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A Supplementary Statistics

Table A: Vote Results
Salinas Cárdenas Clouthier Total Votes Polling Stations

Vote Tallies 9,294,147 5,314,667 3,269,208 18,207,388 52,288
(0.510) (0.292) (0.179)

Official Data 9,641,329 5,956,988 3,267,159 19,145,012 54,493
(0.503) (0.311) (0.171)

Notes: This table compares the vote total and vote shares of the three main candidates using the
official results and the information from the tally sheets. Vote shares are in parenthesis.
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Table B: Summary Statistics on the Information from the Vote Tally Sheets
N Mean S.D. Min Max

Salinas (PRI) 53288 174.413 208.27 0 6080
Clouthier (PAN) 53288 61.35 106.14 0 4436
Ibarra (PRT) 53288 2.18 12.10 0 592
Castillo (PDM) 53288 4.00 17.03 0 1802
Cárdenas (FDN) 53288 99.73 131.65 0 2280
Total Votes 53288 349.76 303.57 29 9429
PRI Agent 53288 0.62 0.47 0 1
PAN Agent 53288 0.50 0.50 0 1
FDN Agent 53288 0.47 0.50 0 1
PDM Agent 53288 0.09 0.30 0 1
PRT Agent 53288 0.07 0.25 0 1
Poll Worker Signature 1 53288 0.93 0.25 0 1
Poll Worker Signature 2 53288 0.93 0.25 0 1
Poll Worker Signature 3 53288 0.90 0.29 0 1
Poll Worker Signature 4 53288 0.88 0.32 0 1

Notes: This table reports summary statistics for the information obtained from the vote tally
sheets. The unit of observation is the polling station. The information of party agents and poll

workers’ signatures are dummy variables that equal 1 for each observation where the individual
signed the tally sheet.
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B Experiment Description

The survey experiment discussed in Section 4.2 used Qualtrics survey technology with

two population samples. The respondents for the first sample were recruited through

Amazon’s Mechanical Turk via a HIT advertised as “Find altered tallies. A 15 minute

survey” Respondents were restricted to those in the United States with HIT approval

rates greater than or equal to 95% and at least 1,000 HITs approved. Respondents were

provided $1.70 compensation for taking the survey. Survey data from 200 respondents

was collected on February 14, 2017. Each respondent was presented with 10 random

images from the Training Set and were asked to identify those files that present alterations

in their numbers. The average response time was 7.4 minutes (SD=2.8 minutes) and 62%

of the respondents correctly answered the attention check.

The second sample used the answers of 4 students at the University of Houston. Stu-

dents’ responses were collected during March 14 and July 8, 2017. Each respondent got

a sample of 50 random images from the Training Set and were asked to identify those

files that present alterations in their numbers. Respondents received $15 compensation

for taking the survey. The average response time was 92 minutes (SD=56.4 minutes). 75%

of the respondents correctly answered the attention check. Neither Amazon Turk respon-

dents nor undergraduate students were informed about the label that the images were

originally assigned.

Both studies were approved by the University of Houston Institutional Review Board

(STUDY00000131 and STUDY00000301).
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C Supplementary Figures

C.1 Vote Tally Sheet

Figure C.1: Example of a Digitized Vote Tally Sheet. Mexico, 1988
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C.2 Examples of Altered Tallies

Figure C.2: Example of an Altered Vote Tally Sheet. Puebla, District 14. Mexico, 1988
Notes: This picture shows an example of an altered tally in the State of Puebla. The votes for the
first candidate, Manuel Clouthier, were eight, as it is written in words (“ocho” in Spanish) and
numbers in blue. However, the amended tally shows the number 2 on top of it. Carlos Salinas,
the second candidate on the tally, got originally 65 votes, but the amended tally gave him 900
votes as it is shown with a different handwriting and ink color than the original numbers. The
amendments for the rest of the candidates’ vote totals follow a sequential order: 1, 2, 3, 4, 5, and 6.
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Figure C.3: Example of an Altered Vote Tally Sheet. Puebla, District 5. Mexico, 1988
Notes: This picture shows an example of an altered tally in the State of Puebla. The votes for PRI’s
Carlos Salinas were 166 as it is written in words (“Ciento sesenta y seis” in Spanish). There were
three types of amendments to the tally. First, they edited the first digit to transformed the “1” to

“8.” Second, they added and additional “1” at the left of the number. Finally, they added the
word “a thousand” (“Mil” in Spanish) at the end of the letter-written number, showing a

different alignment and handwriting than the rest of the words on the tally.
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Figure C.4: Example of an Altered Vote Tally Sheet. Veracruz, District 9. Mexico, 1988
Notes: This picture shows an example of an altered tally in the State of Veracruz. The votes for
PRI’s Carlos Salinas were 32. The amended tally shows a loop-closed “3” to make an “8” as well
as an additional 5 at the left of the original number. The amendments to the letter-written vote
total shows similar amendments.
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Figure C.5: Example of an Altered Vote Tally Sheet. Nuevo León, District 6. Mexico, 1988
Notes: This picture shows an example of an altered tally in the State of Nuevo León. The votes for
PRI’s Carlos Salinas were 63. It was first added a “1” to the left of the number, but this number
insertion was later amended to transform it into a “3.” and t. The amendments on the letter-
written numbers show different alignment and handwriting that the original numbers.
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C.3 Potential replaced tallies

Figure C.6: Examples of vote tallies from the Second District of Chiapas. Mexico, 1988
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C.4 Examples of cases included in the training set

