
Mass Purges

Supplemental Appendix

We (re)introduce some notation used throughout. Recall that V2(τ) = R+ (v(S,τ))2

2
denotes agent i’s

expected payoff in period 2 as a function of his type. The (ex-ante) average payoffs are denoted by

v = λv(S, c) + (1− λ)v(S, nc) and V2 = λV2(c) + (1− λ)V2(nc). For the autocrat, W2(τ) = v(S, τ)

denotes her second-period expected payoff induced by an agent of type τ ∈ {c, nc}. The highest

feasible intensity of violence satisfies L = 1 − v(S, c) − V2(c). In all that follows, since second-

period actions are subsumed in V2(τ) for a subordinate and W2(τ) for the autocrat, we ignore the

first-period time subscript in all the proofs.

A Proofs of ‘Effort and incentive to purge’

Proof of Lemma 1

First, observe that due to our equilibrium refinement, there is no equilibrium in which agents exert

zero effort. If there is, a successful project is an out-of-equilibrium event. As it is treated as a

mistake, it does not affect the autocrat’s purging decision. Hence, congruent types have a profitable

deviation to exert effort.

Anticipating the proof of Lemma 2, an agent’s effort as a function of his type is ei(τ) = max{(1−

κS)v(S, τ) + (κF − κS)(V2(τ) + L), 0}.

First, proceeding by contradiction, suppose there is an equilibrium in which κF , κS ∈ (0, 1)2. The

autocrat must then be indifferent between purging from the success and failure pools. One type of

agents, however, exerts more effort than the other for all κS, κF and the autocrat’s posterior after

success differs from her posterior after observing failure. Hence, the autocrat is never indifferent,

a contradiction.

We now show that κS > 0 and κF = 0 cannot be part of an equilibrium strategy proceeding again

by contradiction. In this case, both types exert no effort (which contradicts the first paragraph of

the proof) or a congruent type exerts more effort than a non-congruent. The autocrat’s posterior
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conditional on success is then higher than conditional on failure and her best response is to first

purge from the pool of failure, a contradiction.

Given the reasoning above, κS > 0 only if κF = 1. But note that then success is a positive signal

of congruence. Since the proportion of congruent types in the replacement pool is the same as in

the pool of existing agents at the beginning of the game and since purging is costly, there cannot

be an equilibrium in which κS > 0.

Proof of Lemma 2

We first determine the level of effort taking κF and κS as given and assuming that effort is always

weakly positive. The maximization problem of a type τ ∈ {c, nc} agent assumes the following form:

max
e∈[0,1]

R+ e
[
(1− κS)(v(S, τ) + V2(τ)) + κS(−L)

]
+ (1− e)

[
(1− κF )(V2(τ)) + κF (−L)

]
− e2

2
(A.1)

If his project is successful (probability e), an agent survives the purge with probability 1− κS and

receives a flow payoff v(S, τ) and as well as his second period expected payoff. If his project fails,

he survives the purge with probability 1− κF and only receives his second period expected payoff

then. When the agent is purged, he suffers a loss L.

Taking the first-order condition, we obtain:

ei(τ) = (1− κS)v(S, τ) + (κF − κS)(V2(τ) + L) (A.2)

Using Lemma 1 yields the claim.

Before proceeding to the rest of the analysis, we briefly discuss why our results hold substantively if

non-congruent types get a negative payoff from successful project. More specifically, suppose that

−R < v(S, nc) < 0. Then there exists κ0F (L) = −v(S,nc)
R+L

∈ (0, 1) such that for all κF ≤ κ0F (L), a non-

congruent subordinate exerts zero effort in period 1. It can be checked that for all κF ∈ [0, κ0F (L)),

the autocrat’s posterior µF is strictly decreasing with κF (see the proof of Lemma B.1) and L

(see the proof of Lemma B.3) as only congruent types exit the failure pool. As a result, all

the comparative statics with respect to violence we establish in the main text (purge incidence,

purge breadth, effort, selection) hold for all L such that the equilibrium incidence κ∗F (L) satisfies

κ∗F (L) ∈ [0, κ0F (L)). Hence, the assumption that v(S, nc) ≥ 0 is meant to simplify the analysis.
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B Proofs of ‘The consequences of violence’

In all that follows, we slightly abuse notation (given that agents fully anticipate the purge incidence

in equilibrium) and denote ei(κF , L; τ) a type τ ∈ {c, nc} agent’s effort. Average effort, in turn, is

e(κF , L). Similarly, again slightly abusing notation (given that the autocrat correctly anticipates

agents’ effort in equilibrium), we denote µF (κF , L) the autocrat’s posterior that an agent is con-

gruent conditional on failure. Before proving the main results, we need some preliminary lemmas

to establish some properties of the equilibrium purge incidence.

The next Lemma characterizes some properties of the autocrat’s posterior treating the purge inci-

dence κF as exogenous.

Lemma B.1. In a discriminate purge with some failures surviving (κF < 1), the autocrat’s poste-

rior after failure is strictly decreasing and concave in κF .

Proof. We prove the lemma using a slightly general reasoning to illustrate that our results do not

depend on our functional form assumptions.

By Bayes’ Rule, µF (κF , L) = λ1−ei(κF ,L;c)
1−e(κF ,L)

. The relevant comparative statics is then (omitting

superscript):

∂µF (κF , L)

∂κF
=

λ

(1− e(κF , L))2

[
− ei(κF , L; c)

∂κF
(1− λei(κF , L; c)− (1− λ)ei(κF , L;nc))

+ (1− ei(κF , L; c))

(
λ
∂ei(κF , L; c)

∂κF
+ (1− λ)

∂ei(κF , L;nc)

∂κF

)]
=
λ(1− λ)(1− ei(κF , L; c))(1− ei(κF , L;nc))

(1− e(κF , L))2

[
∂ei(κF ,L;nc)

∂κF

1− ei(κF , L;nc)
−

∂ei(κF ,L;c)
∂κF

1− ei(κF , L; c)

]
(B.1)

By examination of Equation 5, ei(κF , L; c) > ei(κF , L;nc) and ∂ei(κF ,L;c)
∂κF

> ∂ei(κF ,L;nc)
∂κF

. This directly

implies:
∂ei(κF ,L;nc)

∂κF

1−ei(κF ,L;nc)
−

∂ei(κF ,L;c)

∂κF

1−ei(κF ,L;c)
< 0 and ∂µF (κF ,L)

∂κF
< 0 as claimed.

To see that the posterior is strictly concave in κF , notice that:

∂2µF (κF , L))

∂κ2F
∝
[
∂2ei(κF , L;nc)

∂κ2F
(1− ei(κF , L; c))− ∂2ei(κF , L; c)

∂κ2F
(1− ei(κF , L;nc))

]
(1− e(κF , L))

+ 2
∂e(κF , L)

∂κF

[
∂ei(κF , L;nc)

∂κF
(1− ei(κF , L; c))− ∂ei(κF , L; c)

∂κF
(1− ei(κF , L;nc))

]
(B.2)

Equation 5 yields that ∂2ei(κF ,L;τ)

∂κ2F
= 0, τ ∈ {c, nc}. Further, the term on the second line is negative

by Equation B.1 and ∂e(κF ,L)
∂κF

> 0.
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For our next preliminary result, denote the proportion of failure when all failed agents are purged

α̂F (L) = 1 − v − V2 − L. Further, define WF (κF , κS) ≡ β(r − µF (1, L))(W2(c) − W2(nc)) the

marginal benefit of purging an agent who failed when the purge incidences after failure and success

are κF and κS, respectively. Our definition is slightly more general than needed (since κ∗S(L) = 0

by Lemma 1) so that we can use it when we examine the possibility that the autocrat purges from

the success pool in Appendix D.

Lemma B.2. The unique equilibrium purge incidence κ∗F (L) satisfies:

(i) κ∗F (L) < 1 if and only if C0 + C1 × α̂F (L) >WF (1, 0);

(ii) κ∗F (L) = 1 if and only if C0 + C1 × α̂F (L) ≤ WF (1, 0).

Proof. Point (i). Consider the function

KPD(κF , L) = β(r − µF (κF , L))(W2(c)−W2(nc))−
(
C0 + C1κF

(
1− (v + κF (V2 + L))

))
. (B.3)

The first term of KPD(·) (β(r−µF (κF , L))(W2(c)−W2(nc))) corresponds to the autocrat’s marginal

benefit of purging an additional subordinate in the failure pool. The second term is the marginal

cost of purging an additional subordinate in the failure pool. The function takes into account the

effect of a change in κF on effort and on the autocrat’s posterior. Hence, if it exists, the highest

value of κF ∈ (0, 1) solving KPD(κF , L) = 0 is an equilibrium point (given our imposed restrictions).

Observe that KPD(κF , L) is strictly convex in κF (using Lemma B.1). Under the condition of point

(i), note that KPD(1, L) < 0. Given the properties of KPD(·, L), KPD(κF , L) crosses 0 either once

(from above) or zero.1 The equilibrium purge incidence is thus unique and equals κ∗F (L) = 0 if

KPD(0, L) < 0 or the unique solution to KPD(κ∗F (L), L) = 0 otherwise.

Point (ii). Under the condition of point (ii), we have three possibilities (a) KPD(κF , L) ≥ 0 for

all κF ∈ [0, 1], (b) there exists a unique solution to KPD(κF , L) = 0 (with KPD(κF , L) crossing 0

from below), (c) there exists two solutions to KPD(κF , L) = 0. In case (a), the unique equilibrium

purge incidence is κ∗F (L) = 1. In cases (b) and (c), denote κ′F ∈ (0, 1) an interior solution (unique

or not) and κcF = 1 the corner solution. Since our equilibrium selection selects the purge with the

largest purge incidence, the equilibrium must then satisfy κ∗F (L) = 1 as claimed.

As the proof of Lemma B.2 highlights, our equilibrium criterion plays a role only when the condi-

tions of point (ii) of the Lemma are satisfied. Alternative criterion selection might select a different

1If KPD(κF , L) crosses 0 from below at some κ′F then it must be that KPD(κF , L) > 0 for κF > κ′F since the

function is strictly convex. This contradicts KPD(1, L) < 0.
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purge inference. For example, it can be checked that the equilibrium criterion based on the au-

tocrat’s welfare-maximizing purge inference would select either the highest interior solution or the

corner solution (as in our baseline). All our comparative statics would remain unchanged then (at

the cost though of complicating the analysis). Selecting the lowest interior purge inference would

change some of our comparative statics, but imposing parameter values such that purge inference

is continuous (as we do later) would reestablish them. As such, our results are robust to change in

the equilibrium criterion.

We first study the effect of an exogenous change in the intensity of violence on beliefs. Note that

this is not an equilibrium analysis. Indeed, as we will see below, the purge inference changes with

the intensity of violence.

Lemma B.3. Fixing the purge breadth, in a discriminate purge, µF (κF , L) is strictly decreasing in

L.

Proof. A similar reasoning as in Lemma 2 yields:

∂µF (κF , L)

∂L
=
λ(1− λ)(1− ei(κF , L; c))(1− ei(κF , L;nc))

(1− e(κF , L))2

[
∂ei(κF ,L;nc)

∂L

1− ei(κF , L;nc)
−

∂ei(κF ,L;c)
∂L

1− ei(κF , L; c)

]
(B.4)

Using agents’ efforts (Equation 5), ∂ei(κF ,L;c)
∂L

= ∂ei(κF ,L;nc)
∂L

. Since ei(κF , L;nc) < ei(κF , L; c),

∂µF (κF ,L)
∂L

< 0.

To facilitate the exposition, we use subscript x to denote the partial derivative of some variable z

with respect to x (i.e., ∂z/∂x = zx) and a similar notation for the second partial derivative. We

also ignore superscript and arguments whenever possible.

Proof of Proposition 1

First, consider a partially discriminate purge. Observe that KPD(κF , L) = β(r−µF (κF , L))Dc,nc2 −(
C0 + C1κF

(
1 − (v + κF (V2 + L))

))
is strictly increasing in L using Lemma B.3. Since κ∗F (L) is

defined as the solution to KPD(κ∗F (L), L) = 0 by the Implicit Function Theorem we must have that

κ∗F (L) is continuously and strictly increasing with L (recall that ∂KPD(κ∗F (L), L)/∂κF < 0 from

the proof of Lemma B.2).

We now need to consider two cases: (a) C0 +C1α̂(L) < βr(W2(c)−W2(nc)) and (b) C0 +C1α̂(L) ≥
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βr(W2(c)−W2(nc)).

In case (a), there exists a unique Lfull < L such that κ∗F (L) = 1 for all L ≥ Lfull. To see this,

slightly abusing notation (using equalities, instead of limits), observe that at L = L and κF = 1, we

have ei(1, L, c) = 1 by Equation 5 so µF (1, L) = 0. Further, KPD(1, L) = βrDc,nc −
(
C0 + C1

(
1−

(v + V2 + L)
))

> 0 (since α̂F (L) = 1 − v − V2 − L). By Lemma B.2, point (ii), the equilibrium

purge breadth satisfies κ∗F (L) = 1. Since κ∗F (L) is strictly increasing with L when interior, here

exists Lfull < L such that κ∗F (L) = 1 for all L ≥ Lfull and κ∗F (L) < 1 otherwise.

In case (b), we must have κ∗F (L) < 1 which implies κ∗F (L) < 1 for all L. In this case, arbitrarily

pick Lfull satisfying Lfull > L such that point (i) of Proposition 1 incorporates the full scope of

feasible intensity of violence (i.e., [0, L]).

In what follows, to focus on the most interesting cases, we impose the following two restrictions on

the cost of purging parameters.

Assumption B.1. The cost of purging parameters satisfy:

(1) C0 < β(r − λ1−(v(S,c)+V2(c))
1−(v+V2)

)(W (c)−W (nc)) and

(2) C0 + C1

(
1− (v + V2 + L)

)
< βr(W (c)−W (nc)).

Point (1) of Assumption B.1 is equivalent to KPD(0, 0) > 0. That is, it guarantees that κ∗F (0) > 0.

Point (2) of Assumption B.1 is discussed in the proof of Proposition 1. It guarantees that Lfull < L

so κ∗F (L) = 1 for L sufficiently large. From the onset, let us stress that these restrictions are simply

meant to limit the number of cases to be considered. The reasoning can easily be extended to

incorporate cases when this assumption is relaxed.2

Proof of Proposition 2

Suppose some failures survive (κ∗F (L) ∈ (0, 1)), the purge breadth is κ∗(L) = α∗F (L)κ∗F (L) with

α∗F (L) = 1− (v + κ∗F (L)(V2 + L)). It is defined by the following equation

C0 + C1κ
∗(L) = β(r − µF (κ∗F (L), L))(W2(c)−W2(nc))

The total derivative of the posterior with respect to L is
dµF (κ∗F (L),L)

dL
=

∂κ∗F (L)

∂L
µFκF (κ∗F (L), L) +

µFL(κ∗F (L), L), with
∂κ∗F (L)

∂L
> 0 (proof of Proposition 1), µFκF < 0 (Lemma B.1), and µFL < 0

2For example, if point (1) of Assumption B.1 does not hold, then there exists L0 > 0 such that κ∗F (L) > 0 if and

only if L > L0 and the comparative statics we characterize holds above say threshold L0.
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(Lemma B.3). So
dµF (κ∗F (L),L)

dL
< 0 and by the Implicit Function Theorem, dκ∗(L)/dL > 0.

When all failures are purged (κ∗F (L) = 1), the purge breadth is simply κ∗(L) = 1 − e(1, L) =

1− (v + V2 + L) strictly decreasing with L.

Before proving the remaining two propositions of this section, we prove the following property of

the purge inference when interior.

Lemma B.4. Suppose κ∗F (L) ∈ (0, 1). Then the purge inference is convex in L.

Proof. Recall that κ∗F (L) is the solution to KPD(κF , L) = 0 with KPD(κF , L) defined in Equa-

tion B.3. Simple algebra yields (using µFκF κF < 0, µFLL < 0 and µFκFL < 0 from µF = 1−(v(S,c)+κF (V2(c)+L))
1−(v+κF (V2+L))

,

see also the proof of Lemma C.1 below): ∂2KPD(κF , L)/∂κ2F > 0, ∂2KPD(κF , L)/∂L2 > 0, and

∂2KPD(κF , L)/∂κF∂L > 0. Totally differentiating at κF = κ∗F (L), we obtain (ignoring arguments):

∂2κF
∂L2

∂KPD

∂κF
+
∂κF
∂L

(
∂2KPD

∂κ2F

∂κF
∂L

+ 2
∂2KPD

∂κF∂L

)
+
∂2KPD

∂L2
= 0

Since ∂KPD(κ∗F (L), L)/∂κF < 0 (Lemma B.2), ∂2κF
∂L2 > 0.

