels spend g and one cartel spends qg, the first cartels get

R(g, (p � 1+ q)g) = R(1/(p + q), 1� 1/(p + q)) = 1/(p + q) routes, so the

other cartel gets R(q/(p + q), 1 � q/(p + q)) = 1 � p/(p + q) = q/(p + q).
This pins down the function for every rational s 2 (0, 1) as R(s, 1 � s) = s.

By continuity, this also has to be true for every real s 2 (0, 1). And by

homogeneity of degree zero, R(g, G � g) = R(g/G, 1 � g/G) = g/G.

A.3 Market shares don’t affect supply

Lemma C. Aggregate demand from the producer market and supply to the con-
sumer market are determined by

pc
∂q(X, 1, e)

∂x
= pp Q = q(X, 1, e), (12)

which are independent of the distribution of routes.
The share of drugs bought and sold by each cartel is equal to the fraction of

routes it controls:
xi = RiX qi = RiQ (13)

Proof. Suppose that in some equilibrium cartel i controls a quantity of

routes R̂i. Since the quantity of drugs that cartel i purchases from pro-

ducers does not affect other cartels, cartel i chooses that quantity in or-

der to maximize profit x⇤i = argmaxxi

⇥
pcq(xi, R̂i, e)� gi � ppxi

⇤
. The opti-

mal quantity x⇤i can be found from the first-order condition pc
∂q
∂xi

= pp,

which equates marginal benefit and cost. We assume that the ratio of

retail to wholesale prices, pc
pp

, is large enough that there is an interior

solution (otherwise, the illegal drug market would not exist). The so-

lution is bounded since the marginal productivity drops to zero as xi

goes to infinity: using notation from lemma A, ∂r/∂x = �R/x2, and
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∂q/∂x = w + x ⇥ (∂w/∂r)(∂r/∂x) = w � r ⇥ (∂w/∂r). And w and r drop

to zero as xi goes to infinity, while ∂w/∂r converges to its value at r = 0,

which is bounded.

For two different cartels i and j, ∂q(x⇤i ,R⇤
i ,e)

∂xi
=

∂q(x⇤j ,R⇤
j ,e)

∂xj
. Since q is ho-

mogeneous of degree one, its derivative is homogeneous of degree zero,

so ∂q(x⇤i /R⇤
i ,1,e)

∂xi
=

∂q(x⇤j /R⇤
j ,1,e)

∂xj
, and since this derivative is strictly decreasing,

x⇤i
R⇤

i
=

x⇤j
R⇤

j
. Thus, x⇤i

x⇤j
= R̂i

R̂j
=

q⇤i
q⇤j

, where we used homogeneity of q again for

the last step. Summing over i yields X
x⇤j

= 1
R̂j

= Q
q⇤j

, so X =
x⇤i
R̂i

. Substituting

in the maximization problem, taking into account the homogeneity of q,

yields the condition for X. For Q, Q = Âi q(R̂iX, R̂i, e) = Âi R̂iq(X, 1, e) =
q(X, 1, e). For the shares of production, qi = q(xi, R̂i, e) = R̂iq(X, 1, e).

A.4 Lemma 1: Defining cartel profit

Proof. From lemma C, cartel i invests gi in the conflict, buys an amount of

drugs xi = R(gi, G�i)X and sells an amount qi = R(gi, G�i)Q. Substituting

in (2) yields pi = pcqi � ppxi � gi = (pcQ � ppX)R(gi, G�i)� gi.

A.5 Proposition 1: Effect on supply and elasticity threshold

It might appear that seizing drugs in transit would reduce the total quan-

tity reaching consumers. In fact, interdiction has two opposing effects.

The effect of interdiction on the aggregate quantity of drugs purchased

from producers can be found by applying the implicit function theorem to

Equation (12):

∂X
∂e

=

0

B@
� ∂q

∂X

1
Qec

⇣
∂q
∂X

⌘2
+ ∂2q

∂X2

1

CA

2

66664

(a)z }| {
1
ec

∂ log q
∂e

+

(b)z }| {
∂ log ∂q

∂X
∂e

3

77775
(14)
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The first term is positive, so the sign of the effect is determined by the term

in square brackets.

Two mechanisms work in opposite directions. Term (a) captures the

fact that interdiction decreases the supply of drugs, thereby increasing

prices and encouraging cartels to buy more drugs to sell them to con-

sumers. In term (b), interdiction reduces the marginal productivity of

drugs purchased, with the opposite effect. Which effect dominates de-

pends on whether demand is inelastic enough that effect (a) is larger.

While the effect of interdiction on drugs purchased (X) is ambiguous,

the effect of interdiction on the supply of drugs to consumers (Q) is not.

The intuition is that supply of drugs to consumers, Q, can only increase if

cartels purchase more drugs from producers as interdiction intensifies. But

if cartels purchase more drugs from producers as interdiction intensifies,

it must be because prices are increasing—which implies that supply Q is

falling. This can be seen by substituting in ∂Q
∂e = ∂q

∂e +
∂q
∂x

∂X
∂e , which yields

∂Q
∂e

=
∂2q
∂X2

∂q
∂e �

∂q
∂X

∂2q
∂X∂e

1
Qec

⇣
∂q
∂X

⌘2
+ ∂2q

∂X2

. (15)

Therefore it is always the case that:

Proposition 6. space

• ∂Q
∂e

< 0: Increasing interdiction reduces the supply of drugs.

• ∂Q
∂n

= 0: The number of cartels has no effect on the supply of drugs.

Substituting both derivatives above in the expression for profits, and

isolating ec after equating
∂pA

∂e
to one results in the threshold in Equation

(4).
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A.6 Proposition 7: Enforcement and violence in the SGNE

Cartels choose gi such that:

pA ∂R
∂gi| {z }

MgBgi

= 1|{z}
MgCgi

(16)

meaning that cartels equate the marginal benefit of conflict expenditure to

its marginal cost (one).41

The Nash equilibrium of the stage game occurs when first-order con-

ditions (16) are satisfied simultaneously for all cartels. The symmetry

of the problem means that the unique one-period Nash solution has

gi = gj = gN and xi = xj = xN 8i, j 2 I, implying that each cartel

controls an equal share of routes Ri =
1
n .42

Proposition 7. Under a symmetric stage-game Nash equilibrium, the comparative
statics on the level of violence are:

a) If ec < êc, then
∂vN

∂e
< 0: If demand is sufficiently elastic, interdiction

reduces the level of violence.

b) If ec > êc, then
∂vN

∂e
> 0: If demand is sufficiently inelastic, interdiction

increases the level of violence.

c)
∂vN

∂n
> 0: An increase in the number of cartels increases the level of violence.

In other words, in the stage game, the effect of interdiction on violence

mirrors the effect of interdiction on aggregate productive profit pA: if in-
41Note that there is no corner solution with gi = 0 and xi > 0, since the marginal pro-

ductivity of conflict expenditure tends to infinity if all cartels set gi = 0. Likewise, there
cannot be a solution with unbounded gi because the marginal productivity of conflict
expenditure goes to zero as gi goes to infinity. Thus, every cartel arrives at an interior
solution. We check the second-order conditions in Appendix B.

42The solution is unique because the marginal productivity of gi is strictly decreasing.
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terdiction increases the prize pA, cartels invest more in fighting over it;

if interdiction shrinks the prize, violence declines. As in other one-period

models, the conflict intensifies as the stakes increase (Garfinkel and Skaper-

das, 2007, p. 661) and as the number of cartels grows.

The conflict also intensifies as the number of cartels increases. Splitting

a given conflict expenditure G among more cartels means that each cartel

has lower conflict expenditure gi—which implies higher marginal returns,

leading each cartel to invest more in the conflict. However, we need an

additional assumption about the violence function v(g1 . . . gn) in order to

analyze how violence changes with the number of cartels. Informally, we

also need to assume that violence is nondecreasing in total conflict expen-

diture G = Âi gi. More specifically, we need only a somewhat weaker

assumption, which is that for all g and n, violence is at least as high if

n + 1 cartels each spend g n
n+1 on the conflict as if n cartels each spends g.

This intuitive property would hold if, for instance, violence were equal to

Âi gi, total conflict expenditure.

Proof. Individual expenditure is determined by (16). Enforcement has no

direct effect on ∂Ri
∂gi

, whereas gN has no direct effect on pA. This, and the

implicit function theorem, lead to ∂gN

∂e = �
∂pA

∂e
∂

∂gN

⇣
∂R
∂gi

⌘ . The denominator is

negative: ∂2R
∂gN∂gi

= ∂2R
∂g2

i
+ (n � 1) ∂2R

∂G�i∂gi
< 0. Thus, the sign of the effect

of enforcement is the same as the sign of the effect on pA, and its sign is

determined by the same threshold as in the SGNE.