Proof of Proposition 3

When some failures survive the purge (κ∗F (L) ∈ (0, 1)), the total derivative of average effort with

respect to violence is (using Equation 5):

de(κ∗F (L), L)

dL
=
∂κ∗F (L)

∂L
(V2 + L) + κ∗F (L) (B.5)

From the proof of Proposition 1,
∂κ∗F (L)

∂L
> 0 so

de(κ∗F (L),L)

dL
> 0. Further given the convexity of κ∗F (L)

(Lemma B.4), effort is also convex in the intensity of violence:
d2e(κ∗F (L),L)

dL2 > 0.

Suppose that there exists a unique solution to KPD(κF , L) = 0 (we provide a precise condition

for this assumption to hold below, see Equation C.11). As L → Lfull, κ∗F (L) → 1. Since
∂κ∗F (L)

∂L

is continuous and increasing in L, so is
de(κ∗F (L),L)

dL
and, given the convexity of effort in L, there

exists a unique Leff ∈ [0, Lfull) such that for all L > Leff ,
de(κ∗F (L),L)

dL
> 1. When there are mul-

tiple solutions to KPD(κF , L) = 0, there exists a discontinuity in the equilibrium purge inference

using Lemma B.2. Then, lim
L↑Lfull

κ∗F (L) < 1. If lim
L↑Lfull

de(κ∗F (L),L)

dL
> 1, then there exists a unique

Leff < Lfull such that the claim holds (by convexity of average effort). If not, denote Leff = Lfull

which is uniquely defined under Assumption B.1.

When all failures are purged (κ∗F (L) = 1), average effort is simply: e(1, L) = v + V2 + L so
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de(κ∗F (L),L)

dL
= 1.

To ease the exposition, we ignore the equilibrium ‘∗’ superscript and arguments whenever possible

in what follows.

Proof of Proposition 4

Point (i). For L < Lfull, the proportion of ideologues in the pool of survivors is:

S(L) =
(1− e)(1− κF )µF + eµS

1− (1− e)κF

=
λ− (1− e)µFκF

1− (1− e)κF
(B.6)

Consider the function F (x) = 1−xµF
1−x , its derivative is F ′(x) = (λ−µF )

(1−x)2 > 0.

We obtain

dS(L)

dL
=λ

d(1− e(κF (L), L))κF (L)

dL
F ′((1− e(κF (L), L))κF (L))− dµF (κF (L), L)

dL

(1− e)κF
1− (1− e)κF

(B.7)

From the proof of Proposition 2, we know that (1− e(κF (L), L))κF (L) = κ(L) and dκ(L)/dL > 0,

and dµF (κF (L),L)
dL

< 0. Hence dS(L)
dL

> 0

For L ≥ Lfull, the proportion of ideologues in the pool of survivors is

S(L) = µS (B.8)

Since µS = λe(κF ,L;τ)
e(κF ,L)

, we obtain µSL < 0 and dS(L)
dL

< 0.

Point (ii). For L < Lfull, the proportion of congruent subordinates in the second period is:

P(L) =(1− e)κF r + (1− e)(1− κF )µF + eµS

=(1− e)κF (r − µF ) + λ (B.9)

Given r = λ > µF , d(1− e)κF/dL > 0, and dµF/dL < 0 so dP(L)
dL

> 0.

For L ∈ [Lfull, L), the proportion of congruent subordinates in the second period is:

P(L) =(1− e)r + eµS (B.10)

Using µS = λv(S,c)+V2(c)+L
v+V2+L

and e = v+ V2 +L, we obtain: P(L) = (1− (v+ V2 +L))r+ λ(v(S, c) +

V2(c) + L) and

dP(L)

dL
= λ− r (B.11)

Under our assumption that λ = r, PL(L) = 0 as claimed.
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C Proofs of ‘Intensity of violence’

Denote B(L) the autocrat’s expected benefit from violence. The next Lemmas characterize the

properties of B(L) ignoring superscript and arguments whenever possible. In what follows, we still

assume that Assumption B.1 holds so Lfull < L.

Lemma C.1. The expected benefit of violence is C∞, strictly increasing, and convex in L for

L ∈ [0, Lfull).

Proof. For L ≤ Lfull, the expected benefit of violence is:

B(L) =e+ β(1− e)
(
κF (rW2(c) + (1− r)W2(nc)) + (1− κF )(µFW2(c) + (1− µF )W2(nc))

)
+ βe

(
µSW2(c) + (1− µS)W2(nc)

)
− C((1− e)κF )

B(L) =e+ β
(
λW2(c) + (1− λ)W2(nc)

)
+ β(1− e)κF (r − µF )(W2(c)−W2(nc))− C((1− e)κF )

(C.1)

Since in the interval [0, Lfull] all functions are C∞, so is B(L).

Making use of the Envelop Theorem as κ∗F is interior, we obtain:

dB(L)

dL
=
de(κ∗F (L), L)

dL
− β(1− e)κF

dµF (κ∗F (L), L)

dL
(W2(c)−W2(nc)) (C.2)

Since
de(κ∗F (L),L)

dL
> 0 (Proposition 3) and

dµF (κ∗F (L),L)

dL
< 0 (proof of Proposition 2), dB(L)/dL > 0.

To prove that the expected benefit of violence is strictly convex, we proceed in three steps. First,

we compute the second (total) derivative of the marginal benefit of violence. Second, we look at

the second (partial) derivatives of effort and autocrat’s posterior with respect to L and κF . The

last step proves the claim.

Step 1. Using Equation C.2, we obtain:

d2B(L)

dL2
=
d2e(κ∗F (L), L)

dL2
− β(1− e)κF

d2µF (κ∗F (L), L)

dL2
(W2(c)−W2(nc))

− βd(1− e)κF
dL

dµF (κ∗F (L), L)

dL
(W2(c)−W2(nc)), (C.3)

with

d2e(κ∗F (L), L)

dL2
=2

∂κ∗F (L)

∂L
+
∂2κ∗F (L)

∂L2
(V2 + L) (C.4)

d2µF (κ∗F (L), L)

dL2
=µFLL + 2

∂κ∗F (L)

∂L
µFκFL +

(
∂κ∗F (L)

∂L

)2

µFκF κF +
∂2κ∗F (L)

∂L2
µFκF (C.5)
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Step 2. Using µF = λ1−e(i)
1−e , we obtain for j ∈ {κ, L}:

µFjj =
λ(1− λ)(1− e(c))(1− e(nc))

(1− e)3
×

[(
ejj(nc)

(1− e(nc))
− ejj(c)

(1− e(c))

)
(1− e) + 2ej

(
ej(nc)

1− e(nc)
− ej(c)

1− e(c)

)]
(C.6)

µFκFL =
λ(1− λ)(1− e(c))(1− e(nc))

(1− e)3
×

[(
eκFL(nc)

(1− e(nc))
− eκFL(c)

(1− e(c))

)
(1− e) + eL

(
eκF (nc)

1− e(nc)
− eκF (c)

1− e(c)

)]

+
λ(1− λ)

(1− e)3

[
eL(eκF (nc)(1− e(c))− eκF (c)(1− e(nc))) + (1− e)(eκF (c)eL(nc)− eL(c)eκF (nc))

]

=
λ(1− λ)(1− e(c))(1− e(nc))

(1− e)3
×

[(
eκFL(nc)

(1− e(nc))
− eκFL(c)

(1− e(c))

)
(1− e) + eL

(
eκF (nc)

1− e(nc)
− eκF (c)

1− e(c)

)]

+
λ(1− λ)

(1− e)3

[
eκF (nc)

(
eL(1− e(c))− eL(c)(1− e)

)
+ eκF (c)

(
eL(nc)(1− e)− eL(1− e(nc))

)]

µFκFL =
λ(1− λ)(1− e(c))(1− e(nc))

(1− e)3
×

[(
eκFL(nc)

(1− e(nc))
− eκFL(c)

(1− e(c))

)
(1− e) + eL

(
eκF (nc)

1− e(nc)
− eκF (c)

1− e(c)

)]

+
λ(1− λ)(1− e(c))(1− e(nc))

(1− e)3

[
((1− λ)eκF (nc) + λeκF (c))

(
eL(nc)

(1− e(nc))
− eL(c)

(1− e(c))

)]
(C.7)

Using e(τ) = v(τ) + κF (V2(τ) + L), we obtain:

eκF κF (τ) =0

eLL(τ) =0

eκFL(τ) =1

This implies that µFLL < 0 (µFκF κF < 0 by Lemma B.1) and µFLκF < 0 (since e(c) > e(nc) and

ej(c) ≥ ej(nc), j ∈ {κF , L}).

Step 3. Plugging all partial derivatives into Equation C.4 and Equation C.5 and given that

κ∗F (L) is convex in L (Lemma B.4), we obtain:
d2e(κ∗F (L),L)

dL2 > 0 and
d2µF (κ∗F (L),L)

dL2 < 0. Given that

d(1−e)κF
dL

> 0 and d(1−e)κF
dL

dµF (κ∗F (L),L)

dL
< 0 (see Proposition 2), Equation C.3 yields d2B(L)

dL2 > 0.

Lemma C.2. The expected benefit of violence is C∞, strictly increasing, and strictly concave in L

for L ∈ [Lfull, L].

Proof. For L ∈ [Lfull, L], the expected benefit of violence is

B(L) =e+ β(1− e)
(
rW2(c) + (1− r)W2(nc)

)
+ βe

(
µSW2(c) + (1− µS)W2(nc)

)
− C(1− e),

(C.8)
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with e(τ) = v(τ) + V (τ) + L, τ ∈ {c, nc}. Taking the derivative, we obtain:

dB(L)

dL
=1 + β(λ− r)(W2(c)−W2(nc)) + C ′(1− e) (C.9)

Since v(S, τ) < 1, τ ∈ {c, nc} and Dc,nc = v(S, c)−max{0, v(S, nc)} < 1, we obtain: dB(L)
dL

> 0.

Further, from Equation C.9,

d2B(L)

dL2
=− C ′′(1− e) < 0 (C.10)

From Proposition 1, Lfull is the unique solution to KPD(1, L) = 0⇔ C0 + C1(1− (v + V2 + L)) =

β(r−µF (1, L))(W2(c)−W2(nc)). The next Lemma establishes a necessary and sufficient condition

such that B(L) is continuous in L.

Lemma C.3. The expected benefit of violence B(L) is continuous if and only if

∂KPD(1, Lfull)

∂κF
≤ 0 (C.11)

Proof. If the condition stated in (C.11) does not hold, it must be that at L = Lfull, there exists two

solutions to KPD(κF , L
full) = 0: κ′F (L) ∈ (0, 1) and κ′′F (L) = 1. Using the proof of Lemma B.2,

we then have that lim
L↑Lfull

κ∗F (L) < 1 = lim
L↓Lfull

κ∗F (L) (recall we select the highest purge inference).

Rearranging Equation C.1, we obtain for L < Lfull:

B(L) = e+ βW2(nc) + βλ(W2(c)−W2(nc)) + β(1− e)κF (r−µF )(W2(c)−W2(nc))−C((1− e)κF )

Rearranging Equation C.8, we obtain for L ≥ Lfull (using µF = λ1−e(c)
1−e and µS = λ e(c)

e
):

B(L) =e+ β(1− e)W2(nc) + β(1− e)r(W2(c)−W2(nc)) + βeW2(nc) + βeµS(W2(c)−W2(nc))− C(1− e)

=e+ βW2(nc) + β(1− e)r(W2(c)−W2(nc)) + βλe(c)(W2(c)−W2(nc))− C(1− e)

=e+ βW2(nc) + β(1− e)r(W2(c)−W2(nc)) + βλ(W2(c)−W2(nc))

− βλ(1− e(c))(W2(c)−W2(nc))− C(1− e)

=e+ βW2(nc) + βλ(W2(c)−W2(nc)) + β(1− e)(r − µF )(W2(c)−W2(nc))− C((1− e))

For any interior solution for the purge inference κ∗F (L), using the quadratic cost of purging, we

obtain B(L) = e + βW2(nc) + βλ(W2(c) − W2(nc)) + C1

2
((1 − e)κ∗F (L))2. Since at L = Lfull,

both κ′F (L) ∈ (0, 1) and κ′′F (L) = 1 are solution of KPD(κF , L) = 0 and e(κ′F (Lfull), Lfull) <
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e(κ′′F (Lfull), Lfull), we obtain (slightly abusing notation) that B(L)|κF=κ′F (L) < B(L)|κF=κ′′F (L). Con-

sequently, lim
L↑Lfull

B(L) < lim
L↓Lfull

B(L) and B(L) is not continuous.

In turn, suppose the condition stated in (C.11) holds. Then κ∗F (Lfull) = 1 is the unique solu-

tion to KPD(κF , L
full) = 0 and κ∗F (L) is continuous in L for all L. As a result, after rearrang-

ing Equation C.1 and Equation C.8 as well as using e(1, Lfull)µS(1, Lfull) = λe(1, Lfull; c) and

(1− e(1, Lfull))µF (1, Lfull) = λ(1− e(1, Lfull; c)), we obtain lim
L↑Lfull

B(L) = e(1, Lfull) + βW2(nc) +

β
(
(1 − e(1, Lfull))r + λe(1, Lfull; c)

)
(W2(c) −W2(nc)) − C(1 − e(1, Lfull)) = lim

L↓Lfull
B(L). Hence

B(L) is continuous for all L.

In what follows, we assume that the condition stated in (C.11) holds. Observe that since the

properties of B(L) (Lemmas C.1 and C.2) do not depend on the continuity of B(L), the analysis

below remains valid. To find the equilibrium intensity of violence when Equation C.11 does not hold,

in addition to the analysis below, it is necessary to consider cases when the marginal cost interacts

the marginal benefit before and after the discontinuity at L = Lfull. Consequently, assuming that

B(L) is continuous simply limits the number of cases to be analyzed.3 We nonetheless establishes

existence and (generically) uniqueness of an equilibrium when the condition stated in (C.11) does

not hold and B(L) is not continuous in Remark C.1 below.

Lemma C.4. The marginal benefit of violence satisfies:

lim
L↑Lfull

dB(L)

dL
>
dB(L1)

dL
for all L1 ∈ [Lfull, L]

Proof. The proof of a discontinuity in the marginal benefit at L = Lfull proceeds in three steps.

First, we show that −κ(L)dµ
F

dL
> λ − µF as L ↑ Lfull. Second, we show that dB(L)

dL
= 1 + β(λ −

µF )(W2(c)−W2(nc)) as L ↓ Lfull, Finally, we prove the claim.

Step 1. Using the definition of µF , −(1− e)κF (L)dµ
F

dL
> −κF (L)(1− e)µFL for all L ∈ [0, Lfull], we

obtain

−(1− e)κF (L)
dµF

dL
>κF (L)

(
(1− e)λeL(c)(1− e)− eL(1− e(c))

(1− e)2

)
=κF (L)(λeL(c)− µF eL)

As eL(τ) = κF (L) (Equation 5) and κF (L)
L↑Lfull−−−−→ 1, we obtain that κF (L)(λeL(c)−µF eL)

L↑Lfull−−−−→

λ− µF .

3Further, when B(L) is not continuous, there exists additional conditions such that small changes in parameter

values can lead to discontinuous changes in the equilibrium intensity of violence, purge breadth, and effort. It would

reinforce the result described in Remark 1.
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Step 2. As L ↓ Lfull, C ′(1− e) = β(r− µF )(W2(c)−W2(nc)). Hence, we can rewrite Equation C.9

as L ↓ Lfull as (slightly abusing notation by using equalities):

dB(L)

dL
=1 + β(λ− r(W2(c)−W2(nc)) + β(r − µF )(W2(c)−W2(nc))

=1 + β(λ− µF )(W2(c)−W2(nc))

Step 3. From Proposition 3, lim
L↑Lfull

de
dL
> 1. Using Equation C.2 and step 2, as L ↑ Lfull

dB(L)

dL
=
de

dL
− β(1− e)dµ

F

dL
Dc,nc

> 1 + β(r − µF )Dc,nc,

which proves limL↑Lfull
dB(L)
dL

> limL↓Lfull
dB(L)
dL

.

Since B(L) is strictly concave for L ∈ (Lfull, Lind], this directly implies that limL↑Lfull
dB(L)
dL

> dB(L1)
dL

for all L1 ∈ [Lfull, L].

The next Lemma establishes existence of an equilibrium intensity of violence when the condition

stated in C.11) holds.

Lemma C.5. There exists an equilibrium intensity of violence.

Proof. Existence follows from the fact that B(L) is continuous (Lemma C.3) and the maximization

problem is over a compact set [0, L].

We know look at some properties of the equilibrium intensity of violence (Remarks 1 and 2). We

first state a more formal version of Remark 1 in the following Lemma.

Lemma C.6. There exists a non-measure zero set of parameter values Pd such that if (λ, r, v(S, c),

v(S, nc), C0, ζ0) ∈ Pd, there exists Cd
1 and ζd1 satisfying lim

C1↑Cd1
L∗ < lim

C1↓Cd1
L∗ and lim

ζ1↑ζd1
L∗ < lim

ζ1↓ζd1
L∗.

Proof. The procedure is as such. Step 1: Pick (λ′, r′, v(S, c)′, v(S, nc)′, C ′0, ζ
′
0) ∈ [0, 1]3×[0, v(S, c)]×

R2
+. Step 2: Check whether there exists Cd

1 satisfying point (2) of Assumption B.1 and ζd1 ∈ R+ such

that (i) there exists a local maximum of B(L)− ζ(L) in [0, Lfull], which we denote L1 and (ii) L1

satisfies B(L1) = B(Lfull) (notice that Cd
1 and ζd1 are unique if they exist). Step 3: If conditions (i)

and (ii) hold then (λ′, r′, v(S, c)′, v(S, nc)′, C ′0, ζ
′
0) ∈ Pd, if not (λ′, r′, v(S, c)′, v(S, nc)′, C ′0, ζ

′
0) /∈ Pd.

Repeat the steps for all possible (λ, r, v(S, c), v(S, nc), C0, ζ0). Pd is non-empty as we can always

pick C1 such that a discriminate purge with all failures purged is possible and ζ0 and ζ1 such that

conditions (i) and (ii) hold by convexity of the marginal benefit (Lemma C.1). Pd is not measure
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0 as we can always perturb the parameters slightly and adjust ζ0 and ζ1. Due to the convexity of

the marginal benefit of violence and conditions (i) and (ii), the claim holds directly.4

Proof of Remark 1

Follows directly from Lemma C.6.

For our next result, we characterize a condition such that the equilibrium intensity of violence is

(weakly) lower than the threshold Lfull.

Lemma C.7. If at L = Lfull, ζ0 + ζ1L >
de(κ∗F (L),L)

dL
−β(1− e)κF

dµF (κ∗F (L),L)

dL
(W2(c)−W2(nc)), then

L∗ < Lfull.

Proof. Suppose the claim holds. Recall that lim
L↑Lfull

B(L) =
de(κ∗F (L),L)

dL
−β(1−e)κF

dµF (κ∗F (L),L)

dL
(W2(c)−

W2(nc))
∣∣∣
L=Lfull

(proof of Lemma C.4). By Lemma C.4, it must then be that ζ0+ζ1L > B(L) for all

L ≥ Lfull. Hence, L∗ < Lfull. Notice that the inequality is well-defined since Lfull is the solution

of KPD(1, L) = 0 and does not depend on ζ0 and ζ1, see Equation B.3.

Proof of Remark 2

The claim follows directly from Lemma C.7 which establishes an upper bound on the possible value

of ζ0 and ζ1 such that L∗ ≥ Lfull and the purge is discriminate.

Note that the claim only establishes a necessary condition, but not a sufficient one. To this sup-

pose that lim
L↓Lfull

dB(L)
dL

< ζ0 + ζ1L
full ≤ lim

L↑Lfull
dB(L)
dL

, Given that B(L) is convex over the interval

[0, Lfull), Lfull is not necessarily the unique argmax of the autocrat’s problem. If the equation

ζ0 + ζ1L = dB(L)
dL

has no solution or a single solution (which must be a local minimum) in the

interval [0, Lfull), then the optimal choice satisfies L∗ = Lfull. However, if ζ0 + ζ1L = dB(L)
dL

admits

two solutions, then the smallest solution L1 is a local maximum, whereas the highest solution L2 is

a local minimum. The autocrat then comparesB(L1) andB(Lfull) and she may choose L∗ = L1.

For completeness, we discuss the equilibrium intensity of violence when the benefit of violence is

not continuous.

4It is important to observe that for all (λ, r, v(S, c), v(S, nc), C0, ζ0) ∈ Pd, the condition described in the text of

the proposition is knife-edge. However, the properties of Pd indicate that this knife edge condition can arise for a

non-trivial set of parameter values.
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Remark C.1. Suppose the condition stated in C.11 does not hold and B(L) exhibits a discontinuity

at L = Lfull. There exists a generically unique equilibrium intensity of violence.

Proof. We amend the proof of Remark 2 to take into account the discontinuity at L = Lfull (Lemma

C.3). First, note that B(L) is always bounded so a maximum exists. Suppose there exists L′ such

that ζ0 + ζ1L
′ = dB(L′)

dL
and L′ < Lfull. If there exists L′′ > Lfull such that ζ0 + ζ1L

′′ = dB(L′′)
dL

, then

the equilibrium intensity of violence satisfies L∗ = arg max
L∈{L′,L′′}

B(L) and is generically unique. If

there is no such L′′, then the equilibrium intensity of violence satisfies L∗ = arg max
L∈{L′,Lfull}

B(L)

and is generically unique.

D Proofs of ‘Another form of purges’

In this Appendix, we consider semi-indiscriminate purge which (recall) we define as mass purges

with some successful agents purged (κ∗S(L) > 0). Using the proof of Lemma 1, κS > 0 only if κF = 1.

This yields Equation 7 from Equation 5. The next preliminary lemmas discuss some properties

of the equation determining the autocrat’s marginal benefit of purging a greater proportion of

successful agent: WS = [r − µS](W2(c) −W2(nc)) (Equation 8). As before, this is equivalent to

considering the comparative statics of the posterior with respect to the purge inference κS and the

intensity of violence L.

To do so, we denote ei(κS, L; τ) = (1− κS)(v(S, τ) + V2(τ) + L) a type-τ agent’s effort in a semi-

indiscriminate purge. Average effort is e(κS, L) = (1 − κS)(v + V2 + L). The autocrat’s posterior

(slightly abusing notation) is denoted µS(κS, L).

Lemma D.1. In a semi-indiscriminate purge, the autocrat’s posterior after success is:

(i) constant in κS;

(ii) strictly decreasing in L.

Proof. Point (i). By Bayes’ rule, the autocrat’s posterior after success is: µS(κS, L) = λ e
i(κS ,L;c)
e(κS ,L)

.

By a similar reasoning as in the proof of Lemma B.1, we obtain:

∂µS(κS, L)

∂κS
=

λ

e(κS, L)2

[
ei(κS, L; c)

∂κS
(λei(κS, L; c) + (1− λ)ei(κS, L;nc))

− ei(κS, L; c)

(
λ
∂ei(κS, L; c)

∂κS
+ (1− λ)

∂ei(κS, L;nc)

∂κS

)]
=
λ(1− λ)ei(κS, L; c)ei(κS, L;nc)

e(κS, L)2

[
∂ei(κS ,L;c)

∂κS

ei(κS, L; c)
−

∂ei(κS ,L;nc)
∂κS

ei(κS, L;nc)

]
(D.1)
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Using Equation 5, we obtain:
∂ei(κS,L;τ)

∂κS

ei(κS ,L;τ)
= 1

1−κS
, τ ∈ {c, nc}. So ∂µS(κS ,L)

∂κS
= 0 as claimed.

Point (ii). Regarding the comparative statics with respect to L, a similar reasoning as above yields:

∂µS(κS, L)

∂L
=
λ(1− λ)ei(κS, L; c)ei(κS, L;nc)

e(κS, L)2

[
∂ei(κS ,L;c)

∂L

ei(κS, L; c)
−

∂ei(κS ,L;nc)
∂L

ei(κS, L;nc)

]
(D.2)

Using agents’ efforts (Equation 5), ∂ei(κS ,L;c)
∂L

= ∂ei(κS ,L;nc)
∂L

. Since ei(κS, L;nc) < ei(κS, L; c),

∂µF (κF ,L)
∂L

< 0.

We now establish some conditions on the cost of purging so that the purge is semi-indiscriminate.

Recall that α̂(L) = 1 − v − V2 − L corresponds to the proportion of failures when all failures are

purged.

Lemma D.2. The purge is semi-indiscriminate if and only if C0+C1×α̂F (L) < β(r−µS(0, L))(W2(c)−

W2(nc)).

Proof. Consider the function:

KSD(κS, L) = β(r− µS(κS, L))(W2(c)−W2(nc))−
(
C0 +C1

(
1− (1− κS)2(v+ V2 +L))

))
. (D.3)

As in the proof of Lemma B.2, the first term corresponds to the marginal benefit of purging an

additional agent in the success pool and the second term to the associated marginal benefit. Hence,

the highest value of κS such that KSD(κS, L) = 0 (if it exists) is an equilibrium point.

Using Lemma D.1, KSD(κS, L) is decreasing and convex in κS. Under the condition of the

lemma, KSD(0, L) > 0. Further, given our assumption that βr(W2(c) − W2(nc)) < C0 + C1,

lim
κS→1

KSD(κS, L) < 0. This implies that there exists a unique interior solution to KSD(κS, L) = 0

and thus a unique equilibrium purge incidence κ∗S(L) > 0.

Proof of Proposition 5

Point (i). It can be checked that as in the proof of Proposition 1 highlights, if C0 + C1α̂(L) ≥

βr(W2(c)−W2(nc), then κ∗F (L) < 1 for all L. In this case, denote Lind = L. Suppose in what fol-

lows that C0 +C1α̂(L) < βr(W2(c)−W2(nc) so that there exists Lfull < L such that for L > Lfull,

the purge is discriminate or semi-indiscriminate.

Recall that KSD(κS, L) = β(r−µS(κS, L))(W2(c)−W2(nc))−
(
C0 +C1

(
1− (1−κS)2(v+V2 +L)

))
and KPD(κF , L) = β(r−µF (κF , L))(W2(c)−W2(nc))−

(
C0+C1κF

(
1−(v+κF (V2+L))

))
. Observe

that at L = Lfull, KSD(0, Lfull) < 0 (since µF (·) < µS(·) and KPD(1, Lfull) = 0 > KSD(0, Lfull).
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We need to consider two cases.

Case (a) KSD(0, L) ≤ 0. In this case, it is never profitable for the autocrat to purge from the

success pool. In this case, pick an arbitrary Lind satisfying Lind > L.

Case (b) KSD(0, L) > 0. By Lemma D.2, it must then be that κ∗S(L) > 0. By Lemma D.1, µS(κS, L)

is strictly increasing with L so by the Implicit Function Theorem (recall that ∂KSD(κ∗S(L), L)/∂κS <

0 from the proof of Lemma D.2), any interior equilibrium incidence κ∗S(L) is continuously and

strictly increasing in L. In case (b), we thus obtain that there exists a unique Lind ∈ (Lfull, L) such

that κ∗S(L) > 0 for all L > Lind and κ∗S(L) = 0 otherwise.

Point (ii). Suppose KSD(0, L) > 0 (otherwise, the purge is never semi-indiscriminate). The purge

breadth is then κ∗(L) = 1× α∗F (L) + κ∗S(L)× α∗S(L) characterized by

C0 + C1κ
∗(L) = β(r − µS(κ∗S(L), L))Dc,nc

The total derivative of the posterior with respect to L is
dµS(κ∗S(L),L)

dL
=

∂κ∗S(L)

∂L
µSκS(κ∗S(L), L) +

µSL(κ∗S(L), L), with
∂κ∗S(L)

∂L
> 0 (see point (i)), µSκS = 0 (Lemma D.1, point (i)), and µSL < 0 (Lemma

D.2, point (ii)). So
dµS(κ∗S(L),L)

dL
< 0 and by the Implicit Function Theorem, dκ∗(L)/dL > 0.

Proof of Proposition 6

We first prove the result regarding effort. Assume that Lind < L and L > Lind so that κ∗S(L) ∈ (0, 1).

The total derivative of average effort with respect to violence is (using Equation 5):

de(κ∗S(L), L)

dL
=
∂(1− κ∗S(L))

∂L
(v + V2 + L) + (1− κ∗S(L)) (D.4)

From the proof of Proposition 1,
∂κ∗S(L)

∂L
> 0 so

de(κ∗S(L),L)

dL
< 1. It remains to show that

de(κ∗S(L),L)

dL
> 0.

To see this, recall that κ∗S(L) is the solution to

C0 + C1 − C1(1− κS)2(v + V2 + L) = β

(
r − λv(S, c) + V2(c) + L

v + V2 + L

)
(W2(c)−W2(nc)) (D.5)

We thus obtain:

∂(1− κ∗S(L))

∂L
= − βλ(1− λ)

2C1(1− κ∗S(L))

(v(S, c)− v(S, nc)) + (V2(c)− V2(nc))
(v + V2 + L)3

(W2(c)−W2(nc))−
(1− κS)

2(v + V2 + L)

Plugging this into Equation D.4, we obtain

de(κ∗S(L), L)

dL
=− βλ(1− λ)

2C1(1− κ∗S(L))

(v(S, c)− v(S, nc)) + (V2(c)− V2(nc))
(v + V2 + L)2

(W2(c)−W2(nc)) +
1− κ∗S(L)

2
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So after rearranging,

de(κ∗S(L), L)

dL
∝C1(1− κ∗S(L))2(v + V2 + L)

− βλ(1− λ)
(v(S, c)− v(S, nc)) + (V2(c)− V2(nc))

(v + V2 + L)
(W2(c)−W2(nc))

Denote H := C1(1 − κ∗S(L))2(v + V2 + L) − βλ(1 − λ) (v(S,c)−v(S,nc))+(V2(c)−V2(nc))
(v+V2+L)

(W2(c) −W2(nc)).

Using Equation D.5 and our assumption that C0 + C1 > βr(W2(c)−W2(nc)), we obtain:

H =C0 + C1 − β
(
r − λv(S, c) + V2(c) + L

v + V2 + L

)
(W2(c)−W2(nc))

− βλ(1− λ)
(v(S, c)− v(S, nc)) + (V2(c)− V2(nc))

(v + V2 + L)
(W2(c)−W2(nc))

>βr(W2(c)−W2(nc))− β
(
r − λv(S, c) + V2(c) + L

v + V2 + L

)
(W2(c)−W2(nc))

− βλ(1− λ)
(v(S, c)− v(S, nc)) + (V2(c)− V2(nc))

(v + V2 + L)
(W2(c)−W2(nc))

=
βλ

v + V2 + L
(W2(c)−W2(nc))

(
v(S, c) + V2(c) + L− (1− λ)

(
(v(S, c)− v(S, nc)) + (V2(c)− V2(nc))

))
=βλ(W2(c)−W2(nc)) > 0

We now turn to the selection of subordinates. The proof for surviving agents is exactly the same

as in the baseline model (see the proof of Proposition 4 and Equation B.8). We thus focus on the

proportion of congruent subordinates in the second period: P(L).

First notice that using the proof of Proposition 4, dP(L)/dL > 0 for all L < Lfull. Further, using

Equation B.11, for all L ∈ [Lfull, Lind), dP(L)/dL < 0 since r > λ. If Lind > L, then we have

proved the claim. Suppose therefore that Lind < L and L ≥ Lind, the proportion of congruent

types in the second period is:

P(L) =((1− e) + eκS)r + e(1− κS)µS

=r − e(1− κS)(r − µS) (D.6)
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Recall that κ∗S is the solution to C0 +C1(1− e(1−κS)) = β(r−µS)(W2(c)−W2(nc)) so de(1−κS)
dL

=

β
C1

dµS

dL
(W2(c)−W2(nc)). Hence, we obtain:

dP(L)

dL
=− de(1− κS)

dL
(r − µS) +

dµS

dL
e(1− κS)

=− dµS

dL

β

C1

(r − µS)(W2(c)−W2(nc)) +
dµS

dL
e(1− κS)

=
dµS

dL

1

C1

(
C1e(1− κS)− β(r − µS)(W2(c)−W2(nc))

)
=
dµS

dL

(
C0 + C1 − 2β(r − µS)(W2(c)−W2(nc))

)
Recall that by assumption C0+C1 > βr(W2(c)−W2(nc)) so C0+C1−2β(r−µS)(W2(c)−W2(nc)) >

β(2µS − r)(W2(c) −W2(nc)). Since λ < µS, C0 + C1 − 2β(r − µS)(W2(c) −W2(nc)) > 0 for all

r ∈ (λ, 2λ]. Given dµS

dL
< 0 (Lemma B.3), we obtain dP(L)

dL
< 0 as claimed.