For the effect of the number of cartels, also take (16). Since pA

does not depend on the number of cartels, ∂Ri
∂gi

cannot depend on

it either, so its derivative with respect to n must be zero: ∂2R
∂n∂gi

=
∂2R
∂g2

i
+ (n � 1) ∂2R

∂gi∂G�i

�
∂gN

∂n + gN ∂2R
∂gi∂G�i

= 0. Isolating ∂gN

∂n yields ∂gN

∂n =

�gN ∂2R
∂gi∂G�i


∂2R
∂g2

i
+ (n � 1) ∂2R

∂gi∂G�i

��1
.
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In order to find the comparative statics on aggregate violence G, we use

the fact that ∂GN

∂n = gN + n ∂gN

∂n to obtain

∂GN

∂n
= gN

"
∂2R
∂g2

i
� ∂2R

∂gi∂G�i

# "
∂2R
∂g2

i
+ (n � 1)

∂2R
∂gi∂G�i

#�1

whose sign is undetermined, since it depends on whether ∂2R
∂g2

i
or ∂2R

∂gi∂G�i

is greater. However, it is negative in a symmetric equilibrium. R(g, (n �
1)g) = 1

n , so

d2R(g, (n � 1)g)
∂dg2 = 0

=
∂2R(g, (n � 1)g)

∂g2
i

+ 2(n � 1)
∂2R(g, (n � 1)g)

∂gi∂G�i

+ (n � 1)2 ∂2R(g, (n � 1)g)
∂G2

�i

Let S(gi, G�i) = 1 � R(gi, G�i), the fraction of routes held by all cartels

other than i. In a symmetric equilibrium S = (n � 1)R, and G�i = (n �
1)gi, so ∂2R

∂G2
�i

= ∂2(1�S)
∂G2

�i
= � ∂2((n�1)R)

∂((n�1)gi)2 = � 1
n�1

∂2R
∂g2

i
. Substituting above yields

(n � 2) ∂R(g,(n�1)g)
∂g2

i
= 2(n � 1) ∂R(g,(n�1)g)

∂G2
�i

, so ∂2R
∂g2

i
< ∂2R

∂gi∂G�i
and ∂GN

∂n > 0.

A.7 New notation

We use some new notation in the remaining proofs. pa(ḡ) = pi(ḡ) are

profits when all cartels comply with a treaty with violence ḡ. pd(ḡ) =

maxgi pi(gi, ḡ�i) are the profits of a cartel that deviates from ḡ by maximiz-

ing its one-period profits.

pp(g̃) = maxgi pi(gi, g̃i
�i) are the profits of a cartel that is punished

by all other cartels—all of whom invest a punishment level g̃—and who

responds by maximizing its one-period profits. When that is the case,

pe(g̃) = pj(g̃i) are the profits obtained by all remaining cartels, who en-
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force the punishment.

Finally, pc(g̃) = maxgj pj(gj, g̃i
�j) is the maximum profit a punishing

cartel can obtain when reneging on the punishment.

A.8 Proposition 2: Conditions for peace

Proposition 2 in the main text stated only that peace can be sustained if

b � b̄p(n), where b̄N(n) > b̄m(n). Here we prove this result, as well as

the result that the threshold b̄p(n) increases in the number of cartels n and

does not depend on enforcement. We omit the result on the number of

cartels from the main text because it requires additional assumptions.

Proposition. For punishment strategy p 2 {N, m}, a peaceful equilibrium can
be sustained if b � b̄p(n), where b̄N(n) > b̄m(n), and where b̄p(n) increases in
n and does not depend on enforcement. For all n 2 {2, 3, . . .}, the thresholds can
be ordered b̄N(n) > b̄m(n).

Proof. For Nash reversion, pN

pA is independent of b. Thus, the threshold

is simply b̄p(n) = n�1
n
⇣

1� pp

pA

⌘ . For maximal punishment, we will show that

pp is decreasing in b, in which case the left hand side of the inequality

b � n�1
n
⇣

1� pp

pA

⌘ is decreasing, which means that it is satisfied if and only if b

is greater or equal than some threshold.

The key idea is that an increase in b gives some slack to the IC2. A

harsher punishment can thus be sustained, decreasing punishment prof-

its. Formally, the implicit function theorem on the IC2 yields ∂g̃
∂b =

pp�pc

∂pe
∂g̃ �(1�b) ∂pc

∂g̃ �b ∂pp
∂g̃

. The numerator is clearly negative. We will now show

that the denominator is also negative, which means that ∂g̃
∂b > 0.

Explicit expressions for all three individual profits are pe =
q

g̃
n�1 �

g̃, pc = 1 � g̃ � 2
q
�g̃ +

p
g̃(n � 1) +

p
g̃(n � 1) and pp = 1 + g̃(n �

1) � 2
p

g̃(n � 1). This means that the lhs of the IC2 is concave whereas
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the rhs is convex. Note that ∂pp

∂g̃

���
g̃=gN

= �1: as all cartels increase their

expenditure equally, profits decrease as much as expenditure increased.

The cartel will reoptimize, but by the envelope theorem that will not have

an effect on earnings. After some algebra, ∂pe

∂g̃

���
g̃=gN

= ∂pc

∂g̃

���
g̃=gN

= �n�2
n�1 >

�1. The intuition for the derivative of pe being less negative is that if

all cartels increase their expenditure earnings would decrease as much as

expenditure increased. But the punished cartel will reoptimize with lower

expenditure, and punishers will get some extra routes. The same intuition

holds for pe, except that the deviator can reoptimize, but that will not have

any effect on profits by the envelope theorem.

Thus, the LHS crosses the RHS from below at the Nash equilibrium, and

the concavity and convexity imply that the LHS crosses the RHS again from

above. This is guaranteed to happen with positive profit since at g̃ = 1
n�1

both pe and pp are equal to zero but pc > 0. This is the point at which

maximal punishment takes place. And the fact that the LHS crosses from

below implies that the denominator ∂pe

∂ḡ � (1 � b) ∂pc

∂ḡ � b ∂pp

∂ḡ is negative.

Higher g̃ reduces the punished cartel’s profits directly. The cartel can

reoptimize, but by the envelope theorem that has no effect on profits, so

earnings decrease. This, in turn, implies that ∂pp

∂b < 0, which is what we

wanted to show.

We now prove that the thresholds are ordered as in the proposition.

For Nash reversion, pp

pA = 1
n2 . Substituting in the inequality shows that

the threshold is n
n+1 , which is also increasing in n. For maximal pun-

ishment, note that, regardless of b, 0 < pm < pN. This implies that
n

n+1 > n�1
n
⇣

1� pp

pA

⌘ > n�1
n . Since, as n increases by one, the upper bound

in the previous inequality becomes the lower bound, n�1
n
⇣

1� pp

pA

⌘ is increas-

ing in n. The threshold is determined implicitly by b � n�1
n
⇣

1� pp

pA

⌘ , so any

increase in n must be offset in by an increase in b to restore equality.
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A.9 Proposition 3: Set of sustainable equilibria

Proof. If each cartel spends ḡ < gN on conflict expenditure, each cartel’s

profit is pa(ḡ) = pARa � ḡ = 1
n pA � ḡ. Comparing the profit from collud-

ing to the profit in the SGNE yields pa(ḡ) = pN + gN � ḡ, which means

that ∂pa

∂ḡ = �1.

The profit obtained by the deviator i is pd(ḡ) =

maxgi

⇥
pAR(gi, (n � 1)ḡ)� gi

⇤
. The first order condition is the same as for

the SGNE, Equation (16), but with expenditure by other cartels evaluated

at g�1 = nḡ. From the envelope theorem, dpd

dḡ = pA(n � 1) ∂R
∂G�i

. From

the first order condition, pA ∂R
∂gi

= 1, so dpd

dḡ = pA
⇣

∂R
∂gi

+ (n � 1) ∂R
∂G�i

⌘
� 1.

For ḡ = gN the term in parentheses is ∂R(ḡ,(n�1)ḡ)
∂ḡ , which is zero be-

cause all cartels increase their expenditure by the same amount. Thus,
∂pd

∂ḡ

���
ḡ=gN

= �1.

Setting ḡ = gN, pa(gN) = pN, since all cartels spend the amount corre-

sponding to the SGNE. A deviator’s one-period optimal response is gN, so

pd(gN) = pN. Thus, with Nash reversion the IC is satisfied with equality

at ḡ = gN. This means that at ḡ = gN the derivative on the left hand side

of the IC is �1, which is lower than the derivative on the right hand side,

�(1 � b). So the IC holds strictly for some ḡ < gN with Nash reversion.43

The deviator’s profits can be written as (n� 1)ḡ+pA � 2
p

pA(n � 1)ḡ,

which is convex. This means that, other than at pN, profits from deviating

and complying can be the same at most once more for some 0  ĝa,N < gN.

If there exists such ĝa,N, all other levels of expenditure in [ĝa,N, gN ] are

sustainable. If not, all levels of expenditure in [0, gN ] are sustainable. Then

define ga,N = ĝa,N if ĝa,N nonnegative exists, and ga,N = 0 otherwise.

With maximal punishment, the same result holds as with targeted

43This is a particular case of a general theorem in Mas-Colell et al. (1995), chapter
12 appendix A, that states that any SGNE can be improved by using Nash reversion
strategies.
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punishment as long as pp < pN, which is the case as long as there

exists a punishment level of conflict g̃ that is higher than gN and that

can be sustained in a subgame-perfect equilibrium (e.g., as long as IC2

pe(g̃) � (1 � b)pc(g̃) + bpp(g̃) holds). Note, in particular, that pe(gN) =

pc(gN) = pp(gN), which means that IC2 holds with equality at the Nash-

equilibrium level of conflict expenditure.