To prove the last result of the section, we assume that Lind < L. Further, a similar reasoning as

above yields that when L ≥ Lind, the expected benefit of violence is:

B(L) =e+ β(1− e)
(
rW2(c) + (1− r)W2(nc)

)
+ βe

(
κS(rW2(c) + (1− r)W2(nc)) + (1− κS)(µSW2(c) + (1− µS)W2(nc))

)
− C((1− e) + κSe)

B(L) =e+W2(nc) + βµS(W2(c)−W2(nc)) + β((1− e) + κSe))(r − µS)(W2(c)−W2(nc))− C((1− e) + eκS)

(D.7)

Taking the derivative and using the Envelop Theorem, we obtain:

dB(L)

dL
=
de

dL
+ β

dµS

dL
e(1− κS)(W2(c)−W2(nc)) (D.8)

Lemma D.3. The marginal benefit of violence satisfies:

dB(L1)

dL
>
dB(L2)

dL
for all L1 ∈ (Lfull, Lind] and L2 ∈ (Lind, L]

Proof. By Equation C.9, dB(L1)
dL

> 1 for all ∈ (Lfull, Lind]. By Equation D.8, dB(L2)
dL

< 1 for all

L2 > Lind since de(L)/dL < 1 (Proposition 3) and the other term is negative.

Lemma D.4. Assume Lind < L. If C1 ≤ 1
2(1−λ)(v(S,c)−v(S,nc)+V2(c)−V2(nc)) the marginal benefit of

violence is strictly positive for L > Lind.

Proof. From the proof of Proposition 3, recall that

de

dL
>
βλ(W2(c)−W2(nc))

2C1e
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Using Equation D.8 and µSκF = 0, this implies that

dB(L)

dL
>
βλ(W2(c)−W2(nc))

2C1e
+ βµSL(W2(c)−W2(nc))e(1− κS)

=
βλ(W2(c)−W2(nc))

C1e

(1

2
− C1(1− λ)(v(S, c)− v(S, nc) + V2(c)− V2(nc))(1− κS)3

)
The second line uses: µSL = −λ(1−λ) (v(S,c)−v(S,nc))+(V2(c)−V2(nc))

(v+V2+L)2
and e = (1−κS)(v+V2 +L). Since

κ∗S(L) ≥ 0 for all L ≥ Lind, if C1 ≤ 1
2(1−λ)(v(S,c)−v(S,nc)+V2(c)−V2(nc)) , then dB(L)/dL > 0.

Lemma D.5. If at L = Lind, ζ0+ζ1L < 1− ∂κ∗S(L)

∂L
(v+V2+L)+ ∂µS(0,L)

∂L
β(v+V2+L)(W2(c)−W2(nc)),

then L∗ > Lind.

Proof. Suppose at L = Lind, ζ0 + ζ1L < max
L∈(Lind,L]

dB(L)
dL

. The equilibrium intensity is L = Lind if the

equation ζ0 + ζ1L = dB(L)
dL

, with dB(L)
dL

defined by Equation D.8, has no solution. The equilibrium

intensity is the solution to ζ0 + ζ1L = dB(L)
dL

if it is unique. It is either the smallest solution to

ζ0 + ζ1L = dB(L)
dL

or L = L if there are multiple solutions.

To complete the proof, recall that κ∗S(Lind) = 0, e(1, Lind) = v + V2 + L (Equation 5), and de
dL

=

(1−κ∗S(L))− ∂κ∗S(L)

∂L
(v+V2 +L). Hence, lim

L↓Lind
dB(L)
dL

= 1− ∂κ∗S(L)

∂L
(v+V2 +L)+β dµ

S

dL
(v+V2 +L)Dc,nc

so the condition in the Lemma is a special case of the more general condition in the previous

paragraph and L∗ > Lind.

Proof of Remark 3

We provide sufficient (and some necessary) conditions for a purge to be semi-discriminate.

Denote r := µS(0, L). Recall that µS(·) is decreasing with L (Lemma B.3)and constant in κS.

If r ≤ r, then the marginal benefit of purging a successful agent is negative. Using the proof

of Proposition 5, Lind > L for all C0, C1 so a purge is never semi-indiscriminate. So r > r is a

necessary condition. This is condition 1.

Supposing condition 1. holds, define C0(r) = β[r − µS(0, L)](W2(c) − W2(nc)). If C0 ≥ C0(r)

then for all C1 > 0, the purge cannot be semi-indiscriminate as the marginal cost is always greater

than the marginal benefit. When C0 < C0(r), define Č1(r, C0) such that at L = L, KSD(0, L) =

β[r−µS(0, L)](W2(c)−W2(nc))−
(
C0 +C1(1− e(0, L))

)
= 0. Similarly, if C1 ≥ Č1(r, C0), a purge

can never be semi-indiscriminate. If dB(L)/dL > 0 for all L ≤ Lind at C1 = Č1(r, C0), then denote

C1(r, C0) := Č1(ri, c0). If not, denote C1(r, C0), the smallest C1 such that for all C1 < C1(r, C0),

the marginal benefit satisfies dB(L)/dL > 0 for all L ≥ Lind (such C1 exists by Lemma D.4). This
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is condition 2.5

Finally define ζ0(r) := dB(Lind)
dL

(condition 2 ensures dB(L)
dL

> 0 over this range). And for all

ζ0 ≤ ζ0(r), denote ζ1(r, ζ0) :=
dB(L)
dL
−ζ0

L
at L = Lind. This guarantees that for all ζ0 < ζ0(r) and

ζ1 < ζ1(r, ζ0), the condition described in the text of Lemma D.5 holds and the purge is semi-

discriminate. This is condition 3.

E Proofs of ‘Extensions’

E.1 Endogenous reward

As explained in the text, the autocrat can supplement agents’ second-period benefit with R2 at

marginal cost χ′(R2) = χ0 + χ1R2 with χ0 = ζ0 to simplify the analysis. In all this subsection, we

denote equilibrium value by ·̂. The previous analysis corresponds to the case when R2 is constrained

to be 0. We also amend the notation of the baseline model and use L∗(0) to denote the equilibrium

intensity of violence characterized in Remarks 2 and 3 as well as Lemmas C.7 and D.5. We do not

make restrictions on r in what follows (i.e., r can be strictly greater than λ as in Section ).

In the setting with endogenous reward R2, agents’ efforts become:

ei1(τ) =

v(S, τ) + κF (V2(τ) + L+R2) if κS = 0

(1− κS)(v(S, τ) + V2(τ) + L+R2) if κS > 0

(E.1)

It is useful to denote T = R2 + L and T = 1− v(S, c)− V2(c). We can rewrite effort as:

(i) ei1(κF , T ; τ) = v(S, τ) + κF (V2(τ) + T ) in a discriminate purge;

(ii) ei(κS, T ; τ) = (1− κS)(v(S, τ) + V2(τ) + T ) in a semi-indiscriminate purge.

On the agents’ side, the problems in the constrained (R2 = 0) and unconstrained (R2 endogenous)

cases are isomorphic. The only difference is that L is replaced by T = R2 + L. Hence, all the

comparative statics above hold in this setting replacing L by T . In particular, we recover the

following results.

(i) There exist T full = Lfull and T ind = Lind, unique if the threshold is strictly below T , such

that some failures survive the purge if and only if T ≤ T full, all failures are purged if and only if

T ∈ (T full, T ind], and some successful agents are purged otherwise.

(ii) The expected benefit of T—denoted B(T )—is strictly increasing in T for T < T ind, strictly

5Notice that we assume that C0 + C1 > βrDc,nc, the conditions stated in Assumption B.1 (especially (2)) and

(C.11) hold for all C1 ≤ C1(·). Otherwise, the condition can be appropriately rearranged.
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convex for T ≤ T full and strictly concave for T ∈ [T full, T ind).

We further assume that the conditions stated in Assumption B.1 hold as well as a modified version

(replacing Lfull by T full) of Equation C.11. Thus, T full < T and B(T ) is continuous (as before

this last assumption only simplifies the analysis). Further, an appropriately modified Lemma C.4

(with T replacing L) holds.

The autocrat’s problem can then be conceived into steps: 1) for all T , find L̂(T ) and R̂2(T ) which

minimizes the cost of producing T and 2) Find the optimal T given step 1. Regarding step 1, the

autocrat’s cost of producing T is thus:

min
L,R∈R2

+

ζ(L) + χ(T ) such that L+R = T

Ignoring the non-negativity constraint, the solution to the minimization problem is:

L̂(T ) =
χ0 − ζ0 + χ1

χ1 + ζ1
T =

χ1

χ1 + ζ1
T

R̂2(T ) =
ζ0 − χ0 + ζ1
χ1 + ζ1

T =
ζ1

χ1 + ζ1
T

Hence, under our assumption that ζ0 = χ0, the non-negativity constraint does not bind.

Denote now T (T ) := ζ(L̂(T )) + χ(R̂2(T )). Observe that T (T ) is strictly increasing and convex,

T (T ) < ζ(T ) for all T . Further T (T ) satisfies:

T ′(T ) = ζ0 + ζ1
χ1

χ1 + ζ1
T = ζ ′(L̂(T )) (E.2)

We can now prove Proposition 7.

Proof of Proposition 7

As a preliminary, we establish that T̂ ≥ L∗(0).

Suppose first that L∗(0) /∈ {Lfull, Lind, 1 − v(S; c) − V2(c)}. Then it must be that ζ ′(L∗(0)) =

B′(L∗(0)). Given T ′(L∗(0)) = ζ ′(L̂(L∗(0)) < ζ ′(L∗(0)), we necessarily have T ′(L∗(0)) < B′(L∗(0)).

Given L∗(0) /∈ {Lfull, Lind, 1 − v(S; c) − V2(c)}, there exists η > 0 such that T ′(L∗(0) + η) <

B′(L∗(0) + η) which implies T̂ > L∗(0).

If L∗(0) = Lfull, then there are two cases to consider: (a) lim
T↓T full

B′(T ) ≤ ζ ′(L̂(T full)) then T̂ =

T full = Lfull and (b) lim
T↓T full

B′(T ) > ζ ′(L̂(T full)) then T̂ > L∗(0). A similar reasoning holds for

L∗(0) = Lind. If L∗(0) = 1 − v(S; c) − V2(c), given the lower marginal cost of producing T̂ , we
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necessarily have T̂ = L∗(0) then.

Using this result, we can now prove points (i)-(iii).

Point (i). Purge inference is weakly increasing in L (proof of Proposition 1) in the baseline model.

Hence, it is weakly increasing in T . Noting that since the agents’ problem is isomorphic, Lemma

B.2 holds in this extension so the purge inference is the same in both settings whenever T = L (i.e.,

κ̂ω(L) = κ∗ω(L), ω ∈ {F, S}). Since T̂ ≥ L∗(0) we have: κ̂F (T̂ ) ≥ κ∗F (L∗(0)) and κ̂S(T̂ ) ≥ κ∗S(L∗(0))

with equality only if L∗(0), T̂ ∈ {Lfull, Lind, 1− v(S; c)− V2(c)}2.

Point (ii). By a similar reasoning as above, whenever T = L, the purge breadth is the same in the

extension as in the baseline model (i.e., κ̂(L) = κ∗(L)). The purge breadth is strictly increasing

for L ∈ [0, Lfull] and strictly decreasing for L ∈ [Lfull, Lind]. Suppose L∗(0), T̂ ∈ (0, Lfull)2.6 Since

T̂ > L∗(0) by the reasoning above, κ∗(L∗(0)) < κ̂(T̂ ) then. Suppose L∗(0), T̂ ∈ (Lfull, Lind)2. Since

T̂ > L∗(0) by the reasoning above, κ∗(L∗(0)) > κ̂(T̂ ) then.

Point (iii). Suppose T̂ < T full and so is L∗(0). We then have: B′(T̂ ) = T ′(T̂ ) = ζ ′(L̂(T̂ )) and

B′(L∗(0)) = ζ ′(L∗(0)). Hence, L̂(T̂ ) = (ζ ′)−1(B′(T̂ )) and L∗(0) = (ζ ′)−1(B′(L∗(0))). Since B′(·)

is increasing (Lemma C.1) and T̂ > L∗(0) in that range (see above), L̂(T̂ ) > L∗(0). Suppose

T̂ = L∗(0) = Lfull. Then L̂(T̂ ) = ξ1
ξ1+ζ1

T̂ < L∗(0) (the result holds for other parameter values).

Hence, the equilibrium intensity of violence can be greater or lower.

E.2 Declining replacement pool

Recall that the purge breadth is κ = αFκF + αSκS. Suppose that the replacement pool is linearly

decreasing in the purge breadth: r(κ) = r − r1κ. In a partially discriminate purge, the autocrat

then maximizes with respect to κF :(∫ κF (1−e1)

0

r(z)dz − µFκF (1− e1)
)

(W2(c)−W2(nc))

Rearranging, this is equivalent to

κF (1− e1)(r − µF )(W2(c)−W2(nc))− r1(W2(c)−W2(nc))
((1− e1)κF )2

2

The autocrat’s problem is then as in the baseline model with r = r, C0 = 0 and C1 = r1(W2(c)−

W2(nc)). A similar mapping exists for a semi-indiscriminate purge. Hence, we can apply the same

reasoning as in Appendices A-D and show that all our results hold in this setting.

6Observe that if L∗(0) ∈ (0, Lfull), we can always choose χ1 large enough so that T̂ ∈ (0, Lfull).
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E.3 Autocrat’s survival

In this extension, we suppose that the autocrat cares about staying in power and gets a payoff of

1 if so. The probability the autocrat survives is:

P (survives) = γe1 + (1− γ)
(
(1− ε) + ε(1− e1)

)
× β

(
1− P(L)

)
, (E.3)

with P(L) is the proportion of congruent types among second period subordinate (see the proof

of Proposition 4). Observe that ε measures the complementarity between first-period performance

and the proportion of congruent surbordinates. Throughout, we do not make assumptions on the

quality of the replacement pool r (i.e., r ≤ λ).

Our first Lemma reproduces Lemmas B.2 and D.2 in this framework. To do so, define P̂(L) :=

α̂F (L)r + λ(v(S, c) + V2(c) + L) (recall α̂F (L) = 1 − v − V2 − L) and µ̂F (L) = λ1−v(S,c)−V2(c)−L
α̂F (L)

.

Recall that µS(κS, L) := λv(S,c)+V2(c)+L
v+V2+L

, we obtain:

Lemma E.1. Further, there exists εκ(L) > 0 such that if ε ≤ εκ(L), such that the equilibrium purge

incidences κ∗F (L), κ∗S(L) satisfy (i) κ∗F (L) ∈ [0, 1) if and only if C0 +C1 × α̂F (L) > −(1− γ)
(
(1−

ε) + α̂F (L)ε
)
(r − µ̂F (L))β′

(
1− P̂(L)

)
;

(ii) κ∗S(L) ∈ (0, 1) if and only if C0 +C1× α̂F (L) < −(1−γ)
(
(1−ε)+ α̂F (L)ε

)
(r−µS(κS, L))β′

(
1−

P̂(L)
)
;

(iii) κ∗F (L) = 1 and κ∗S(L) = 0 otherwise

Proof. From Equation B.9, if κF ∈ (0, 1), P(L) = (1 − e1)κF (r − µF ) + λ (ignoring arguments

whenever possible), with e1 = v + κF (V2 + L) since the agents’ problem is unchanged. Define

SPD(κF , L) = −(1− γ)
(
(1− ε) + ε(1− e1)

)
(r − µF )β′

(
1− P(L)

)
− C0 − C1κF (1− e1) (E.4)

If the purge is partially discriminate, κ∗F (L) is defined as a solution to SPD(κF , L) = 0 since

the autocrat takes effort and violence as given at the time of her purging decision. Notice that for

κF = 1, we obtain: SPD(1, L) = −(1−γ)
(
(1−ε)+α̂F (L)ε

)
(r−µ̂F (L))β′

(
1−P̂(L)

)
−C0−C1×α̂F (L).

From Equation D.6, if κS ∈ (0, 1), P(L) = r − e1(1− κS)(r − µS), with e1 = (1− κS)(v + V2 + L).

Define

SSD(κS, L) = −(1− γ)
(
(1− ε) + ε(1− e1)

)
(r− µS)β′

(
1−P(L)

)
−C0 −C1(1− (1− κS)e1) (E.5)

If the purge is partially discriminate, κ∗S(L) is defined as a solution to SSD(κS, L) = 0 since the

autocrat takes effort and violence as given at the time of her purging decision. Notice that for
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κS = 0, we obtain: SSD(0, L) = −(1− γ)
(
(1− ε) + α̂F (L)ε

)
(r − µS(L))β′

(
1− P̂(L)

)
− C0 − C1 ×

α̂F (L) < SPD(1, L) since µS > µ̂F . We now show that ∂SSD(κS, L)/∂κS < 0 for ε not too large.