Now note that ∂pp

∂g̃

���
g̃=gN

= �1: as all cartels increase their expenditure

equally, profits decrease as much as expenditure increased. The cartel will

reoptimize, but by the envelope theorem that will not have an effect on

earnings. After some algebra, ∂pe

∂g̃

���
g̃=gN

= ∂pc

∂g̃

���
g̃=gN

= �n�2
n�1 > �1. The

intuition for the derivative of pe being less negative is that if all cartels in-

crease their expenditure earnings would decrease as much as expenditure

increased. But the punished cartel will reoptimize with lower expenditure,

and punishers will get some extra routes. The same intuition holds for pe,

except that the deviator can reoptimize, but that will not have any effect

on profits by the envelope theorem.

Based on those derivatives, there exists g̃ > gN that leads to IC2 being

satisfied with strict inequality. pp(g̃) is then lower than pN. This also

means that some equilibria with g < ga,N can be sustained unless ga,N =

0.

A.10 Propositions 4 and 5: Comparative statics on violence in a collu-

sive equilibrium

Intuition for Proposition 5. In the main text, 5 states that violence in-

creases with interdiction if demand is sufficiently inelastic. Before proving

this result, we provide some additional intuition.

In the repeated game, when demand is sufficiently inelastic, interdic-

tion raises the total profits under deviating and the total profits under com-

plying with the agreement. The question, then, is whether profits under
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deviating increase more than profits under complying. How, then, does

interdiction affect cartels’ profits under compliance with the low-violence

agreement, relative to profits under deviation? This is the key to under-

standing how conflict expenditure must change in order for the incentive

constraint in Equation 7 to hold with equality.

To answer this question, recall the expressions for each cartel’s profit

under complying with a low-violence agreement (pa) and for the profit

under deviating (pd): pa = RapA � ḡ and pd = RdpA � gd. Because the

contest success function has diminishing returns, when a deviating cartel

increases conflict expenditure from ḡ to gd, its share of routes increases by

a smaller proportion: Rd

Ra < gd

ḡ . This implies that the profit margin is lower

when deviating than when complying. So while any increase in aggregate

productive profit pA causes the same percent increase in revenues for devi-

ators and for compliers, that same increase in pA causes a larger percent

increase in profits for deviators than for compliers. This is the mechanism

that links interdiction to higher violence (results a) and b) in Proposition

5), not the simple fact of interdiction increasing the stakes of the conflict.

To illustrate, imagine that there are ten cartels, and that initially total

productive profit pA is $100. Imagine further that the deterrent expendi-

ture required to sustain a low-violence equilibrium is $1; since the equi-

librium is symmetric, each cartel controls 1/10 of routes, earning $10 in

productive profit (RapA) and $9 in overall profits (pa = RapA � ḡ).

Now consider a cartel weighing whether to deviate, increasing con-

flict expenditure in order to double its share of routes from 1/10 to 1/5.

Because of the declining returns to conflict expenditure, the would-be de-

viator must more than double expenditure in order to double its route

share—for the sake of example, say that it must spend $5 to control

1/5 of routes. For one glorious period, then, the deviator would earn

pd = $20� $5 = $15, a 67% increase over its complying profits of pa = $9;
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it would then earn zero profits thereafter. Since we defined $1 as sufficient

deterrent expenditure to sustain a low-violence equilibrium, we already

know that the cartel values the future sufficiently not to deviate. The one-

period 67% increase in profits just isn’t worth it.

Now imagine that total productive profit increases to pA = $200. In

this new world, our cartel earns pa = $20 � $1 = $19 by complying. But

by deviating, the cartel would earn pd = $40 � $5 = $35. Just as before,

revenues double—but profits from deviating now increase by 84%, signif-

icantly more than 66%. Even with the same discount factor b, then, this

might be enough to tempt deviators—in which case deterrent expenditure,

and thus violence, would have to increase in order to sustain a new agree-

ment.

Proofs. Proposition 4 states that violence increases as the shadow of the

future shortens (as b declines) when peace cannot be sustained, and Propo-

sition 5 states how violence changes with interdiction in a collusive equi-

librium when peace cannot be sustained. Here, we prove these results

along with an additional comparative static: that violence increases with

the number of cartels n. This last result is omitted from the main text

because it requires additional functional form assumptions.

Proposition. Under punishment strategy p 2 {N, m, t}, if the discount factor is
such that peace cannot be sustained (i.e., b < b̄p(n)), the comparative statics on
the level of violence under maximal punishment are:

a) If ec < êc, then
∂va,p

∂e
< 0: If demand is sufficiently elastic, interdiction

reduces violence.

b) If ec > êc, then
∂va,p

∂e
> 0: If demand is sufficiently inelastic, interdiction

increases violence.
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c)
∂va,p

∂n
> 0: An increase in the number of cartels increases the level of vio-

lence.

d)
∂va,p

∂b
< 0: More forward-looking cartels decreases the level of violence.

We prove this proposition based on three lemmas that give stronger

results.

Lemma D. Consider some punishment strategy p such that pp = PpA, where P

is some constant. If ec < êc, then
∂Ga,p

∂e
< 0. If ec > êt, then

∂Ga,p

∂e
> 0.

Proof. Consider ga,p under some level of enforcement e which leads to prof-

its pA. The IC is then pa(ga,p) � (1 � b)pd(ga,p) + bPpA, and is satisfied

with equality. Consider a new level of enforcement e0, which leads to prof-

its bpA, where b is some constant.

Note that pa(bga,p) = bpAR(bga,p, (n� 1)bga,p)� bga,p = b(pa(ga,p)) by

homogeneity of R. If the deviator’s expenditure is gd, the new expenditure

is bgd: the old FOC was pARg(gd, (n� 1)ga,p) = 1, and since Rg is homoge-

neous of degree �1, bpARg(bgd, b(n � 1)ga,p) = pARg(gd, (n � 1)ga,p) = 1.

And this also means that pd(bga,p) = bpAR(bgd, b(n � 1)ga,p) � bga,p =

b(pd(ga,p)) by homogeneity of R.

Putting it all together, expenditure bga,p satisfies the new IC with

equality, since pa(bga,p) � (1 � b)pd(bga,p) � bPbpA = b(pa(ga,p) � (1 �
b)pd(ga,p)� bPpA) = 0. Thus, any increase in pA leads to an increase in

ga,p and subsequently in Ga,p. The main result follows from the elasticity

threshold (4).

Nash reversion and maximal punishment,44 both satisfy the condition

pp = PpA. But this result is much more general than these two punish-

44The exact same idea from the above proof can be used to show that if g̃ satisfies IC2
with aggregate productive profit pA, then bg̃ satisfies IC2 when aggregate productive
profit is bpA. Homogeneity of R then means that po is proportional to pA.
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ment strategies. And the condition pp = PpA has an intuitive interpreta-

tion: as the size of the conflict increases, punishment increases proportion-

ally.

Lemma E. Consider some punishment strategy p such that pp  pN and ∂pp

∂b 

0. Then
∂Ga,p

∂b
 0, with equality only when violence is zero.

Proof. The implicit function theorem on the IC yields ∂ga,p

∂b =
pp�pd+b ∂pp

∂b

∂pa
∂ḡ �(1�b) ∂pd

∂ḡ

for ga,p > 0. Under the assumptions of the lemma, the numerator is neg-

ative. And the denominator is positive, since the deviators’ profit crosses

the complier’s profit from above, as shown in figure 2. For zero violence,

greater b gives more slack to the IC, which means that zero is still sustain-

able after increases in b.

Nash reversion has pp  pN (trivially) and ∂pp

∂b  0. For maximal

punishment, it is evident that pp < pN, and we already showed in the

proof of proposition 2 that ∂pp

∂b  0.

This expression again holds for more general equilibria than for the

three types of punishment strategies we analyze. The key conditions,

pp  pN and ∂pp

∂b  0, are very reasonable. The first one holds unless pun-

ishment is more lenient than Nash reversion, in which case cooperation

could just break down and the market would go to Nash reversion. The

second condition reflects the intuition that stronger punishment strategies

should be sustainable in a subgame-perfect equilibrium as agents become

more forward-looking.

Lemma F. Consider some punishment strategy s such that ga,p(n)  ga,N(n) for
all n and, as the number of cartels increases, pp(n + 1)� pp(n) � pN(n + 1)�
pN(n). Then Ga,p(n + 1) � G(n), for all n, where equality only holds when both
quantities are zero.
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Proof. The lemma holds trivially when Ga,p(n) = 0. Now consider the case

Ga,p(n) > 0. Suppose that as the number of cartels moves from n to n + 1,

the level of violence moves to ĝ = ga,p n�1
n . The profits of the deviator can

be written as pd = (n � 1)ga,p + pA � 2
p

pA(n � 1)ga,p, which means that

pd stays constant. The IC constraint with n cartels was pA

n � ga,p � (1 �
b)pd � pp(n) = 0. The new IC is pA

n+1 � ga,p n�1
n � (1 � b)pd � 0. Sub-

stituting the original IC and some algebra leads to the conclusion that as

long as pp(n + 1)� pp(n) > 1
nb

⇣
ḡ � pA

n+1

⌘
the new IC will not be satisfied,

meaning that ga,p(n + 1) > n�1
n ga,p(n) will be necessary to deter deviation,

which implies that Ga,p(n + 1) > Ga,p(n).
Note that 1

nb

⇣
ga,p � pA

n+1

⌘
< 1

nb

⇣
n�1
n2

(b�n+nb)2

(b+n�nb)2 � 1
n+1

⌘
pA. It is straight-

forward to show that 1
nb

⇣
n�1
n2

(b�n+nb)2

(b+n�nb)2 � 1
n+1

⌘
pA <

⇣
1

n2 � 1
(n+1)2

⌘
pA =

pN(n + 1) � pN(n) as long as b < n
n+1 , which is a condition for ga,p to

be nonzero (otherwise even Nash reversion can sustain a peaceful equi-

librium). So the condition above holds, meaning that Ga,p(n + 1) >

Ga,p(n).