Using the definition of P(L) and since µS does not depend on κS, we obtain:

∂SSD(κS, L)

∂κS
=− (1− γ)ε(v + V2 + L)(r − µS)β′

(
1− P(L)

)
+ (1− γ)

(
(1− ε) + ε(1− e1)

)
(r − µS)22e1β

′′(1− P(L)
)
− 2C1e1 (E.6)

Notice that under the assumption that β′′(·) ≤ 0, the terms on the second line are both negative.

Hence, when ε = 0, ∂SSD(κS ,L)
∂κS

< 0. Since ∂SSD(κS ,L)
∂κS

is continuous in ε, there exists εκ(L) such that

for all ε ≤ εκ(L), ∂SSD(κS ,L)
∂κS

≤ 0.

Hence, if ε ≤ εκ(L), the properties of SSD(κS, L) yield SSD(κS, L) < SPD(1, L) for all κS ≥ 0. We

can then apply a similar reasoning as in the proof of Lemmas B.2 and D.2 to prove the claim. Note,

however, that there may be multiple solutions to SPD(κF , L) = 0 even if point (i) holds. In this

case, recall that our equilibrium refinement criterion selects the highest solution.

Our next two Lemmas establish that the purge incidence κ∗ω(L), when interior, and purge breadth

κ∗(L) are strictly increasing with L in a discriminate purge (ω = F ) and semi-indiscriminate purge

(ω = S) when ε is not too large.

Lemma E.2. There exists εPD(L) > 0 such that if ε < εPD(L), then in a discriminate purge with

some failures surviving, the purge inference κ∗F (L) and breadth κ∗(L) are strictly increasing with L.

Proof. Since we select the highest purge inference, by a similar reasoning as in the proof of Propo-

sition 1, ∂SPD(κ∗F (L), L)/∂κF < 0 in a partially discriminate purge (i.e., condition (i) in Lemma

E.1 holds). We thus just need to show that ∂SPD(κ∗F (L), L)/∂L > 0 to prove that κ∗F (L) > 0 (by

the Implicit Function Theorem). Observe that (using subscript to denote partial derivative):

∂SPD(κ∗F (L), L)

∂L
=εκ∗F (L)β′(1− P(L))

+ (1− γ)(1− ε+ ε(1− e1))µFLβ′(1− P(L))

− (1− γ)(1− ε+ ε(1− e1))(r − µF )κ∗F (L)2(r − λ)β′′(1− P(L))

+ C1κ
∗
F (L)2 (E.7)

Under the assumptions, given µFL < 0 (see Lemma B.3), the terms on the last three lines are

strictly positive. Hence, when ε = 0,
∂SPD(κ∗F (L),L)

∂L
> 0. Since

∂SPD(κ∗F (L),L)

∂L
is continuous in ε, there

exists εPD1 (L) > 0 (possibly equals 1) such that for all ε < εPD1 (L),
∂SPD(κ∗F (L),L)

∂L
> 0 and the purge
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incidence is strictly increasing with L.

Further, recall that the purge breadth is (1 − e1)κF so the purge breadth is strictly increasing

with L whenever
∂SPD(κ∗F (L),L)

∂L
− C1κ

∗
F (L)2 is strictly positive. This is guaranteed for ε = 0 using

Equation E.7 and the assumptions on β(·). Hence, there exists εPD2 (L) > 0 (possibly equals 1)

such that for all ε < εPD2 (L), the purge breadth is strictly increasing with L. Since C1κ
∗
F (L)2 > 0,

εPD2 ≤ εPD1 (with strict inequality whenever εPD2 (L) < 1). Denote εPD(L) := εPD2 (L) so that the

claim holds.

Lemma E.3. There exists εSD(L) > 0 such that if ε < εSD, then in a semi-indiscriminate purge,

the purge incidence κ∗S(L) and breadth κ∗(L) are strictly increasing with L.

Proof. The proof proceeds along the same lines as the proof of Lemma E.2 noting that a necessary

condition for the purge to be semi-indiscriminate is r > λ and given Equation E.5

∂SSD(κ∗S(L), L)

∂L
=(1− γ)ε(1− κ∗S(L))β′(1− P(L))

+ (1− γ)(1− ε+ ε(1− e1))µSLβ′(1− P(L))

− (1− γ)(1− ε+ ε(1− e1))(r − µS)(1− κ∗S(L))2(r − λ)β′′(1− P(L))

+ C1(1− κ∗S(L))2, (E.8)

with µSL < 0.

The following condition is the equivalent to the condition (2) in Assumption B.1 in this setting

C0 + C1α̂F (L) < −(1− γ)((1− ε) + εα̂F (L))β′
(
1− λ− rα̂F (L)

)
(E.9)

We can now state a similar proposition as in the text linking violence and the nature of the purge

(see Propositions 1 and 5) in this setting.

Proposition E.1. There exists ε > 0 such that if ε < ε, then

1. If Equation E.9 does not hold, then for all intensity of violence, the purge is discriminate and

some failures survive: κ∗F (L) ∈ [0, 1).

2. If Equation E.9 holds, then there exist unique Lfull < L and Lind ∈ (Lfull, L] such that:

(i) For L < Lfull, the purge is discriminate and some failures survive (κ∗F (L) ∈ [0, 1));

(ii) For L ∈ [Lfull, Lind], the purge is discriminate and all failures are purged (κ∗F (L) = 1 and

κ∗S(L) = 0);

(iii) For L > Lind, the purge is semi-indiscriminate (κ∗S(L) > 0).
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Proof. Denote ε = min
L∈[0,L]

min
{
εκ(L), εPD(L), εSD(L)

}
> 0. For all ε < ε, we can then apply the

same reasoning as in the proof of Proposition 1 and the relevant part of the proof of Proposition 5

using Lemmas E.1-E.3.

Proposition E.2. If r ≥ λ and ε < ε (with ε defined in the text of Proposition E.1), then the

relationship between the purge breadth κ∗(L) and the intensity of violence L exhibits the following

properties:

(i) For L < Lfull, κ∗(L) is strictly increasing in L;

(ii) For L ∈ [Lfull, Lind], κ∗(L) is strictly decreasing in L;

(iii) For L > Lind, κ∗(L) is strictly increasing in L.

Proof. Follows directly from Lemmas E.2 and E.3 and Proposition E.1.

The next proposition establishes that the positive effect of violence on effort holds in this setting

as long as the survival probability is not too concave.

Proposition E.3. There exists β < 0 such that if ε < ε (with ε defined in the text of Proposition

E.1) and min
z∈[1−r,1]

β′′(z) > β, then:

1. The total derivative of effort with respect to violence de(L)
dL

is always strictly positive.

2. Further, there exists Leff ≤ Lfull such that the derivative satisfies:

(i) de(L)
dL

> 1 for all L ∈ (Leff , Lfull);

(ii) de(L)
dL

= 1 for all L ∈ [Lfull, Lind);

(iii) de(L)
dL

< 1 for all L ≥ Lind.

Proof. We consider the three types of purges in turn. First, in a discriminate purge with some

failures surviving, equilibrium first-period performance is (ignoring superscript and subscript):

e(L) = v + κ∗F (L)(V2 + L)

As in the baseline model, we obtain: de(L)
dL

= κ∗F (L) +
∂κ∗F (L)

∂L
(V2 +L) > 0 since

∂κ∗F (L)

∂L
> 0 under the

assumption that ε < ε (Lemma E.2). Given that κ∗F (L) is not necessarily continuous, we need to

consider two cases. Case 1: there is an intensity of violence L such that κ∗F (L) +
∂κ∗F (L)

∂L
(V2 +L) > 1

(this is the case if κ∗F (L) is continuous in L). In this case, denote L′ = max
{
L : κ∗F (L)+

∂κ∗F (L)

∂L
(V2+

L) = 1
}

. If for all L ∈ (L′, Lfull], κ∗F (L) +
∂κ∗F (L)

∂L
(V2 + L) > 1 then denote L′ = Leff .7 Otherwise,

7Observe that in this environment, we do not know whether κ∗F (L) is convex in L. The statement of the

proposition and the proof do not exclude intervals [L1, L2], L1 < L2 < Lfull such that de1/dL > 1 for all L ∈ [L1, L2].
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Leff = Lfull. Case 2: there is no L such that κ∗F (L) +
∂κ∗F (L)

∂L
(V2 + L) > 1. In this case denote

Leff := Lfull.

Let us now turn to a discriminate purge with all failures purged. In this case, the equilibrium

first-performance is:

e(L) = v + V2 + L

and de(L)
dL

= 1 as claimed.

Finally, in a semi-indiscriminate purge (κ∗S(L) > 0), the equilibrium first-period performance is:

e(L) = (1− κ∗S(L))(v + V2 + L)

Using SSD(κ∗S(L), L) = 0, we obtain (ignoring all superscripts and arguments whenever possible)

de(L)

dL
= (1− κS) +

∂SSD(κS(L),L)
∂L

∂SSD(κS(L),L)
∂κS

(v + V2 + L)

Given ∂SSD(κS(L),L)
∂κS

< 0 (since we select the highest purge inference) and ∂SSD(κS(L),L)
∂L

> 0 (Lemma

E.3), clearly de(L)
dL

< 1. Further, de(L)
dL

has opposite sign than (using Equation E.6 and Equation E.8)

SD =− (1− γ)εe(r − µS)β′(1− P(L))− 2C1e1(1− κS)

+ (1− γ)((1− ε) + ε(1− e))(r − µS)22e(1− κS)β′′(1− P(L))

+
(

(1− γ)εe(r − µS)β′(1− P(L)) + (1− γ)((1− ε) + ε(1− e))µSL(v + V2 + L)β′(1− P(L))

− (1− γ)((1− ε) + ε(1− e))(r − µS)e(1− κS)(r − λ)β′′(1− P(L)) + C1e(1− κS)
)

=− C1e(1− κS) + (1− γ)((1− ε) + ε(1− e))µSL(v + V2 + L)β′(1− P(L))

+ (1− γ)((1− ε) + ε(1− e))(r − µS)e(1− κS)β′′(1− P(L))
(
2(r − µS)− (r − λ)

)
Using SSD(κ∗S(L), L) = 0⇔ C0 +C1−C1e(1−κ∗S(L)) = −(1−γ)

(
(1− ε)+ ε(1−e1)

)
(r−µS)β′

(
1−

P(L)
)
, we obtain:

SD =(1− γ)((1− ε) + ε(1− e))β′(1− P(L))
(
µSL(v + V2 + L)− (r − µS)

)
− C0 − C1

+ (1− γ)((1− ε) + ε(1− e))(r − µS)e(1− κS)β′′(1− P(L))
(
r + λ− 2µS

)
Given µS = λv(S,c)+V2(c)+L

v+V2+L
, we obtain (v+ V2 +L)µSL = −λ(1− λ)v(S,c)−v(S,nc)+V2(c)−V2(nc)

v+V2+L
= λ−µS.

Further, using the assumption C0 +C1 > −(1−γ)rβ′(1−r) > −(1−γ)((1−ε)+ε(1−e))rβ′(1−r),

we have:

SD < (1− γ)((1− ε) + ε(1− e))
(

(λ− r)β′(1− P(L)) + rβ′(1− r)

+ (r − µS)e(1− κS)β′′(1− P(L))
(
r + λ− 2µS

))
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Observe that if β′′(z) = 0 for all z ∈ [1− r, 1], then (λ− r)β′(1−P(L)) + rβ′(1− r) + (r−µS)e(1−

κS)β′′(1 − P(L))
(
r + λ − 2µS

)
= λβ′(1 − r) < 0 so SD < 0 and de(L)

dL
> 0. We now show that

there exists a strictly positive lower bound on the second derivative such first-period performance

is strictly increasing with violence.

Suppose β̂ = min
z∈[1−r,1]

β′′(z) < 0 and note that β′(1 − P(L)) − β′(1 − r) =
∫ 1−P(L)
1−r β′′(z)dz ≥

β̂ × (1− P(L)− (1− r)) = β̂ × (r − µS)(1− κS)e1. Assume r + λ− 2µS < 0 (a similar reasoning

holds if the inequality is reversed), we hence have:

SD < (1− γ)((1− ε) + ε(1− e))
(

(λ− r)β′(1− P(L)) + rβ′(1− r)

+ (r − µS)e(1− κS)β′′(1− P(L))
(
r + λ− 2µS

))
< (1− γ)((1− ε) + ε(1− e))

(
λβ′(1− r)− 2(r − µS)(µS − λ)e1(1− κS)β̂

)
< (1− γ)((1− ε) + ε(1− e))

(
λβ′(0)− 2(r − µS)(µS − λ)β̂

)
So for β̂ ≥ max

L∈[Lind,L]

{
λβ′(0)

2(r−µS)(µS−λ)

}
, SD < 0 and de1/dL > 0. Hence, there exists β < 0 such that

if min
z∈[1−r,1]

β′′(z) > β, the fear effect holds for all L ≥ Lind.

Our last proposition establishes that an increase in violence can also worsen selection in this setting.

Proposition E.4. There exists β < 0 such that if ε < ε (with ε defined in the text of Proposition

E.1) and min
z∈[1−r,1]

β′′(z) > β, then:

(i) The proportion of congruent types among surviving subordinates of the purge strictly increases

with L if and only if L < Lfull, and decreases otherwise (strictly if r > λ);

(ii) If r ∈ (λ, 2λ], the proportion of congruent types among subordinates in the second period strictly

increases with L for L < Lfull and strictly decreases otherwise.

Proof. Point (i) for r = λ follows directly from a similar reasoning as the proof of Proposition 4

since the purge inference is strictly increasing with L under the assumption ε < ε.

For point (ii), the claim holds directly for a discriminate purge with all failures purged (see Equa-

tion B.11). We thus focus on a semi-discriminate purge for which P(L) = r− (1−κS)e(r−µS) (ig-

noring subscripts, superscripts, and arguments). So as before dP(L)
dL

= −d(1−κS)e
dL

(r−µS)+µSL(1−κS)e

(with µSL the partial derivative of µS with respect to L). From Equation E.5 and SSD(κ∗S(L), L) = 0,

treating (1 − κS)e as our variable of interest (and again ignoring subscripts, superscripts, and ar-
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guments whenever possible), we obtain:

(1− γ)ε(1− κS)(r − µS)β′(1− P(L))

+ (1− γ)((1− ε) + ε(1− e1))µSL
(
β′(1− P(L)) + (1− κS)e(r − µS)β′′(1− P(L))

)
+
d(1− κS)e

dL

(
C1 − (1− γ)((1− ε) + ε(1− e1))(r − µS)2β′′(1− P(L))

)
= 0

Hence, we obtain that dP(L)/dL has the same sign as:

Υ :=(1− γ)ε(1− κS)β′(1− P(L))(r − µS)2

+ (1− γ)((1− ε) + ε(1− e1))µSL
(
β′(1− P(L)) + (1− κS)e(r − µS)β′′(1− P(L))

)
(r − µS)

+ C1µ
S
Le(1− κS)− (1− γ)((1− ε) + ε(1− e1))(r − µS)2β′′(1− P(L))µSLe(1− κS)

=(1− γ)ε(1− κS)β′(1− P(L))(r − µS)2

+ µSL
(
(1− γ)((1− ε) + ε(1− e1))β′(1− P(L))(r − µS) + C1e(1− κS)

)
Given Equation E.5, we can rewrite the equality as:

Υ =(1− γ)ε(1− κS)β′(1− P(L))(r − µS)2

+ µSL
(
2(1− γ)((1− ε) + ε(1− e1))β′(1− P(L))(r − µS) + C0 + C1

)
Using µSL < 0 and C0 + C1 > −(1− γ)((1− ε) + ε(1− e))rβ′(1− r), we obtain:

Υ <(1− γ)ε(1− κS)β′(1− P(L))(r − µS)2

+ µSL(1− γ)((1− ε) + ε(1− e1))
(
2β′(1− P(L))(r − µS)− rβ′(1− r)

)
Observe that if β′′(z) = 0 for all z ∈ [1−r, 1], 2β′(1−P(L))(r−µS)−rβ′(1−r) = β′(1−r)(r−2µS) >

0 under the assumption that r ≤ 2λ. This implies Υ < 0. By a similar reasoning as in the proof of

Proposition E.3, there exists β < 0 such that if min
z∈[1−r,1]

β′′(z) ≥ β, then Υ < 0 and dP(L)/dL < 0

as claimed.