Under any circumstances, one would expect pp(n)  pN(n), since in

the worst case cartels can punish with Nash reversion and no cooperation.

Also note that pN = pA

n2 , which means that pN decays very fast with n (the

intuition being that with no cooperation the entry of new cartels is very

harmful to new cartels). These two facts suggest that one should expect

any other punishment strategy to satisfy pp(n + 1) � pp(n) � pN(n +

1)� pN(n); otherwise it would have to decay even faster than 1
n2 .

This key condition pp(n + 1)� pp(n) � pN(n + 1)� pN(n) holds triv-

ially for Nash reversion. It is hard to check analytically for maximal pun-

ishment (since solving for g̃ requires solving a quartic equation), but it is

easy to check numerically. The intuition above holds, especially since pp is

much lower with maximal punishment than with Nash reversion.
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A.11 Punishment for a limited number of periods

If we consider punishments that last for a limited number of periods T and

then return to the original agreement, IC1 becomes

1 � bT+1

1 � b
pa(ḡ) � pd(ḡ) + b

1 � bT

1 � bT+1 pp

which can be simplified as pa(ḡ) � (1 � w)pd(ḡ) + wpp, where w =

b
�
1 � bT/1 � bT+1� is the relative weight of punishment periods. The

same substitution can be done with IC2. The weight w increases in b,

which means that all our results hold. Also note that w increases in T,

which means that lengthening the punishment phase has the same effect

as increasing the discount factor.

A.12 Conditional repression

This section states formally and proves propositions behind the informal

discussion in Section 6 of the main text.

A.12.1 Indiscriminate conditional interdiction.

The state sets a baseline level of interdiction e as long as violence is less

or equal to v̄; if violence ever goes above v̄, the state sets interdiction at

a different level ẽ. This policy sustains a level of expenditure g with v̄ =

v(g, g, . . .) if the following IC is satisfied:

pa(e, g) � (1 � b)pd(e, g) + bpp(ẽ). (17)

This equation makes explicit the dependence of cartels’ profits on interdic-

tion. For Nash reversion, pp(ẽ) simply arises from the SGNE with inter-

diction ẽ. For maximal punishment, it arises from an IC2 that ensures that

enforcing the punishment is subgame perfect.
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Let gI,p(ẽ) be the lowest level of violence that is sustainable under pun-

ishment strategy p when the state sets a certain level of indiscriminate

conditional interdiction ẽ. Similarly, let bI,p(ẽ, n) be the maximum dis-

count factor that sustains a peaceful equilibrium with n cartels. If ẽ = e,

we are back to our main results, so gI,p(e) = ga,p and bI,p(ẽ, n) = bp(n).
The principal question, then, is how gI,p(ẽ) and bI,p(ẽ, n) vary with ẽ, the

level of conditionality. The key issue is how ẽ affects punishment profits

pp(ẽ), which are equal to pA(ẽ) times a constant of proportionality that

depends on the punishment strategy p. Taking into account Proposition 1,

this immediately leads to the following result:

Proposition 8. a) If ec < êc, then
∂gI,p

∂ẽ
< 0 and

bI,p(ẽ, n)
∂ẽ

< 0: If demand
is sufficiently elastic, conditional interdiction reduces violence and makes a
peaceful equilibrium more likely.

b) If ec > êc, then
∂gI,p

∂ẽ
> 0 and

bI,p(ẽ, n)
∂ẽ

> 0: If demand is sufficiently
inelastic, conditional interdiction increases violence and makes a peaceful
equilibrium less likely.

Proof. Proposition 1 determines how aggregate profits change with inter-

diction. For Nash reversion, punishment profit is pA(ẽ)
n2 . For maximal pun-

ishment, punishment profits are determined by IC2, which now takes the

form pe(ẽ, g̃) � (1� b)pc(ẽ, g̃) + bpp(ẽ, g̃). All profits in the inequality are

homogeneous of degree 1 in (pA, g), which means that punishment profits

are also proportional to pA(ẽ). In either case, the level of violence is de-

termined by IC1, which takes the form pa(ḡ) � (1 � b)pd(ḡ) + bPpA(ẽ),
where P is some constant of proportionality.

The implicit function theorem on the IC with equality yield ∂gI,p

∂ẽ =
bP

∂pa
∂ḡ �(1�b) ∂pd

∂ḡ

∂pA(ẽ)
∂ẽ , which has the same sign as ∂pA(ẽ)

∂ẽ (the denominator is

positive since the profits when deviating cross the profits when comply-

ing from above). And setting ḡ = 0 on the IC and applying the implicit
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function theorem results in ∂bI,p

∂ẽ = bP
pd�PpA

∂pA(ẽ)
∂ẽ , which again has the same

sign as ∂pA(ẽ)
∂ẽ .

A.12.2 Indiscriminate conditional beheading

The discount factor b can be written as the product of the monetary dis-

count factor d times the probability p that the cartel is still in charge next

period. Suppose that the state conditions efforts at capturing or killing car-

tel leaders, so that the probability of being in charge goes down to p̃ < p as

soon as an equilibrium breaks down. This change affects all cartels, both

the deviator and every other cartel. The IC can then be written as

pa(ḡ) � (1 � dp)pd(ḡ) + (1 � dp)
d p̃

1 � d p̃
pp (18)

The key term is the factor F = (1 � dp) d p̃
1�d p̃ < dp that now multiplies

pp.45 The profits from deviating are now lower, since continuation payoffs

decrease. This leads to a reduction in violence.

Let gB,p( p̃) be the lowest level of violence that is sustainable under pun-

ishment strategy p when the probability of the deviator being in charge is

p̃. Similarly, let dB,p( p̃, n) be the maximum monetary discount factor that

sustains a peaceful equilibrium with n cartels. The following proposition

states the previous result formally:

Proposition 9. For Nash reversion,
∂gB,p( p̃)

∂ p̃
> 0 and

∂dB,p( p̃, n)
∂ p̃

> 0: Indis-

criminate conditional beheading reduces violence and makes a peaceful equilibrium
more likely. For maximal punishment, on the other hand, the sign of both deriva-
tives is ambiguous.

45With an alternate strategy in which the probability goes down to p̃ only during the
next period, the factor is simply d p̃, which has the same properties.
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Proof. We do comparative statics on equation (18) using the implicit func-

tion theorem, which yields ∂gB,p

∂ p̃ =
∂F
∂ p̃ pp+F ∂pp

∂ p̃
∂pa
∂ḡ �(1�d p̃) ∂pd

∂ḡ �F ∂pp
∂ḡ

. By the same ar-

guments as in the proof of Proposition 3, the deviator’s profit crosses the

complier’s profit from above. The denominator is thus negative, and the

sign of this derivative is determined by the sign of the numerator.

We now show that the numerator is positive for Nash reversion. First

of all, it is clear that F increases with p̄. Also note that ∂pp

∂ p̃ = 0, which

means the numerator is positive, and so is the derivative. For maximal

punishment, note that the sign of the numerator is the same as the sign of
∂ log F
∂ log p � ∂ log pp

∂ log p . The right hand side is determined by the IC2 for the con-

tinuation game after punishment takes the form pe(g̃) = (1 � d p̃)pc(g̃) +
d p̃pp(g̃). It is not hard to find examples in which ∂ log F

∂ log p � ∂ log pp

∂ log p is positive

and negative, which means the sign of the derivative is ambiguous.

By the implicit function theorem on the IC with zero conflict expen-

diture, ∂dB,p( p̃,n)
∂ p̃ =

∂F
∂ p̃ pp+F ∂pp

∂ p̃

ppd(0)� ∂F
∂d pp . It is not hard to check that ∂F

∂ p̃  p, and

pd(0) > pp, so the denominator is positive and the sign is determined by

the numerator. This is the same numerator as in the comparative statics for

g, which proves the desired result.

A.12.3 Targeted conditional interdiction

The state first sets interdiction level e for all cartels. Whenever an agree-

ment breaks down, the state punishes the deviator i by setting ei = ē, and

by setting the level of interdiction for other cartels to e�i = ¯
e.

The IC that must be satisfied for a level of conflict expenditure g to be

sustained under punishment policy p is

pa(e, g) � (1 � b)pd(e, g) + bpp(ē,
¯
e). (19)

With Nash reversion, pp(ē,
¯
e) is simply the punished cartel’s profits in the
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SGNE that occurs when it gets a level of interdiction ē and every other

cartel gets a level of interdiction
¯
e. With maximal punishment, pp(ē,

¯
e)

arises from an IC2. To have a well-defined IC2, we assume that whenever a

cartel deviates from a punishment strategy, the state targets its interdiction

efforts with level ē to the new deviator and sets interdiction at
¯
e for every

other cartel.

As mentioned in the main text, this kind of policy is significantly more

difficult to analyze than a symmetric change in interdiction. The com-

plication is that lemma 1 no longer holds: different levels of interdiction

for different cartels lead to different efficiencies in route usage, so cartels

no longer split the pie of aggregate profits into shares proportional to the

number of routes they control. Cartels’ productive behavior can thus no

longer be decoupled from the conflict, as explained in Section 6.

To simplify our analysis, we assume that production q takes the func-

tional form q(x, R, e) = q̃(x, q(e)R), where q(e) is a decreasing function

and q̃ satisfies the properties of q on its derivatives and homogeneity. This

functional form has an intuitive interpretation: a cartel with R routes and

interdiction e controls an effective number of routes q(e)R, which are then

used to smuggle drugs i, resulting in q̃(x, q(e)R) drugs arriving at the des-

tination.46

This assumption leads to the following lemma, which is the basic build-

ing block for our next results:

Lemma G. Cartel i’s profit can be restated as

pi = p̂(pc)q(ei)R(gi, G�i)� gi, (20)
46Our original specification with a completely free dependence of q(x, R, e) on e was

not problematic in our main results where interdiction is homogeneous across cartels.
But now that enforcement is different across cartels, a free dependence could mean that
changes in prices affect cartels with different levels of enforcement in radically different
ways. Expressions that are similar, but much more complicated and far less intuitive than
equations (22) and (25) still hold. Additionally, if we allow free dependence of q(x, R, e),
both equations still hold locally, for infinitesimal changes from a policy with ē =

¯
e = e.
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where p̂(pc) = maxy pcq̃(y, 1)� ppy is increasing in pc and decreasing in pp.
The value of drug purchases y that achieves p̂(pc), which we denote by y(pc), is
unique. Let q̃(pc) = q̃(y(pc), 1). Then ∂p̂

∂pc
= q̃(pc).47

This result is a generalization of Lemma 1. Cartels still fight over routes,

but these routes are now more efficient for some cartels than for others.

p̂(pc) measures how much productive profit a cartel can get per unit of

effective routes.

We need to define some additional notation for our next result. Let q̄

and
¯
q be the levels of q(ei) corresponding to levels of interdiction ē and

¯
e, which are the relevant quantities when a cartel deviates and the state

changes its interdiction levels. Also let R̄p and
¯
Rp be the amount of routes

controlled by the deviator and by every other cartel during punishment

with strategy p, and let Q = Âi Riqi be the average of all productivities,

weighted by how many routes are controlled by each cartel. After devia-

tion, Q = q̄R̄p + (n � 1)
¯
q

¯
Rp. The total drug supply is then Q = q̃(pc)Q.

Also let Ēp and
¯
Ep be the values of pi

p̂(pc)
that are achieved under punish-

ment strategy p for deviators and for the rest of the cartels. Finally, let

eq̃ =
∂ log q̃
∂ log pc

be the elasticity of supply per unit of effective route.

Our main results on targeted conditional interdiction, Propositions 10

and 11 below, depend on the following result:

Property 1. For p 2 {N, m}, the following four properties are true if ē > e >
¯
e:

a) ∂ log Ēp

∂ log q̄
> 1

b) ∂ log Ēp

∂ log
¯
q < 0

c) ∂Qp

∂q̄
< 1

d) ∂Qp

∂
¯
q > 0

47Two notes on notation: We redefine q(pc) in a slight abuse of notation. We also drop
the dependence on pp, since we assume cartels are price takers in the upstream market.
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Property 1 holds for both Nash reversion and maximal punishment.

The key to show it is to note that both Ep and Qp are independent of

p̂(pc) (which we state as Lemma H below). The main idea is that although

the conflict is asymmetric, it still scales up homogeneously as productive

profits increase. We can then analyze a conflict with p̂(pc) = 1 to check that

these properties hold. We compute the punishment levels of expenditure

from incentive constraints, and then find Ep and Q by substitution. For

Nash reversion, this results in long expressions from which the properties

above are clear. We omit the algebra, but it is available upon request. It

is not possible to find closed expressions for maximal punishment—since

it involves solving cubic equations–but we check numerically that all four

results above are true.

The four expressions in Property 1 are intuitive. Property a) states that

when the punished cartel becomes more productive, its profits increase

more than its productivity. The additional increase in profits arises from

two channels. First, productivity directly affects productive profits but not

conflict expenditure. Second, the cartel reoptimizes by increasing expendi-

ture, which leads to a reduction in other cartels’ expenditure. Property b)

simply states that punished cartels are hurt if other cartels become more

productive. Those other cartels increase expenditure, thus hurting the orig-

inal cartel.

Property c) means that decreasing the punished cartel’s productivity

decreases overall productivity less than proportionally. This arises from

the fact that route control shifts towards cartels with greater productivity.

Finally, d) states that increasing other cartels’ productivity increases overall

productivity, a fairly intuitive result.

Lemma H. For p 2 {N, m}, Ep and Qp are independent of p̂(pc).

Proof. We start by showing this for Nash reversion. The FOCs are

p̂(pc)q̄Rgi(gi, G�i) = 1. Since Rgi(gi, G�i) is homogeneous of degree -1,
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it becomes clear that changes in p̂(pc) lead to proportional changes in g,

which in turn means that pi = p̂(pc)
h
argmaxgi

q(ei)R(gi, G�i)� gi

i
. This

makes it clear that the vector (Ei)n
i=1 arises from simultaneous maximiza-

tions of the form Ei = argmaxgi
q(ei)R(gi, G�i)� gi. This also means that

the fraction of routes Ri controlled by each cartel are independent of p̂(pc)

and so is Q.

For maximal punishment, the conflict is determined by equality in the

IC2 pe(ẽ, g̃) � (1 � b)pc(ẽ, g̃) + bpp(ẽ, g̃). Every profit function in this ex-

pression is homogeneous of degree 1 in p̂(pc) and the vector of all cartels’

expenditures, which that changes in p̂(pc) lead to proportional changes in

g. Note that we are assuming that cartels are price takers, and thus do not

take into account the effect on prices that takes place if they change the

number of routes they control. The IC2 can then be written as

¯
q ¯

g
ḡ + (n � 1)

¯
g
�

¯
g � (1 � b)max

g

✓

¯
q

g
g + g⇤ + (n � 2)g̃

� g
◆
+

b max
g

✓
q̄

g
g + (n � 1)g̃

� g
◆

(21)

where g⇤ = maxg

⇣
q̄ g

g+(n�1)g̃ � g
⌘

. It then becomes clear that Ei, Ri, and Q

are independent of p̂(pc).

Our main result about the effect of changes in ē is the following:

Proposition 10. For p 2 {N, m}, the change in a punished cartel’s profit caused
by a change in ē is given by

∂pp

∂ē
= qp̂

∂Ēp

∂ē
+

1
eq̃ � ec

pq̃q̄R̄
Q

∂Q
∂ē

. (22)
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An increase in ē reduces violence if and only if

1
eq̃ � ec

>
SR

s̄

∂ log Ēp

∂ log q̄

∂Qp

∂q̄

, (23)

where SR = p̂
pcq̃ is the share of production going to routes48 and s̄ = q̄

Q is the share
of supply provided by the punished cartel.

Proof. Equation (22) follows from lemma G and comparative statics on

equation (20) . Equation (22) leads to equation (23) after some straight-

forward algebra.

Equation (22) decomposes the effect on the targeted cartel into two

channels. The first term is the effect on productive profit through the con-

flict outcome. This is all captured by ∂Ēp

∂ē . This effect is negative, as we

can see from the properties of Ēp. The second term captures an indirect

effect through prices. As the punished cartel becomes less productive, it

takes less drugs to downstream markets. This is offset to some extent by

routes being redistributed from the punished, low productivity cartel to

other cartels, but the net effect is still a decrease in supply. This increases

prices, increasing profit.

The properties above state that ∂ log Ēp

∂ log q̄
� 1 and ∂Qp

∂q̄
 1. This means

that, for targeted interdiction to increase violence, 1
eq̃�ec

cannot be much

lower than n. Equivalently, the sum of the elasticities of supply and de-

mand cannot be much higher than 1
n . The elasticity of supply eq̃ is some-

times pretty low for certain functional forms for q̃, but demand still has to

be very inelastic for the price effect of interdiction to overcome the effect

through the conflict.

This can be stated formally as:
48Revenue per unit of effective routes is pcq̃. The share of this revenue that goes to

downstream drugs is ppy(pc). Since q̃ is homogenous of degree one, the remaining profit
is equal to the share to routes.
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Corollary 1. If property 1 holds, a necessary condition for violence to increase
with ē is:

ec > � s̄
SR . (24)

Result 1 is a restatement of this corollary, taking into account that prop-

erty 1 holds.