Since the consequences of increased intensity of violence are still present in this setting, a

similar reasoning as in Appendix C and D yields conditions such that the purge is discriminate

with or without all failures purged or semi-indiscriminate. There are, however, two important

differences. First, we do not have a condition such that κ∗F (L) is continuous so Remark C.1 applies.

Second, without imposing additional conditions on β(·), we cannot determine whether the benefit

of investing in the infrastructure of violence is convex for L ≤ Lfull so Remark 1 does not necessarily
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apply in this setting.

This last section concludes the proofs of the results in the text. In the next appendix we prove

some additional results. Specifically, we consider in turn the following extensions or modifications

to our set-up:

1. Relaxing the assumption that the autocrat observes all project outcomes (Appendix F.1);

2. Introducing the possibility for the autocrat to commit to the purge inferences as well as the

intensity of violence at the beginning of the game (Appendix F.2);

3. Applying a version of the model to repression (Appendix F.3);

4. Looking at a one-agent set-up (Appendix F.4).
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F Additional results

F.1 Partial observation of project outcomes

In this subsection, we suppose that the autocrat observes an agent i’s project outcome with ex-

ogenous probability γ ∈ (0, 1) (the baseline model corresponds to the case when γ = 1). More

specifically, before making her purging decision, the autocrat receives a signal si ∈ {∅, ωi} for each

subordinate i, with Pr(si = ωi) = γ. The autocrat then chooses to purge a proportion κF of agents

who failed, κ∅ of agents for which she does not know ω, and κS of agents who succeeded. The rest

of the model is as described in the main text (in particular, the autocrat’s payoffs are given by

Equation 3 and Equation 4). We throughout suppose that r ≥ λ.

A natural extension of Lemma 1 holds in this setting. The autocrat first purges from the pool

of failure, then from the pool with no information and from the success pool. Hence, we have

κ∅ > 0 only if κF = 1 and κS = 1 only if κ∅ = 1. Indeed, as before, success is a positive signal

of congruence so her posterior, µS, satisfies µS > λ, failure a negative signal so the autocrat’s

posterior satisfies µF < λ. In turn, after learning nothing, the autocrat’s posterior, denoted µ∅

equals the prior: µ∅ = λ.

A type-τ ∈ {c, nc} agent then exerts effort:

ei1(τ) =


v(S, τ) + γκF (V2(τ) + L) if κ∅ = 0

(γ + (1− γ)(1− κ∅))v(S, τ) + γ(V2(τ) + L) if κ∅ > 0 and κS = 0

γ(1− κS)(v(S, τ) + V2(τ) + L) if κS > 0

(F.1)

Comparing Equation F.1 with Equation 5, it is clear that all the (partial and full equilibrium)

comparative statics characterized in Appendix B still hold in this context. Hence, there exists

Lfull(γ) ≥ 0 such that if L < Lfull, some failures survive and the purge breadth is increasing with

the intensity of violence. In what follows, we assume that Lfull < L

Suppose now the autocrat considers purging from the ‘no-information pool.’ In this case,

denoting αF (κ∅, L, γ) = 1− e = 1−
(
(γ + (1− γ)(1− κ∅))v + γ(V2 +L)

)
the proportion of failure,

her purging decision is driven by comparing the marginal cost of purging an additional member of

this pool c′(γαF (κ∅, L, γ)+(1−γ)κ∅) and the marginal benefit (r−λ)(W2(c)−W2(nc)). Note that

the marginal benefit is fixed since the autocrat has no information about the ‘no-information pool.’

In turn, the marginal cost, fixing κ∅ is strictly decreasing with L. This has two consequences:

(i) there exists L∅(γ) > Lfull(γ), with L∅ < L only if r > λ, such that κ∅ > 0 if and only if
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L > L∅(γ);

(ii) for all L > L∅(γ), the equilibrium purge inference κ∗∅(L) is strictly increasing with L.

As a result, there exists Ltot(γ) ∈ (L∅(γ), L], with Ltot(γ) < L only if r and γ are both sufficiently

large, such that for all L ≥ Ltot(γ), κ∗∅(L) = 1. We can then apply the same reasoning as in

Appendix D to show that there exists Lind(γ) > Ltot(γ), with Lind(γ) < L only if r and γ are both

sufficiently large, such that for all L > Lind(γ), κ∗S(L) > 0.

From the reasoning above, as in the baseline model, we thus obtain that the nature of the purge

fully depends on the intensity of violence

Proposition F.1. There exist Lfull(γ), L∅(γ), Ltot(γ), Lind(γ), unique if the threshold is strictly

less than L, such that:

(i) For L < Lfull(γ), some failures survive (κ∗F (L) ∈ (0, 1));

(ii) For L ∈ [Lfull(γ), L∅(γ)), all failures are purged (κ∗F (L) = 1 and κ∗∅(L) = 0);

(iii) For L ∈ [L∅(γ), Ltot(γ)), the autocrat targets the no-information pool (κ∗F (L) = 1 and κ∗∅(L) ∈

(0, 1));

(iv) For L ∈ [Ltot(γ), Lind(γ)), only agents who succeed survive the purge (κ∗F (L) = 1 and κ∗∅(L) =

1);

(v) For L ∈ [Lind(γ), L] (possibly an empty interval), the purge is semi-indiscriminate (κ∗F (L) = 1,

κ∗∅(L) = 1, and κ∗S(L) = 0).

In what follows, we suppose throughout that Lind(γ) < L to facilitate the exposition. We note,

however, that the conditions to satisfy this inequality are more stringent than in the main text

(especially, it is necessary that γ is sufficiently large as highlighted above).

How does the purge breadth vary with the intensity of violence? When the purge is discriminate

but some failures survive (case (i) of Proposition F.1) and in a semi-indiscriminate purge (case (v)),

a similar reasoning as in the main text yields that the purge breadth increases with L. In turn,

by simple observation of Equation F.1, effort is increasing with L and the purge breadth thus

decreasing in L in a discriminate purge with all failures purged (κ∗F (L) = 1, κ∗∅(L) = 0) or when

only successful agents survive the purge (κ∗∅(L) = 1, κ∗S(L) = 0).

It remains to characterize the effect of the intensity of violence on the purge breadth when

part of the no-information pool is purged (κ∗∅(L) ∈ (0, 1)). As noted above, the marginal benefit of

purging is constant and equals β(r−λ)(W2(c)−W2(nc)) then. Since the equilibrium purge breadth

is the solution to c′(κ) = β(r−λ)(W2(c)−W2(nc)), we obtain that κ∗(L) is constant in L then. As
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such, including the possibility that the autocrat does not observe all project outcomes, if anything,

reinforces the non-monotonic relationship between purge breadth and the intensity of violence.

Proposition F.2. The relationship between the equilibrium purge breadth κ∗(L) and the intensity

of violence L satisfies:

(i) For L < Lfull(γ), the purge breadth is strictly increasing in L;

(ii) For L ∈ [Lfull(γ), L∅(γ)), the purge breadth is strictly decreasing in L;

(iii) For L ∈ [L∅(γ), Ltot(γ)), the purge breadth is constant in L;

(iv) For L ∈ [Ltot(γ), Lind(γ)), the purge breadth is strictly decreasing in L;

(v) For L ∈ [Lind(γ), L], the purge breadth is strictly increasing in L.

We now look at the consequences of violence on effort. As in the main text, greater intensity

of violence always raises effort. The direct payoff effect still dominates any negative indirect effect

through the purge inference when the no information pool is targeted or in a semi-indiscriminate

purge. One noticeable difference is that the increase in the work rate is now relative to the autocrat’s

probability of learning project outcomes γ.

Proposition F.3. The total derivative of average effort with respect to violence de(L)
dL

is always

strictly positive. Further, there exists a unique Leff (γ) ≤ Lfull(γ) such that the derivative satisfies:

(i) de(L)
dL

> γ for all L ∈ (Leff (γ), Lfull(γ));

(ii) de(L)
dL
≤ γ for all L ∈ [Lfull(γ), L].

Proof. For all L /∈ [L∅(γ), Ltot(γ)), the result follows from a similar reasoning as in the proof of

Proposition 3 or 6 or from direct observation of Equation F.1 (for corner purge inferences). It only

remains to show the result for L ∈ [L∅(γ), Ltot(γ)).

To see that greater intensity of violence strictly increases effort, we proceed by contradiction.

Suppose average effort weakly decreases. Given that c′(γ(1−e(L))+(1−γ)κ∗∅(L)) = (r−λ)(W2(c)−

W2(nc)), we then have κ∗∅(L) weakly decreases with L. Using Equation F.1, it must then be that

e(L) is strictly increasing with L. A contradiction. Hence, de(L)
dL

> 0.

To show that de(L)
dL

< γ, note that given that average effort strictly increases, it must be that
dκ∗∅(L)

dL
> 0. Average effort being e(L) = (γ + (1 − γ)(1 − κ∗∅(L))v + γ(V2 + L), it must be that

de(L)
dL

< γ.

Finally, looking at selection, an increase in the intensity of violence strictly raises the proportion

of congruent types among second-period subordinates if and only if L < Lfull(γ) so that some
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observed failures survive. The reasoning is the same as in the main text. When all observed

failures are purged, under the same conditions as in the original model, selection deteriorates with

violence because less agents are purged and replaced by new subordinates of better quality (for

L ∈ [Lfull(γ), Lind(γ))) or/and the pool of successful first-period agents becomes more tainted (for

L ≥ Lind(γ)). Hence, our results on selection survive in this extension.

Proposition F.4. For r ∈ [λ, 2λ], the proportion of congruent types among second-period agents:

(i) strictly increases with L if and only if L < Lfull(γ);

(ii) decreases with L if and only if L ≥ Lfull(γ), strictly if r > λ.

Proof. For L < Lfull(γ), the proof proceeds exactly as in the proof of Proposition 4. This proves

point (i).

For point (ii), for L > Lind(γ) (assuming Lind(γ)), a similar reasoning as in the proof of Proposition

6 proves that the proportion of second-period congruent subordinates decreases with L. Hence,

it only remains to prove the claim for L ∈ [Lfull(γ), Lind(γ)). To do so, denote again P(L) the

proportion of congruent types among second-period agents. We obtain (ignoring arguments):

P(L) =γ(1− e)r + γeµS + (1− γ)(κ∅r + (1− κ∅)λ). (F.2)

Using the value for effort (Equation F.1) and µS = λ e(c)
e

, we obtain:

P ′(L) =

(
γ2 − (1− γ)

∂κ∅(L)

∂L

)
(λ− r). (F.3)

Whenever κ∗∅(L) is a corner, P ′(L) ≤ 0, strictly if r > λ. Consider then the case when κ∗∅(L) ∈ (0, 1)

(⇔ L ∈ (L∅(γ), Ltot(γ))). We know from Proposition F.2 that the purge breadth is constant in L

in this interval. Using Equation F.1 and κ = γ(1− e) + (1− γ)κ∅, we have:

−γ2 + (1− γ)(1 + γv)
∂κ∗∅(L)

∂L
= 0

Hence, γ2 − (1− γ)
∂κ∗∅(L)

∂L
= γ2v

1+v
> 0 and P ′(L) < 0 (since L∅(γ) < L only if r > λ).

F.2 Full commitment

In this appendix, we establish that most of our results remain unchanged when the autocrat can

commit at the beginning of the game to the intensity of violence L and the purge incidences κF

and κS (which determine the purge breadth κ). We refer to this case as ‘full commitment’ (in

contrast to the original model where we study a partial commitment problem, the autocrat can
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only choose the intensity of violence at stage 1). Throughout, as above, we suppose that the

replacement pool satisfies r ≥ λ. Further, we assume that the payoff from a successful project for

a type τ ∈ {c, nc}—v(τ)—is low relative to the insider benefits R: v(c)v(nc)
2

≤ R. This assumption

is only sufficient for all our results to go through, and we conjecture that our findings hold if it is

fully relaxed (though the proof of this point proves difficult). It also should be noted that we do

not look for conditions such that the purge is of one nature or the other (as in the main text, this

would depend on the costs of purging C0 and C1 and the costs of investing in violence ζ0 and ζ1).
8

Instead, we look at the properties of the different type of purges. Finally, we use superscript fc

to denote equilibrium values and use appropriate subscript to denote partial derivative whenever

possible.

As in the main text, a type-τ agent’s effort is defined by Equation A.2

e(τ) = (1− κS)v(S, τ) + (κF − κS)(V2(τ) + L) (F.4)

with the difference being that purge inferences are announced rather than (correctly) anticipated.

As before, it is increasing in the risk of being purged condition on failure (κF ) and decreasing in

the probability of being purged conditional on success (κS). With this, we can now turn to the

autocrat’s problem who is different than in the main text. Nonetheless, we find several important

similarities.

In a first preliminary result (Lemma F.1), we recover a generalized version of Lemma 1. With

full commitment, intuitively, the autocrat first purges agents from the failure pool.9 As the cost of

violence diminishes, the autocrat purges a greater proportion of failures. The reason is the same as

in the main text. With greater intensity of violence, congruent and non-congruent agents exit the

failure pool at higher rate. Since there are less congruent agents in the failure pool to begin with,

the quality of this pool deteriorates leading the autocrat to increase the purge inference κF . When

parameters are such that violence is sufficiently high, all failures are purged. Greater violence then

diminishes the quality of the success pool, which raises the autocrat’s incentive to purge successful

agents. Thus, much like the baseline model, the nature of the purge is fully linked to the level of

violence. Some failures survive in mild purges, all failures are purged for intermediate violence,

and some successful subordinates are removed when violence is very high.

8Existence is easily shown given that the choice set of the autocrat is compact.
9While the result is intuitive, its proof turns out to be more difficult than in the baseline model. The reason is

that the autocrat could simultaneously balance κF and κS to achieve a certain level of selection. We show that the

selection gain from such balancing act is always dominated by the loss from diminished effort due to κS > 0.
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We further recover the non-monotonic relationship between the intensity of violence and purge

breadth. In a discriminate purge with some failures surviving, the purge breadth and violence are

positively correlated (since both quantities are chosen in the first stage, we state all our results in

term of correlation). Greater violence is associated with more effort and better selection, absent

higher purge breadth the first order condition for the purge incidences cannot be satisfied. In turn,

in a discriminate purge with all failures purged, breadth and violence are negatively correlated

as the size of the failure pool decreases with violence. Importantly, the relationship between

violence and breadth is ambiguous in a semi-indiscriminate purge. While the purge inference κfcS

is positively linked with the intensity of violence Lfc, the autocrat may commit not to increase the

purge incidence too much so as to limit the negative consequences of κS on effort. We thus obtain:

Proposition F.5. There exist Lfull fc, Lind fc ∈ R2
+ such that if the equilibrium violence satisfies

(a) Lfc < Lfull fc, then some failures survive and there exists a positive correlation between the

equilibrium intensity of violence and purge breadth;

(a) Lfc ∈ (Lfull fc, Lind fc), then all failures are purged and there exists a negative correlation

between the equilibrium intensity of violence and purge breadth;

(a) Lfc > Lind fc, then some successful subordinates are purged and the correlation between the

equilibrium intensity of violence and purge breadth is ambiguous.

Turning to effort and selection, we find that the results of our baseline model holds in this

setting, at least for discriminate purges. Effort and violence are positively correlated when only

failures are targeted (but not necessarily in a semi-indiscriminate purge). Selection improves with

violence if some failures survive, but decrease with L if all failures are purged, depending on the

quality of the replacement pool. The results are again ambiguous in a semi-indiscriminate purge.

Indeed, since we cannot determine the correlation between purge breadth and violence, we cannot

extend the analysis to effort and selection which relies on the interaction effect between the purge

inference κS and the intensity of violence.

To state our next result, it is useful to denote A = (L, κS, κF ) the vector of autocrat’s choice.

We obtain:

Proposition F.6. Consider two equilibrium strategies Al and Ah such that Ll < Lh ≤ Ldisc fc,

then

(i) The associated average efforts satisfy el < eh;

(ii) The proportion of congruent types among second-period subordinates is strictly higher in equi-

37



librium Ah than Al whenever Lh ≤ Lfull fc;

(iii) The proportion of congruent types among second-period subordinates is strictly lower in equi-

librium Ah than Al whenever Ll > Lfull fc and r > λ (constant if r = λ).

Overall, our results hold in full when it comes to discriminate purge (as such, we can recover

all our results from the baseline model). The main and only difference between the original model

and the case of full commitment regards semi-indiscriminate purge, for which we cannot prove a

positive correlation between violence and breadth or effort or a negative correlation with selection.

Further, it should be noted that a semi-indiscriminate purge only occurs under specific stringent

conditions.10 Indeed, with full commitment, the autocrat fully takes into account the negative effect

of κS on effort. Since she can commit, she may choose a high level of violence and not to purge the

failure pool to avoid depressing effort. In the main text, in contrast, a semi-indiscriminate purge

is an inescapable spillover of incentivizing effort through violence.

Proofs

Before proceeding we (re)introduce some notation. Recall that e denotes the total effort. We

further denote µF (κF , κS), µS(κF , κS) the posteriors an agent is congruent conditional on failure

and success, respectively as a function of the purge incidences, with the autocrat’s anticipating

agents’ effort (when possible we omit arguments). The purge breadth is still κ = κF (1− e) + κSe.

Lemma F.1. In equilibrium, κfcS > 0⇒ κfcF = 1.

Proof. The proof proceeds by contradiction. The autocrat maximizes the following objective func-

tion:

F(L, κF , κS) = e+ β(1− e)
(
κF
(
rW2(c) + (1− r)W2(nc)

)
+ (1− κF )

(
µFW2(c) + (1− µF )W2(nc)

))
+ βe

(
κS
(
rW2(c) + (1− r)W2(nc)

)
+ (1− κS)

(
µSW2(c) + (1− µS)W2(nc)

))
− C(κ)− ζ(L)

F(L, κF , κS) = e+ β
(
λW2(c) + (1− λ)W2(nc)

)
+ β(1− e)κF (r − µF )(W2(c)−W2(nc)) + βeκS(r − µS)(W2(c)−W2(nc))− C(κ)− ζ(L)

(F.5)

Suppose there exists an equilibrium in which the autocrat’s strategy denoted Afc = (Lfc, κfcF , κ
fc
S )

satisfies κfcS > 0 and κfcF < 1. We show that the autocrat’s expected utility is higher when she

10For example, a necessary condition is that (r − λ)(v(c)− v(nc)) > 1
2 .
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instead chooses Â = (Lfc, κfcF , 0). Throughout, we suppose that v+κfcF (V2+L
fc)−κfcS (v+V2+L) > 0,

but the proof can be extended to the case when effort is 0 in equilibrium.

Note that the purge breadths in the supposed equilibrium—denoted κfc—and in the proposed

deviation—denoted κ̂—satisfy κfc > κ̂. Further, the posteriors satisfy µF (κfcF , 0) < µF (κfcF , κ
fc
S )

since µFκS(κF , κS) > 0 (using a similar reasoning as in Lemma B.1). Therefore, we obtain

F(Lfc, κfcF , 0)−F(Lfc, κfcF , κ
fc
S )

= κfcS (v + V2 + Lfc)− κfcS (v + V2 + L)κfcF β(r − µF (κfcF , κ
fc
S ))(W2(c)−W2(nc))

− (v − κfcS (v + V2 + L) + κfcF (v + Lfc))κfcS β(r − µS(κfcF , κ
fc
S ))(W2(c)−W2(nc))

+ (1− (v + κfcF (V2 + L))κfcF β(µF (κfcF , κ
fc
S )− µF (κfcF , 0))(W2(c)−W2(nc))

+ C(κfc)− C(κ̂)

> κfcS (v + V2 + Lfc)− κfcS (v + V2 + L)κfcF β(r − µF (κfcF , κ
fc
S ))(W2(c)−W2(nc))

− (1− κfcS )(v + V2 + L)κfcS β(r − µS(κfcF , κ
fc
S ))(W2(c)−W2(nc))

Given β(r − µF (κfcF , κ
fc
S ))(W2(c) − W2(nc)) < 1, F(Lfc, κfcF , 0) − F(Lfc, κfcF , κ

fc
S ) > 0 if (r −

µS(κfcF , κ
fc
S )) ≤ 0. We thus focus in what follows on the case when (r− µS(κfcF , κ

fc
S )) > 0. Further,

we can rewrite the lower bound on F(Lfc, κfcF , 0)−F(Lfc, κfcF , κ
fc
S ) as

κfcS (v + V2 + Lfc)

 1− κfcF β(r − µF (κfcF , κ
fc
S ))(W2(c)−W2(nc))

−(1− κfcS )β(r − µS(κfcF , κ
fc
S ))(W2(c)−W2(nc))


> κfcS (v + V2 + Lfc)

(
1− (κfcF + (1− κfcS ))β(r − µF (κfcF , κ

fc
S ))(W2(c)−W2(nc))

)
So if κfcF < κfcS , the lower bound is strictly positive, implying F(Lfc, κfcF , 0)−F(Lfc, κfcF , κ

fc
S ) > 0,

contradicting the claim that Afc is an equilibrium strategy.

Suppose therefore that κfcF ≥ κfcS . Taking the derivative of F(·) with respect to L, κF , and κS, we
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obtain:

FL(L, κF , κS) =eL − βeLκF (r − µF )(W2(c)−W2(nc)) + βeLκS(r − µS)(W2(c)−W2(nc))

− β(1− e)κFµFL(W2(c)−W2(nc))− βeκSµSL(W2(c)−W2(nc))− ζ ′(L) (F.6)

FκF (L, κF , κS) =eκF + β((1− e)− eκFκF )(r − µF )(W2(c)−W2(nc)) + βeκFκS(r − µS)(W2(c)−W2(nc))

− β(1− e)κFµFκF (W2(c)−W2(nc))− βeκSµSκF (W2(c)−W2(nc))

− ((1− e) + (κS − κF )eκF )C ′(κ) (F.7)

FκS(L, κF , κS) =eκS − βeκSκF (r − µF )(W2(c)−W2(nc)) + β(e+ eκSκS)(r − µS)(W2(c)−W2(nc))

− β(1− e)κFµFκS(W2(c)−W2(nc))− βeκSµSκS(W2(c)−W2(nc))

− (e+ (κS − κF )eκS)C ′(κ) (F.8)

Note that the derivatives with respect to the purge incidences take into account the effect on the

autocrat’s posteriors since the autocrat fully anticipates (i) agents’ effort and (ii) the effect of κF

and κS on efforts. In particular, we have: µFκF < 0 < µFκS . Further, given the effort described in

Equation A.2, µSκS ∝ λ(1 − λ)(v(c) − v(nc))
(
R + L− v(c)v(nc)

2

)
(1 − κF ), which is positive under

the assumption. And µSκF ∝ −λ(1−λ)(v(c)− v(nc))
(
R + L− v(c)v(nc)

2

)
(1−κS), which is negative

under the assumption.

Rearranging a bit Equation F.7 and Equation F.8, we obtain:

FκF (L, κF , κS) =eκF

(
1− κFβ(r − µF )(W2(c)−W2(nc)) + κSβ(r − µS)(W2(c)−W2(nc)) + (κF − κS)C ′(κ)

)
+ (1− e)

(
β(r − µF )(W2(c)−W2(nc))− C ′(κ)

)
− β(1− e)κFµFκF (W2(c)−W2(nc))− βeκSµSκF (W2(c)−W2(nc))

FκS(L, κF , κS) =eκS

(
1− κFβ(r − µF )(W2(c)−W2(nc)) + κSβ(r − µS)(W2(c)−W2(nc)) + (κF − κS)C ′(κ)

)
+ e
(
β(r − µS)(W2(c)−W2(nc))− C ′(κ)

)
− β(1− e)κFµFκS(W2(c)−W2(nc))− βeκSµSκS(W2(c)−W2(nc))

Now, we have established above that if both purges inferences are interior, they must satisfy κfcF ≥

κfcS . Further, µF > 0 and µS < 1 imply that 1−κFβ(r−µF )(W2(c)−W2(nc))+κSβ(r−µS)(W2(c)−

W2(nc)) > 1−κFβr(W2(c)−W2(nc))−κSβ(1− r)(W2(c)−W2(nc)) > 1−β(W2(c)−W2(nc)) > 0.

Both combined imply that at equilibrium values, 1 − κFβ(r − µF )(W2(c) − W2(nc)) + κSβ(r −

µS)(W2(c)−W2(nc)) + (κF −κS)C ′(κ) > 0. But then (a) if β(r−µF )(W2(c)−W2(nc))−C ′(κ) < 0

(which implies β(r − µS)(W2(c) − W2(nc)) − C ′(κ) < 0), then FκS(L, κF , κS) < 0 or (b) if

β(r − µF )(W2(c) − W2(nc)) − C ′(κ) ≥ 0, then FκF (L, κF , κS) > 0. In both cases, one of the
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FOC is not satisfied, a contradiction.

Hence, we cannot have κfcF ≥ κfcS if both purge inferences are interior and so we necessarily have

F(Lfc, κfcF , 0) − F(Lfc, κfcF , κ
fc
S ) > 0 which contradicts Afc is an equilibrium strategy. By contra-

positive, it must be that κfcS > 0 implies κfcF = 1 as claimed.

Given Lemma F.1, we can focus on three cases:

1) some failures survive: κfcF ∈ (0, 1) and κfcS = 0;

2) all failures are purged: κfcF = 1 and κfcS = 0;

3) some successful subordinates are purged: κfcF = 1 and κfcS ∈ (0, 1).

We now establish properties of purge inferences and breadth in these three cases. First, we show the

correlation between the intensity of violence and the purge inference and breadth in case 1). Given

that both violence and inference are chosen simultaneously, we can only express the relationship

as correlation rather than comparative statics like in the main text.

Lemma F.2. Consider two equilibrium strategies Al = (Ll, κlF , 0) and Ah = (Lh, κhF , 0) such that

κlF , κ
h
F ∈ (0, 1)2. If Ll < Lh, then κlF < κhF and the associated purge breadth also satisfies κl < κh.

Proof. Assume some failures survive in both equilibria. Using Equation F.6 and Equation F.7 after

imposing κS = 0 and rearranging, we obtain:

FL(L, κF , κS) =eL
(
1− βκF (r − µF )(W2(c)−W2(nc)) + κFC

′(κ)
)

− β(1− e)κFµFL(W2(c)−W2(nc))− ζ ′(L) (F.9)

FκF (L, κF , κS) =eκF (1− κF (r − µF )(W2(c)−W2(nc)) + κFC
′(κ)
)

+ (1− e)
(
β(r − µF )(W2(c)−W2(nc))− C ′(κ)

)
− β(1− e)κFµFκF (W2(c)−W2(nc))

(F.10)

We first prove that purge inference and purge breadth move in similar directions. Since βκF (r −

µF )(W2(c)−W2(nc)) < 1, 1−βκF (r−µF )(W2(c)−W2(nc)) +κFC
′(κ) > 0. At equilibrium values,

it must then be that (r − µF )(W2(c) − W2(nc)) − C ′(κ) < 0 (all other quantities are positive).

Rearranging FκF (·) as

FκF (L, κF , κS) =eκF +
(
(1− e)− eκFκF

)(
β(r − µF )(W2(c)−W2(nc))− C ′(κ)

)
− β(1− e)κFµFκF (W2(c)−W2(nc))

it further implies that (1 − e) − eκFκF = d(1−e)κF
dκF

= dκ
dκF

> 0 at equilibrium values (otherwise the

FOC can never be satisfied contradicting the assumption that some failures survive).
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We now show that the intensity of violence and the purge inference are strategic complement. For

this, it is sufficient to show that FκFL(·) > 0.11 Using Equation F.4 and Equation F.10, we obtain

FκFL(L, κF , 0) =1− 2κF
(
β(r − µF )(W2(c)−W2(nc))− C ′(κ)

)
+
(
(1− e)− eκFκF

)(
− µFLβ(W2(c)−W2(nc)) + eLκFC

′′(κ)
)

+ βeLκFµ
F
κF

(W2(c)−W2(nc))− β(1− e)κFµFκFL(W2(c)−W2(nc)) (F.11)

Using Equation F.4 and Bayes’ rule,

µFκF =− λ(1− λ)
(v(c)− v(nc))

(
R + L+ v(c) + v(nc)− v(c)v(nc)

2

)
(1− e)2

µFκFL =− λ(1− λ)
(v(c)− v(nc))(1− e) + 2eL(v(c)− v(nc))

(
R + L+ v(c) + v(nc)− v(c)v(nc)

2

)
(1− e)3

=− λ(1− λ)
(v(c)− v(nc))

(1− e)2
+ 2

eL
1− e

µFκF

This implies that the last line of Equation F.11 is strictly positive. Further, µFL < 0 (Lemma B.3)

and C ′′(κ) > 0 so the second line of Equation F.11 is strictly positive since we have established

above that (1−e)−eκFκF > 0. Finally, at equilibrium values, β(r−µF )(W2(c)−W2(nc))−C ′(κ) < 0

so the first line is also strictly positive. Hence, at equilibrium values, FκFL > 0, which proves that

Ll < Lh implies κlF < κhF .

We now show that Ll < Lh also implies κl < κh. Suppose not. Slightly abusing notation denote

µl = µF
∣∣
L=Ll,κF=κl

and similarly µh = µF
∣∣
L=Lh,κF=κh

. Notice that since µFL < 0, µFκF < 0, and

µFκFL < 0, then µh < µl. Further using the formula for µFκF above, note that −β(1−e)µFκF is strictly

increasing with κF and L. Hence, denoting Kj := −β(1− e)κFµFκF (W2(c)−W2(nc))
∣∣
L=Lj ,κF=κ

j
F

,

j ∈ {1, 2}, we obtain K l < Kh.

Now,

FκF (Lj, κjF , 0) =v + κjF (V2 + Lj) +Kj

+
(
1− v − κjF (V2 + Lj)

)
(β(r − µj)(W2(c)−W2(nc))− C ′(κj))

Now if κh < κl, then C ′(κh) < C ′(κl), which implies (β(r−µl)(W2(c)−W2(nc))−C ′(κl)) < (β(r−

µh)(W2(c)−W2(nc))−C ′(κh)) < 0 given µh < µl . Given 1−v−κlF (V2 +Ll) > 1−v−κhF (V2 +Lh)

11Take a parameter value which only affects the intensity of violence directly, say ζ0. Then by the Implicit Function

Theorem, FκFκF

dκF

dζ0
+FκFL

dL
dζ0

= 0 (ignoring superscript and arguments). Since we assume κF interior, it must be

that FκFκF
< 0 evaluated at equilibrium values. Hence, dκF

dζ0
has the same sign as FκFL

dL
dζ0

.
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(given κlF < κhF and Ll < Lh) and β(r−µj)(W2(c)−W2(nc))−C ′(κj) < 0 (a necessary condition for

the FOC to hold), then
(
1−v−κlF (V2+Ll)

)
(β(r−µl)(W2(c)−W2(nc))−C ′(κl)) <

(
1−v−κhF (V2+

Lh)
)
(β(r − µh)(W2(c)−W2(nc))− C ′(κh)). Since v + κlF (V2 + Ll) +K l < v + κhF (V2 + Lh) +Kh,

this implies FκF (Ll, κlF , 0) < FκF (Lh, κhF , 0). But this contradicts that both κlF and κhF are interior.

Hence, it must be that κl < κh.

Using Lemma F.2, we can establish that the purge nature changes with the intensity of violence

under a simple condition.

Remark F.1. If FκF (L, 1, 0) > 0, then there exists Lfull fc ∈ [0, L) such that κfcF < 1 if and only

if Lfc < Lfull fc.

Proof. Follows from the proof of Lemma F.2.

We now turn to the case when FκF (L, 1, 0) > 0 and parameter values (i.e., ζ0 and ζ1) are such that

Lfc > Lfull fc.

First, we show that if the equilibrium is such that κfcS > 0 and the purge is semi-indiscriminate,

the intensity of violence and the purge inference are positively correlated. We also highlight that a

similar relationship between violence and breadth does not necessarily hold.

Lemma F.3. Consider two equilibrium strategies Al = (Ll, 1, κlS) and Ah = (Lh, 1, κhS) such that

κlS, κ
h
S ∈ (0, 1)2. If Ll < Lh, then κlS < κhS, the ranking of the associated purge breadth κl and κh is

ambiguous.

Proof. Like in the baseline model (see Equation D.7), it is useful to rewrite the objective function

as

F(L, 1, κS) = e+W2(nc)+βµ
S(W2(c)−W2(nc))+β((1−e)+κSe))(r−µS)(W2(c)−W2(nc))−C(κ)−ζ(L),

with e = (1− κS)(v + V2 + L) and κ = (1− e) + eκS.