An additional tool that is available to the state is changing interdiction

on cartels that did not deviate. The next result analyzes this mechanism:

Proposition 11. For p 2 {N, m}, the change in a punished cartel’s profit caused
by a change in

¯
e is given by

∂pp

∂
¯
e

= qp
∂Ēp

∂
¯
e

+
1

eq̃ � ec

pq̃q̄R̄
Q

∂Q
∂

¯
e

. (25)

Proof. The result follows from Lemma G and comparative statics on Equa-

tion (20).

This lemma also breaks down the effect in two. The first term, a conflict

channel, captures the fact that increasing interdiction on cartels that did not

deviate makes them less productive. They end up grabbing fewer routes,

benefiting the punished cartel. The second term measures a price effect.

Lower productivity leads to less supply and higher prices, also benefitting

the punished cartel.

Property 1 makes it clear that this effect is negative. The state can thus

combine being harsher on the deviating cartel and being more lenient on

every other cartel. The following proposition states that there always exists

one such combination that decreases violence, while having no effect on

supply or prices:

Proposition 12. For every ē > e, there exists some
¯
e < e such that supply is the

same as with homogeneous interdiction at the original level e. Setting these two
levels of interdiction leads to a decrease in violence.
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Just increasing interdiction on the deviating cartel might be difficult if

the state has constraints on the resources it uses for interdiction. Similarly,

it might be difficult to be lenient on non-deviating cartels if the public dis-

likes being soft on cartels. An appealing feature of the combination from

this proposition is that the state can simply shift its interdiction resources

towards the deviating cartel. That way it does not have to use any addi-

tional resources, and it can tell the public that it is not being soft, but rather

focusing its efforts strategically.

A.12.4 Targeted conditional beheading

The government only sets p̃ for the cartel that deviates, while the proba-

bility remains at p for every other cartel. Let gBt,p( p̃) be the lowest level of

violence that is sustainable under punishment strategy p when the prob-

ability of the deviator being in charge is p̃. Similarly, let bBt,p( p̃, n) be

the maximum discount factor that sustains a peaceful equilibrium with n
cartels.

Proposition 13.
∂gBt,p( p̃)

∂ p̃
> 0 and

bBt,p( p̃, n)
∂ p̃

> 0: Targeted conditional be-

heading reduces violence and makes a peaceful equilibrium more likely.

Proof. The IC is identical to the IC under indiscriminate conditional be-

heading, and so is the SGNE, which proves the result for Nash reversion.

For maximal punishment, the derivative is ∂gBt,p

∂ p̃ =
∂F
∂ p̃ pp+F ∂pp

∂ p̃
∂pa
∂ḡ �(1�d p̃) ∂pd

∂ḡ �F ∂pp
∂ḡ

by

the implicit function theorem. We know that F increases in p̃, and ∂pp

∂ p̃ is

determined by the IC2, which is now pa(g̃) � (1 � dp)pd(g̃) + Fpp(g̃).

The implicit function theorem gives ∂g̃
∂ p̃ =

pp ∂F
∂ p̃

∂pe
∂g̃ �(1�d p̃) ∂pc

∂g̃ �d p̃ ∂pp
∂g̃

. The numer-

ator is positive, and the reasoning in the proof of Proposition 2 shows that

the denominator is negative, which means a stronger punishment can be

sustained in equilibrium. pp is thus decreasing in p̃, so ∂gB,m( p̃)
∂ p̃ > 0.
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By the implicit function theorem on the IC with zero conflict expendi-

ture, ∂dBt,p( p̃,n)
∂ p̃ =

pp ∂F
∂ p̃

ppd(0)� ∂F
∂d pp . The denominator is positive so the sign is

determined by the numerator. This is the same numerator as in the com-

parative statics for g, which proves the desired result.

B Second order conditions for the cartel

The cartel’s problem is max(gi,xi) pi = pcq(xi, R(gi, G�i), e)� gi � ppxi, with

first order conditions

pc
∂q
∂xi

= pp pc
∂q
∂Ri

∂Ri
∂gi

= 1 (26)

The second-order conditions are ∂2pi
∂x2

i
= pc

∂2qi
∂x2

i
< 0, ∂2pi

∂g2
i

=

pc


∂qi
∂Ri

∂2Ri
∂g2

i
+ ∂2qi

∂R2
i

⇣
∂Ri
∂gi

⌘2
�

< 0, and ∂2pi
∂x2

i

∂2pi
∂g2

i
�

⇣
∂2pi

∂xi∂gi

⌘2
=

p2
c


∂2qi
∂x2

i

∂qi
∂Ri

∂2Ri
∂g2

i
+

⇣
∂Ri
∂gi

⌘2
✓

∂2qi
∂x2

i

∂2qi
∂R2

i
�

⇣
∂2qi

∂xi∂Ri

⌘2
◆�

> 0. Strict concavity

of R and concavity of qi ensure that all three conditions are satisfied.

It still remains to show that (16) and (26) are equivalent. Homogeneity

of degree one means that derivatives are homogeneous of degree zero, so
∂q

∂Ri
is the same if it is evaluated at (xi, Ri, e) or (X, 1, e). Euler’s theorem

means that Q = X ∂q(X,1,e)
∂X + ∂q(X,1,e)

∂R , and from (12), pc
∂q

∂Ri
= pcQ � ppX =

pA, so both first order conditions are indeed equivalent.
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C Elasticity threshold for more general production func-

tions q

C.1 Production functions with constant returns to scale in xi and Ri

As an example, define the survival rate wi = w(xi, Ri, e) as the fraction

of cartel i’s drugs that reach consumer markets (so that q(xi, Ri, e) =

w(xi, Ri, e)xi), and consider a production function in which the survival

rate depends on (a) inverse route saturation ri =
Ri
Xi

and (b) interdiction e:

w(r, e) =
r

r + je
(27)

In this case, the threshold is êc = �
⇣

1 +
p

g
2(1�p

g)

⌘
, where g =

pp
pc

. (Ap-

pendix C graphs êc as a function of g). This expression makes clear that

êc < �1, meaning that profit is more sensitive to interdiction than revenue

is to interdiction. Figure C.3 plots this threshold as a function of g. As

the gap between consumer and producer prices widens, and g goes down

to zero, costs become a smaller share of revenues and the threshold gets

closer to �1. For high g, the threshold goes well below �1, but empiri-

cal evidence shows that each step in the production chain of drugs, from

producers to consumers, implies a large increase in prices (Mejía and Rico,

2010), and the results for high values of g are therefore not very relevant.

Plugging in the numbers provided in Reuter (2004) (p. 130) yields a cor-

rected threshold of �1.1.

We now look at more general functional forms. Suppose that w depends

on the ratio of effective routes r to enforcement e. In order to allow for dif-

ferent efficiencies and increasing or decreasing returns to scale, we assume

that w is a function of r = r
jeh : j is a parameter that captures the relative

efficiency of enforcement, and h is a parameter that captures whether the

returns to scale of enforcement decrease faster than the returns to scale of
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Figure C.3: Variation of the threshold as a function of g

effective routes. Thus, w(r, e) = w(r). The conditions set on the deriva-

tives of q in section 2 mean that w0 > 0 and w00 < 0. This kind of function

includes a variety of production technologies. For instance, if w(r) = r1�a

the production function is q = eh(1�a)xaR1�a, a Cobb-Douglas function,

and the same CSF used previously results if w(r) = r
1+r with h = 1.

We will now show that such functions result in a correction that low-

ers the elasticity threshold êc. In terms of w, the threshold is êc = �1 �
(w�r ∂w

∂r )
2

r2 ∂w
∂e

∂2w
∂r2

✓
∂w
∂e
w �

∂w
∂e �r ∂2w

∂r∂e
w�r ∂w

∂r

◆
The term in parentheses, which determines its

sign, is now rww00rrre+rww0rre�r(w0)2rrre
w(w�rw0rr)

. The denominator is positive, and by

substituting the derivatives of r, its numerator is �rww00 � ww0 + r(w0)2,

which is positive if

q =
w00

(w0)2

w � w0
r

> 1 (28)

The numerator is clearly negative, and the numerator is also negative since

the conditions on w imply that w > rw0. If (28) is satisfied, the effect of

enforcement on marginal productivity is greater than the effect on pro-

ductivity, so the threshold is lower than �1. Condition (28) has the ad-

vantage that it is scale free: q does not change by substituting w(r) with

ŵ(r) = w(ar), where a is an arbitrary constant. It is also independent of h.

Setting wCD = r1�a, a Cobb-Douglas technology, yields qCD = 1. But
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as we argued in the main text, this is not a very reasonable form for w
since it increases without bound. For it to be bounded above, given some

value w = wCD and some value of w0 = w0
CD, w00 should be less than for a

Cobb-Douglas function (w00 < w00
CD) so that the function curves downward

fast enough that it does not go past w = 1. This implies that q > 1. The

relevance of q being scale-free now becomes clear: the scale parameter a
can be chosen so that w = wCD and w0 = w0

CD, allowing comparison of q

and qCD only in terms of w00 and w00
CD.
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Figure C.4: Comparison of different functional forms.

Figure C.4 illustrates our argument graphically with three functions
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that fulfill the conditions for w(r):49 w = r
1+r , w = 1 � exp(� 1

2 r), and

w = 2
p arctan r. We also show w = 0.4r0.4 for comparison. The particular

values of the parameters were chosen so that the functions are relatively

similar, although this does not change our conclusions. Figure C.4a shows

the general form of the functions. Figure C.4b shows how q behaves as a

function of the value of w, and, in particular, that for all three functional

forms q > qCD. Finally, figure C.4c shows the threshold that results for each

functional form in terms of g =
pp
pc

. Comparison with figure C.3 shows that

the conclusions from section 3 are not a peculiarity of the functional form

that we chose for w.

C.2 Production functions with increasing or decreasing returns to scale

The baseline analysis assumes that the production function q(xi, Ri, e) has

constant returns to scale in drug purchases xi and route ownership Ri. In

the text, we briefly note the consequences of relaxing this assumption; this

section elaborates the discussion.

Stage-game Nash equilibrium. In the stage game, if we relax constant

returns by assuming that production is homogenous of degree a 6= 1,

the elasticity threshold above which interdiction increases profits remains

unchanged—but the threshold above which interdiction increases violence
changes. However, the sign of the correction (relative to �1) remains the

same. For instance, if we follow Appendix C.1 and assume that êc < �1,

and if we let ê0 denote the new threshold above which interdiction in-

creases violence, then ê0 < �1. With decreasing returns to scale (a < 1),

the magnitude of the correction is larger (if êc < �1, then ê0 < êc < �1).

With increasing returns to scale (a > 1), the magnitude of the correction is

smaller (if êc < �1, then êc < ê0 < �1).
49w(0) = 0, w > 0, limr!• w(r) = 1, w0 > 0, and w00 < 0
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To understand this, note from Equation (16) that the level of violence in

the SGNE depends on the marginal productivity of routes Ri. Under the

assumption of constant returns to scale, the marginal productivity of routes

is proportional to productive profits: by Euler’s homogeneous function

theorem, pcqRR = pcq � ppx = p. Under the more general assumption

that production is homogenous of degree a, this equation becomes:

pcqRR = p + (a � 1)pcq (29)

meaning that the marginal product of routes could exceed or fall short

of productive profits. This is why the threshold above which interdiction

increases productive profits is no longer the threshold above which inter-

diction increases violence.

Equation 29 illustrates why, with increasing returns to scale, the

marginal product of route ownership exceeds productive profit: specifi-

cally, the marginal productivity of route ownership is proportional to prof-

its plus a fraction of revenue. The elasticity threshold above which interdic-

tion increases this quantity (pcqRR) thus falls in between the threshold for

productive profits (êc) and the threshold for revenues (�1). Specifically, if

we assume that êc < �1—as Appendix C.1 suggests—then êc < ê0 < �1.

With decreasing returns to scale, on the other hand the new threshold

moves in the other direction, away from the �1 threshold above which

interdiction increases revenue: ê0 < êc < �1.

Repeated game. In the stage game, assuming that production was ho-

mogeneous of degree a was sufficient to pin down the revised elasticity

threshold above which interdiction increases violence. In the repeated

game, we need a second assumption, about the relative efficiency of en-

forcement against cartels who deviate and cartels who comply.

In particular, if a > 1, cartels that control more routes will have a
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higher ratio of drug purchases to routes xi
Ri

(i.e., a higher route satura-

tion). This means that route saturation xi
Ri

is higher for cartels that deviate

from a low-violence agreement than for cartels that comply. To reach con-

clusions about the elasticity threshold above which interdiction increases

violence, we require an assumption about how the effectiveness of inter-

diction changes with route saturation xi
Ri

. We can assume either that (a)

interdiction is more effective against cartels with high route saturation, or

(b) interdiction is less effective against cartels with high route saturation.

In the former case—interdiction especially hurts cartels with high route

saturation xi
Ri

—then, if a > 1, interdiction hurts deviators more than com-

pliers, weakening the temptation to deviate. This shrinks the range of elas-

ticities for which interdiction increases violence, i.e., ê0 > êc. In the latter

case—interdiction especially hurts cartels with low route saturation—then,

if a > 1, interdiction hurts compliers more than deviators, strengthening

the temptation to deviate. This widens the range of elasticities for which

interdiction increases violence, i.e., ê0 < êc.

The logic is reversed under decreasing returns to scale a < 1, because

in that case, cartels that control more routes will have lower route satu-

ration xi
Ri

. In that case, if interdiction is more effective against cartels with

high route saturation, interdiction will hurt compliers more than deviators,

strengthening the temptation to deviate, and shifting the elasticity thresh-

old downward, i.e., ê0 < êc. Similarly, if a < 1 and interdiction is more

effective against cartels with low route saturation, interdiction will hurt

deviators more than compliers, weakening the temptation to deviate and

shifting the elasticity threshold upward, i.e., ê0 > êc.
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D Variable prices in the producer market

In this section we relax the assumption that prices in the producer market

are fixed. Since cartels are price takers, their individual behavior does not

change in any way, and their maximization problem is the same, both in

the SGNE and with repeated games. The comparative statics, however,

must now take into account that changes in policy will have an effect in

the producer market, thus changing pp. This effect is described by the

elasticity of supply ep.

D.1 Aggregate productive behavior

From proposition C, the number of cartels has no effect on productive

behavior, which means that it does not affect the amount of drugs bought

from the producer region, and pp. Thus, ∂Q
∂n stays the same. On the other

hand, ∂X
∂e and ∂X

∂e do change. The analysis must now take into account

that prices in producer markets are increasing in X, so marginal cost is

increasing. The implicit function theorem yields the following expression,

which replaces (14):

∂X
∂e

= �
∂2q

∂X∂e +
1

Qec

∂q
∂X

∂q
∂e

1
Qec

⇣
∂q
∂X

⌘2
+ ∂2q

∂X2 � 1
Xep

pp
pc

(30)

The only change is a new term in the denominator, which does not change

the sign, although the magnitude of the effect is less. From the chain rule,

the new expression that replaces (15) is

∂Qe

∂e
=

∂2q
∂X2

∂q
∂e �

∂q
∂X

∂2q
∂X∂e �

1
Xep

pp
pc

∂q
∂e

1
Qec

⇣
∂q
∂X

⌘2
+ ∂2q

∂X2 � 1
Xep

pp
pc

(31)
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The sign of this expression does not change either. The comparative statics

thus remains the same.

D.2 Threshold for the elasticity of demand

The effect of enforcement on violence depends on the effect it has on the

aggregate productive profit. The new dependence of producer prices on

quantities means that ∂pA

∂e = ∂pc
∂Q

∂Q
∂e Q + pc

∂Q
∂e � ∂pp

∂X
∂X
∂e X � pp

∂X
∂e . Rewriting

∂pc
∂Q and ∂pp

∂X in terms of elasticities leads to

∂pA

∂e
= pc

✓
1 +

1
ec

◆
∂Q
∂e

� pp

✓
1 +

1
ep

◆
∂X
∂e

(32)

instead of (??). Substituting ∂Q
∂e and ∂X

∂e from (30) and (31) and isolating ec

yields the following threshold for the elasticity of demand:

êc = �1 �

⇣
1 + 1

ep

⌘ ⇣
∂q
∂X

⌘2

∂2q
∂X2

∂q
∂e +

1
ep

∂q
∂X

⇣
∂2q

∂X∂e �
1
X

∂q
∂e

⌘

0

@
∂q
∂e
Q

�
∂2q

∂X∂e
∂q
∂X

1

A (33)

Two new terms arise. First, the correction is smaller, since increasing

marginal cost means that changes in X are smaller (the new term in the

denominator)50. On the other hand, any change in X induces a larger

change in costs, since pp changes with X (see
⇣

1 + 1
ep

⌘
in the numerator).

The sign of the correction is still determined by the sign of ∂ log q
∂e � ∂ log ∂q

∂X
∂e .

50The sign of the correction could actually change if supply is very inelastic and ∂2q
∂X∂e >

1
X

∂q
∂e , but expanding this in terms of the derivatives of w shows that this would imply

∂2w
∂e∂r > 0.
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E Empirical analysis of Mexico before and after 2006

In this section we extend the analysis in Castillo et al. (2018) to show that,

although violence in Mexico responded to cocaine supply changes from

seizures in Colombia after Calderón’s crackdown, the data shows no evi-

dence of such response before December 2006. The results are consistent

with the idea that, in the absence of aggressive enforcement policies, re-

peated interaction creates incentives for traffickers to divide the business

peacefully.

Using month-level time-series data on the Mexican homicide rate and

cocaine seizures in Colombia, we estimate:

ln ht =a ln St ⇥ Dt + b ln St ⇥ (1 � Dt) + Ft(Xt; g)⇥ Dt

+ Ft(Xt; d)⇥ (1 � Dt) + et (34)

where ht is the homicide rate in Mexico in month t (as reported by the

Mexican statistics agency, INEGI), St are cocaine seizures in Colombia (as

reported by the Colombian Ministry of Defense), Dt is an indicator variable

that takes a value of one from December 2006 onwards, and Ft includes (a)

a cubic polynomial in t, (b) year dummies, and (c) time-varying controls

Xt. If we were to assume that E(et|St, Dt, Ft) = 0, we could interpret a as

the effect of cocaine seizures in Colombia on violence in Mexico prior to

December 2006, and b as the effect of seizures in Colombia on violence in

Mexico after December 2006. Castillo et al. (2018) explains in detail why

this assumption might be justified; in brief, they contend that short-term

(monthly) fluctuations in seizures are largely determined by chance. If

this assumption were not justified, however, such that E(et|St, Dt, Ft) 6= 0,

we would interpret a and b as the partial correlation between seizures

in Colombia and violence in Mexico, conditional on Ft, before and after

December 2006.
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Table E.4 shows our estimates of a and b. The first three columns show

regressions for all of Mexico. The rest of the columns focus on munici-

palities in the first two quintiles of distance to the US, where the effect

measured in Castillo et al. (2018) is strongest. In some specifications we

control for the unemployment rate, by the Índice Global de la Actividad

Económica, an early indicator of GDP that is computed every month, and

for weather using dummies for the rainy and hurricane season in Mexico.