Taking the derivative with respect to κS and L, we obtain (since µSκS = 0):

FL(L, 1, κS) =eL +
∂((1− e) + κSe)

∂L

(
β(r − µS)(W2(c)−W2(nc))− C ′(κ))

+ βµSL
(
1− ((1− e) + eκS)

)
(W2(c)−W2(nc))− ζ ′(L)

FκS(L, 1, κS) =eκS +
∂((1− e) + κSe)

∂κS

(
β(r − µS)(W2(c)−W2(nc))− C ′(κ))
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Now taking the cross derivative, we have:

FκSL(L, 1, κS) =− 1 + 2(1− κS)
(
β(r − µS)(W2(c)−W2(nc))− C ′(κ))

+ 2(1− κS)(v + V2 + L)
(
− βµSL(W2(c)−W2(nc))

)
+ (1− κS)2C ′′(κ)

)
FκSL(L, 1, κS) =

FκS(L, 1, κS)

v + V2 + L

+ 2(1− κS)(v + V2 + L)
(
− βµSL(W2(c)−W2(nc))

)
+ (1− κS)2C ′′(κ)

)
At equilibrium values, it must be that FκS(L, 1, κS) = 0 and so FκSL(L, 1, κS) > 0 since µSL < 0.

By a similar reasoning as in the proof of Lemma F.2, purge inference and violence are positively

correlated then.

We now highlight that the ranking of purge breadth is ambiguous. To see that, using e = (1 −

κS)(v + V2 + L), the FOC with respect to κS and L are, respectively (after slight rearranging):

(1− κS)
(
β(r − µS)(W2(c)−W2(nc))− C ′(κ)

)
=

1

2

λ(1− λ)β
(v(c)− v(nc))2(1 + v(c)+v(nc)

2
)

v + V2 + L
(1− κS)2 + ζ ′(L) =

1− κs
2

Absent additional assumptions, the following an increase in both κS and L, the first FOC can

be satisfied either with an increase in κ or with a decrease in κ. Hence, the overall effect is

ambiguous.

We then obtain the following result:

Remark F.2. If FκS(L, 1, 0) > 0, then there exists Ldisc fc ∈ [0, L) such that κfcS > 0 if and only

if Lfc < Ldisc fc.

Proof. Follows from the proof of Lemma F.3.

For ease of exposition, let Lfull fc > L if FκF (L, 1, 0) ≤ 0 and Ldisc fc > L if FκS(L, 1, 0) ≤ 0.

Before stating our main result regarding the link between violence and purge incidence/breadth,

we establish that Ldisc fc > Lfull fc whenever Lfull fc < L.

Remark F.3. If Lfull fc < L, then Ldisc fc > Lfull fc.

Proof. To show the result, it is sufficient to establish that FκF (L, 1, 0) = 0⇒ FκS(L, 1, 0) < 0 and

FκS(L, 1, 0) = 0 ⇒ FκF (L, 1, 0) > 0. Using Equation F.7 and Equation F.8 evaluated at κF = 1
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and κS = 0, we obtain:

FκF (L, 1, 0) =eκF

(
1− β(r − µF )(W2(c)−W2(nc)) + C ′(κ)

)
+ (1− e)

(
β(r − µF )(W2(c)−W2(nc))− C ′(κ)

)
− β(1− e)µFκF (W2(c)−W2(nc))

FκS(L, 1, 0) =eκS

(
1− β(r − µF )(W2(c)−W2(nc)) + C ′(κ)

)
+ e
(
β(r − µS)(W2(c)−W2(nc))− C ′(κ)

)
− β(1− e)µFκS(W2(c)−W2(nc))

Now, given eκS < 0 < eκF and µFκF < 0 < µFκS , we obtain:

(a) FκF (L, 1, 0) = 0⇒ β(r−µF )(W2(c)−W2(nc))−C ′(κ) < 0⇒ β(r−µS)(W2(c)−W2(nc))−C ′(κ) <

0 ⇒ FκS(L, 1, 0) < 0 and

(b) FκS(L, 1, 0) = 0⇒ β(r−µS)(W2(c)−W2(nc))−C ′(κ) > 0⇒ β(r−µF )(W2(c)−W2(nc))−C ′(κ) >

0 ⇒ FκF (L, 1, 0) > 0.

If parameter values are such that Lfc ∈ (Lfull fc, Ldisc fc), then all failures are purged (κfcF = 1 and

κfcS = 0). Lfc must be the solution to:

max
L

e+ β(1− e)(rW2(c) + (1− r)W2(nc)) + βe(µSW2(c) + (1− µS)W2(nc))− C(1− e)− ζ(L),

with e = v + V2 + L like in the baseline model (see Lemma C.2). Hence, there is a negative

correlation between violence and breadth follows in this case.

Proof of Proposition F.5

Follows directly from all the results above.

Proof of Proposition F.6

For L < Ldisc fc, the result follow from a similar reasoning as in the baseline model since Ll < Lh

implies κlF ≤ κhF (with strict inequality if κlF < 1) . So we recover the same direct and indirect

effects as in the baseline model. In particular, the case of discriminate purge with all failures purged

is absolutely identical.
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F.3 Repression

In this subsection, we return to the case of partial commitment. We also suppose that the autocrat

seeks to survive (and gets a payoff of 1 if she does so). Unlike Appendix E.3, we no longer

assume that purged agents are replaced. Instead, we simply suppose that the autocrat’s survival

probability depends negatively on the mass of non-congruent subordinates N (L). That is, the

survival probability is:

P (survives) = γe1 + (1− γ)
(
(1− ε) + ε(1− e1)

)
× β

(
N (L)

)
, (F.12)

with β(·) decreasing and weakly concave.

The mass of non-congruent subordinates after the repression is:

(i) N (L) = (1− e1)(1− κF )(1− µF ) + e1(1− µS) when some failures survive;

(ii) N (L) = e1(1− µS) when all failures are purged;

(iii) N (L) = e1(1 − κS)(1 − µS) when some successful citizens are purge (i.e., repression is semi-

indiscriminate).

Define

RPD(κF , L) = −(1− γ)
(
(1− ε) + ε(1− e1)

)
(1− µF )β′

(
N (L)

)
− C0 − C1κF (1− e1) (F.13)

When some failures survive, κ∗F (L) is defined as a solution to RPD(κF , L) = 0 since the autocrat

takes effort and violence as given at the time of her purging decision.

Define

RSD(κS, L) = −(1− γ)
(
(1− ε) + ε(1− e1)

)
(1− µS)β′

(
N (L)

)
− C0 − C1(1− (1− κS)e1) (F.14)

When repression is semi-indiscriminate, κ∗S(L) is defined as a solution to RSD(κS, L) = 0 since the

autocrat takes effort and violence as given at the time of her purging decision.

Comparing Equation F.13-F.14 and Equation E.4-E.5, it can be checked that we can apply a similar

reasoning as Section E.3 to show that as long as ε is sufficiently small:

(i) discriminate repression tends to be mild and semi-indiscriminate repression violent (Proposition

E.1);

(ii) the size of repression is non-monotonic in violence (Proposition E.2);

(iii) as long as β(·) is not “too concave,” effort always increases with violence, but selection strictly

improves with the intensity of violence only if L is low to begin with (Propositions E.3 and E.4).
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F.4 Single agent set-up

In this last subsection, we study a model with a single agent rather than a mass of agents. As

our goal is to illustrate the differences with our baseline model, we only perform a comparative

statics on violence and do not consider the autocrat’s problem of choosing the optimal intensity of

violence. Our single-agent model imposes a binary level of effort 0 or 1. The reason is that with

continuous effort, the purge is semi-indiscriminate only for a set of parameter values of measure 0

(details available upon request).

Consider a variant of our model with with three players: an autocrat (A), a single incumbent

subordinate (I), and a potential new subordinate (N). At the end of period 1, the autocrat decides

whether to purge the current subordinate I (k ∈ {0, 1}, with k = 1 denoting I being purged). If

agent I is purged, then N becomes the autocrat’s subordinate. Further, if purged, agent I suffers

a loss L ≥ 0. Each period, whomever is the autocrat’s agent works on a project. A project can be

a success ω = S or a failure ω = F . The probability a project is successful depends on the agent’s

costly effort, which takes value e ∈ {0, 1}. The cost of effort is c(e) = ρ × e, with c > 0 and the

probability that the project is successful is Pr(ω = S) = q × e, with q ∈ (0, 1) (and q common

knowledge).

The incumbent agent I is either congruent (τI = c) or non-congruent (τI = nc). I’s type is his

private information. However, it is common knowledge that there is a probability λ ∈ (0, 1) that I

is congruent: Pr(τI = c) = λ. Similarly, N is either congruent or non-congruent. His type is his

private information and the probability that N is congruent is r: Pr(τN = c) = r ∈ [λ, 1) (as in our

original model). All types enjoy a payoff R > 0 from being a regime insider. In addition, a type

τ ∈ {c, nc} gets a payoff v(F, τ) = 0 from a non-successful project and v(S, τ), with v(S, c) > 0

and v(S, nc) ∈ [0, v(S, c)) from a successful project. I’s payoff in period 1 is

uI1(e; τ) = R + (1− k)× v(ω, τ) + k(−L)− ρ× e (F.15)

In the second period the payoff of subordinate J ∈ {I,N} is:

uJ2 (e; τ) = R + v(ω, τ)− ρ× e (F.16)

The autocrat cares about the success of the agent’s project. She gets a payoff of 1 when the

project is successful and 0 otherwise. In addition, the autocrat pays a cost C1 > 0 when she purges

the agent S at the end of period 1. Her utility function can thus be represented as:

UA(κ) = I{ω1=S} + I{ω2=S} − C1 × k, (F.17)
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To summarize, the timing of the game is:

Period 1:

1. I and N privately observe their type τ ∈ {c, nc};

2. I decides whether to exert effort on his project: e ∈ {0, 1};

3. The autocrat A observes ω1 ∈ {S, F}. She decides whether to purge I;

4. First-period payoffs are realised;

Period 2:

1. The subordinate (I if not purged, N if purged) chooses effort level;

2. ω2 and second-period payoffs are realized, the game ends.

The equilibrium concept is Perfect Bayesian Equilibrium. Notice that the autocrat observes

only the outcome of the project in period 1 (not I’s effort) before deciding whether to purge I. We

impose D1 equilibrium refinement to facilitate comparison with the baseline model.

Throughout, we use the same notation as in the baseline model. V2(τ) denotes an agent’s

expected payoff in period 2 as a function of his type. The (ex-ante) average payoffs are denoted by

v = λv(S, c) + (1− λ)v(S, nc) and V2 = λV2(c) + (1− λ)V2(nc).

The agent’s strategy is a mapping from his type τ to an effort level e ∈ {0, 1} denoted with

slight abuse of notation e(τ) ∈ {0, 1}. A mixed strategy is denoted α : {c, nc} → ∆({0, 1}). For

the autocrat, her purging strategy is a mapping from outcome ω to a purge decision k ∈ {0, 1}. In

particular, we denote the probability I is purged after outcome ω ∈ {F, S} κω (the equivalent of

the purge incidence in the baseline model). Finally, denote µω(α(c), α(nc)) the autocrat’s posterior

that I is congruent after observing ω ∈ {F, S}) when she anticipates (correctly in equilibrium) that

I plays the tuple of strategies (α(c), α(nc)). Denote αF = λ(1 − α(c)q) + (1− λ)(1− α(nc)q) the

probability I fails and αS = 1−αF , the probability it succeeds. We further denote µF (α(c), α(nc))

and µS(α(c), α(nc)) the posteriors as a function of the (anticipated) subordinate’s strategy.

To make the problem interesting, we impose two assumptions on parameter values. First, we

suppose that only congruent agents exert effort in period 2 (qv(S, nc) − ρ < 0 < qv(S, c) − ρ).

This implies that V2(c) = R + qv(S, c) − ρ and V2(nc) = R. Further, the autocrat’s gain from

replacing a non-congruent type with a congruent type is Dc,nc := q. Using this result, we assume

that the autocrat has some incentive to purge when her agent plays a separating strategy C1 <

(r − µF (1, 0))Dc,nc. Observe that absent the first condition, a purge does not occur in this set-up.
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First, observe that general version of Lemma 1 (i.e., κ∗S(L) > 0 ⇒ k∗F (L) = 1) holds in this

setting due to the D1 equilibrium refinement. Second, a no effort equilibrium does not exist because

of the D1 refinement. Third, there is no equilibrium in which a congruent type randomizes between

effort and no effort. If so, κS = 0 (since success perfectly reveals congruence) and a congruent

type’s expected payoff from effort is qv(S, c)− ρ+ qκF (V2(c) +L) + (1− κF )V2(c) + κF (−L). If he

does not exert effort, his expected payoff is (1 − κF )V2(c) + κF (−L). Under our assumption that

qv(S, c)− ρ > 0, a congruent type is never indifferent.

We thus look for three types of equilibria:

(i) Discriminate purge with some failures surviving (κ∗F (L) ∈ (0, 1)) in which a non-congruent type

randomizes between effort and no effort;

(ii) Discriminate purge with all failures purged (κ∗F (L) = 1 and κ∗S(L) = 0) in which a non-congruent

type plays a possibly degenerate mixed strategy;

(iii) Semi-indiscriminate purge (κ∗S(L) > 0) in which a non-congruent S randomizes between effort

and no effort.

Type (i) equilibrium.

The equilibrium features:

(a) κF = ρ−qv(S,nc)
q(V2(nc)+L)

and κS = 0;

(b) α(c) = 1 and α(nc) is the solution to (r − µF (1, α(nc)))Dc,nc = C1, with µF (1, α(nc)) =

λ(1−q)
λ(1−q)+(1−λ)(1−qα(nc)) .

This equilibrium exists if and only if (r − λ)Dc,nc < C1 and qL > ρ− q(v(S, nc) + V2(nc)).

In this equilibrium, the ex-ante probability a subordinate is congruent in the second period is

P(L) = αF
(
κF × r + (1− κF )× µF (1, α(nc))

)
+ αSµ

S(1, α(nc)). Since κF strictly decrease with L

and other quantities do not depend on L, P ′(L) < 0.

Type (ii) equilibrium.

The equilibrium a.e features:

(a) κF = 1 and κS = 0;

(b) α(c) = 1 and α(nc) = 0;

This equilibrium exists if and only if qL < ρ− q(v(S, nc) + V2(nc)).

To see this, suppose that α(nc) = 1, then µF (1, 1) = µS(1, 1) = λ and the autocrat either al-

ways purges or never purges except if (r − λ)Dc,nc = C1 (a knife-edge condition). A contradiction
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with the assumed equilibrium type. Suppose α(nc) ∈ (0, 1), then given κF = 1, it must be that

q(V2(nc) + L) + qv(S, nc)− ρ = 0 again a knife-edge condition. Hence, almost always, the equilib-

rium is as described above.

In this equilibrium, the ex-ante probability a subordinate is congruent in the second period is

P(L) = αF r + αS, with P ′(L) = 0.

Type (iii) equilibrium.

The equilibrium features:

(a) κF = 1 and κS = 1− ρ
q(v(S,c)+V2(c)+L)

;

(b) α(c) = 1 and α(nc) is the solution to (r − µS(1, α(nc))Dc,nc = C1 with µS(1, α(nc)) =

λq
λq+(1−λ)qα(nc) .

The equilibrium exists if and only if: (r − λ)Dc,nc > C1 and qL > ρ− q(v(S, nc) + V2(nc)).

In this equilibrium, the ex-ante probability a subordinate is congruent in the second period is

P(L) = αF r+αS(κSr+(1−κS)µS(1, α(nc)). Since κS strictly increase with L and other quantities

do not depend on L, P ′(L) > 0.

Using the results above, we can observe major differences with our baseline model.

1. A purge is discriminate with all failures purged (type (ii) equilibrium) only if violence is low

rather than intermediary like in the baseline model.

2. The nature of the purge does not depend on the intensity of violence unlike in the baseline model

since for qL > ρ− q(v(S, c) + V2(c)), it is fully determined by the quality of the replacement pool.

3. Fixing the nature of the purge, effort does not depend on violence.

4. The effect of increased violence on selection is monotonic (weakly) even if r > λ. Indeed,

consider the two possible cases.

Case (i) (r−λ)Dc,nc < C1: For low intensity (qL < ρ− q(v(S, nc) +V2(nc))), all failures are purged

and selection does not depend on L; for high intensity (qL > ρ−q(v(S, nc)+V2(nc))), some failures

survive and selection worsens with the intensity of violence (the exact opposite of our results).

Case (ii) (r − λ)Dc,nc > C1: For low intensity (qL < ρ − q(v(S, nc) + V2(nc))), all failures are

purged and selection does not depend on L; for high intensity (qL > ρ−q(v(S, nc)+V2(nc))), some

successful subordinates are purged and selection improves with the intensity of violence (again the

exact opposite of our model).

These four major differences imply that the many-to-one accountability problem we study in the
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main text is fundamentally different than a one-to-one accountability problem. The latter cannot

be used to approximate the former.
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