Table E.4: Relationship between cocaine seizures in Colombia and violence in Mexico
(Estimates of Equation 34)

All of Mexico Quintiles 1 and 2 First quintile

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Dependent variable: Log homicide rate.

Before Dec. 2006 (a) -0.015 -0.017⇤ -0.019⇤⇤ -0.009 -0.010 -0.013 -0.000 -0.003 -0.019
(0.012) (0.010) (0.010) (0.015) (0.013) (0.012) (0.019) (0.019) (0.015)

Dec. 2006 onward (b) 0.059⇤⇤ 0.056⇤⇤ 0.050⇤ 0.082⇤⇤ 0.079⇤⇤ 0.073⇤⇤ 0.119⇤⇤⇤ 0.120⇤⇤⇤ 0.109⇤⇤⇤
(0.027) (0.025) (0.026) (0.033) (0.032) (0.034) (0.033) (0.034) (0.037)

Dif (b � a) 0.073⇤⇤ 0.074⇤⇤⇤ 0.069⇤⇤ 0.091⇤⇤ 0.089⇤⇤⇤ 0.086⇤⇤ 0.119⇤⇤⇤ 0.122⇤⇤⇤ 0.128⇤⇤⇤
(0.030) (0.027) (0.028) (0.036) (0.034) (0.036) (0.038) (0.039) (0.040)

Observations 96 96 96 96 96 96 96 96 96
R-squared 0.957 0.964 0.967 0.957 0.963 0.965 0.964 0.965 0.968

Controls:

Unemployment rate X X X X X X
Economic activity X X X X X X
Weather X X X
Note: Errors are robust to heteroskedasticity. Coefficients with ⇤⇤⇤ are significant at the 1% level, with ⇤⇤ at the 5% level and with ⇤ at the 10% level.

The estimates for b simply replicate the findings in Castillo et al. (2018):

After December 2006, cocaine seizures in Colombia caused an increase in

homicide rates, especially in municipalities close to the U.S. border. The

estimates for a reveal a different pattern before Calderón’s term: no strong

relationship between cocaine seizures in Colombia and violence in Mexico.

These results are consistent with the predictions of our theoretical

model. Before Calderón began aggressively targeting kingpins, cartels op-
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erated in a peaceful equilibrium—and, therefore, violence did not respond

to supply shocks. Calderón’s crackdown broke the peace treaties, push-

ing Mexico into a new equilibrium in which violence responded to supply

shocks. While the data themselves do not identify the timing of the switch

from one equilibrium to the other (instead, we select December 2006 as a

cutoff, since that is when Calderón took office), the contrast between the

pre- and post- periods suggests that our model helps explain violence in

Mexico during this period.

F Microfoundation of constant returns to scale in smug-

gling

Consider a continuum of routes y 2 [0, 1]. In each route, the government

spends an effort l(y) in enforcement and the cartel that controls it tries

to smuggle an amount of drugs x(y). This results in an amount of drugs

q̃(y, l(y), x(y)) arriving the final destination, which is decreasing in l(y),
and increasing and concave in x(y). Note that this function is allowed to

vary by y, which means that some routes can be more productive for cartels

or easier to monitor by the government.

Let e =
R 1

0 l(y)dy be total enforcement, X =
R 1

0 x(y)dy be the total num-

ber of drugs bought in upstream markets, and Q =
R 1

0 q̃(y, l(y), x(y))dy be

the total amount of drugs sold in downstream markets. Note here the key

assumption in this specification: total production is additive across routes,

which means no complementarities or substitutabilities.

Suppose cartel i controls Yi ✓ [0, 1] and has an amount xi of drugs to

sell in downstream markets, and has to decide how many drugs to ship in

each route. Then it solves the following problem:

max
x(·)

pc

Z

Yi
q̃(y, l(y), x(y))dy � pp

Z

Yi
x(y)dy s.t.

Z

Yi
x(y)dy = xi. (35)
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From the calculus of variations, the first order conditions are

pcq̃x(y, l(y), x(y)) = pp + h 8y 2 Yi, (36)

where h is a Lagrange multiplier for the constraint. These first order condi-

tions implicitly define optimal quantities x⇤(y) and q⇤(y). Let optimal drug

demand and supply for cartel i be x⇤i =
R

Yi
x⇤(y)dy and q⇤i =

R
Yi

q⇤(y)dy.

Our first result arises from a simple functional form for q that illustrates

the connection between route independence and constant returns to scale:

Proposition 14. Suppose q̃(y, l(y), x(y)) = µ(y)
l(y) f

⇣
l(y)
µ(y)x(y)

⌘
, where f (·) is

increasing and concave. Given the sets of routes controlled by each cartel Yi and
the level of enforcement in each route l(y), the optimal amount of drugs sold by

cartel i is given by some CRS function q(xi, Ri), where Ri =

R
Yi

µ(y)
l(y) dy

R
Y

µ(y)
l(y) dy

. If l(y)

increases weakly for all y 2 Y, then q(xi, Ri) decreases weakly for all (xi, Ri).

Proof. First, let I =
R

Y
µ(y)
l(y)dy. The FOC can be written as f 0

⇣
l(y)
µ(y)x⇤(y)

⌘
=

pp + h, which means that x⇤(y) = x̄ µ(y)
l(y) and q⇤(y) = µ(y)

l(y) f (x̄), where x̄ is

some constant defined by x̄ = xi
Ri I

(since
R

Yi
x̄ µ(y)

l(y)dy = x̄Ri I = xi). This,

in turn, implies that q⇤ = Ri f (x̄) = Ri I f
⇣

xi
Ri I

⌘
, which is homogeneous of

degree 1.

As l(y) increases weakly for all Y, I decreases weakly. Concavity of f
then means that q⇤ = Ri I f

⇣
xi

Ri I

⌘
decreases.

The idea behind the functional form in this proposition is that µ(y)
measures how productive route y is. This proposition clarifies the two as-

sumptions needed for the production function in our main model to satisfy

CRS: the production technology must have no complementarities or substi-

tutabilities across routes, and some additional functional form assumption

is necessary.
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We now show that, although the functional form assumption simplifies

the results throughout this paper, it is in no way necessary for our main

results. Let local profits be p(y) = pcq⇤(y) � x⇤(y), and total profits be

pA =
R 1

0 p(y)dy. Also define optimal drug demand and supply for cartel

i x⇤i =
R

Yi
x⇤(y)dy and q⇤i =

R
Yi

q⇤(y)dy, and total optima X⇤ =
R 1

0 x⇤(y)dy
and Q⇤ =

R 1
0 q⇤(y)dy.

Suppose cartel i controls Yi ✓ [0, 1], and must decide how much drugs

to carry through each route. Unlike the previous problem in equation

(35), it is not constrained to some value of xi. Then it solves the following

problem:

max
x(·)

pc

Z

Yi
q(y, l(y), x(y))dy � pp

Z

Yi
x(y)dy, (37)

with first order conditions

pcqx(y, l(y), x(y)) = pp 8y 2 Yi, (38)

which implicitly define x⇤(y) and q⇤(y). Let local profits be p(y) =

pcq⇤(y)� x⇤(y), and total profits be pA =
R 1

0 p(y)dy, and a cartel’s profits

be pi =
R

Yi
p(y)dy. Also define weights n(y) = p(y)

pA , which are propor-

tional to p(y) and add up to one. We can then define Ri =
R

Yi
n(y)dy.

The following proposition is the link that allows us to show that the main

results in our paper hold with this general specification:

Proposition 15. Suppose q̃(y, l(y), x(y)) is decreasing in l(y), increasing and
concave in x(y), and more enforcement increases the marginal productivity of x
( ∂2q̃

∂l∂x < 0). Given the sets of routes controlled by each cartel Yi and the level of
enforcement in each route l(y), cartel i’s profits are given by pi = Rip

A. Drug
demand X and supply Q do not depend on the distribution of routes. If l(y)
increases weakly for all y 2 Y, then Q decreases.

Proof. The definition of Ri and n(y) directly yield pi = Rip
A. Supply and

demand are given by X =
R 1

0 x⇤(y)dy and Q =
R 1

0 q̃(y, l(y), x(y))dy, which
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do not depend on how routes are distributed. By the same argument as in

section A.5, supply from every route decreases weakly, meaning that total

supply decreases.

The only result in section 3 that does not have a direct analogy in this

proposition is equation 13 in proposition C. Note, however, that the main

results in our paper in sections about conflict equilibrium do not depend

on equation 13.
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