The examples labeled as “without alterations” were selected from images that did not

present deliberate alterations in their numbers. To make sure that the model can only

distinguish deliberate alterations on the tally, I included in this set of images two kind of

examples. First, I incorporate images of tallies showing benign amendments or accidental

errors, such as misplaced numbers or marginal corrections to a candidate’s vote return

(Figure C.7). Including these examples helps the model to distinguish among different

adjustments on the tally. Second, I also included images where a candidate gets all the

votes registered in the tally but there are no clear patterns of alterations in their numbers

(Figure C.8). These examples force the model to focus on the amendments on the results

rather than their distribution across candidates.
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(a) Coahuila, District II (b) Mexico City, District XXVII

(c) Guanajuato, District I (d) Jalisco, District VII

Figure C.7: Examples of vote tallies with no alteration in their numbers. Mexico, 1988
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(a) Chiapas, District II (b) Campeche, District II

(c) Durango, District III (d) Nuevo Leon, District XI

Figure C.8: Examples of vote tallies with no alteration in their numbers. Mexico, 1988
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C.5 Analysis of the tallies from the 2015 legislative election

To further validate the model inferences, I test its accuracy on a different dataset. In

particular, I use the images of the tallies for the 2015 legislative election in Mexico. Un-

like the 1988 election, the 2015 vote-counting process was open to all political parties

at every stage, and the images of all tallies filled at the polling stations were available

online 24 hours after closing the polls. The Expert Survey of Perceptions of Electoral In-

tegrity (Norris et al., 2015) evaluates the integrity of the 2015 legislative election in Mex-

ico. In a scale from 1 to 5, where 1 means “Strongly Disagree” and 5 means “Completely

Agree,” experts’ mean answer to the statement “ Votes were counted fairly” was 4. Also,

their mean answer to “The authorities allowed public scrutiny of their performance” was

3.5. To pre-process the images, I used a computer script to download all the pictures

and crop the tally-area with the vote numbers. The images of all tallies are available at

http://prep2015.ine.mx. The model labeled these tallies as “with alterations” only 5

percent of the time—within the expected measurement error. A further inspection to the

misclassified cases suggests that most of them correspond to tallies that were slightly mis-

placed on the website, and the resultant cropped images included printed features of the

tally alien to the examples in the training set.
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Figure C.9: Example of a Digitized Vote Tally Sheet. Mexico, 2015
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Figure C.10: Examples of misclassified images for the 2015 election in Mexico.
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D Network Structure
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Table C: Network configuration summary
Layer (type) Output Shape
Zero Padding 2D (3, 233, 233)
Convolution 2D (32, 229, 229)
Activation (ELU) (32, 229, 229)
Pooling 2D (32, 114, 114)
Zero Padding 2D (32, 120, 120)
Convolution 2D (32, 118, 118)
Batch Normalization (32, 118, 118)
Activation (ELU) (32, 118, 118)
Pooling 2D (32, 59, 59)
Zero Padding 2D (32, 65, 65)
Convolution 2D (64, 63, 63)
Batch Normalization (64, 63, 63)
Activation (ELU) (64, 63, 63)
Pooling 2D (64, 31, 31)
Zero Padding 2D (64, 37, 37)
Convolution 2D (64, 35, 35)
Batch Normalization (64, 35, 35)
Activation (ELU) (64, 35, 35)
Pooling 2D (64, 17, 17)
Zero Padding 2D (64, 23, 23)
Convolution 2D (128, 21, 21)
Batch Normalization (128, 21, 21)
Activation (ELU) (128, 21, 21)
Pooling 2D (128, 10, 10)
Zero Padding 2D (128, 16, 16)
Convolution 2D (256, 14, 14)
Batch Normalization (256, 14, 14)
Activation (ELU) (256, 14, 14)
Pooling 2D (256, 7, 7)
Dropout (256, 7, 7)
Flatten (12544)
Dense (2048)
Activation (ELU) (2048)
Dropout (2048)
Dense (128)
Activation (ELU) (128)
Dropout (128)
Dense (1)
Activation (sigmoid) (1)
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The most common concern when training a CNN model is the risk of overfitting,

which occurs when the model “memorizes” image features that are not generalizable

outside the training set. I tackle this problem in two ways. First, I artificially increase the

size of my training set by producing new images derived from random shears, flips, ro-

tations, and zooms of the original pictures (Chattfield, 2014). Second, I detract the model

from focusing too much on specific features of an image by blocking a random set of units

in the neural network. This technique helps the model to consider those features that can

be generalizable to multiple images (Srivastava, 2014).

D.1 Specifications

Zero Padding: Zero padding adjusts the input volume by placing zeros around the image

border. This technique prevents that the information at the borders of the image would

be “washed away” after passing through the convolutional layer. It also allows the use of

deeper networks because it slows down the volume size of the image.17

Convolution: Every time the image passes through a convolutional layer, each of its fil-

ters slides across every 3 ⇥ 3 pixel area of the image looking for basic features, such as a

straight line, an edge, or a curve. The output of each filter generates a new representation

of the image.

Activation (ELU): ELU stands for Exponential Linear Unit and is used during the con-

volution operation to identify positive values of the image input. Unlike other activation

units—e.g., the Rectified Linear Units (ReLU) or the Parametrized Rectified Linear Units

(PReLU)—ELUs consider negative values, which improves learning in a very efficient

way (Clevert, Unterthiner and Hochreiter 2016).

17http://cs231n.github.io/convolutional-networks/.
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Pooling: Pooling layers gradually reduce the spatial dimension of the input image by de-

creasing its number of parameters. They work by downsampling every depth slice in the

image by 2 units of both width and height, reducing the number of parameters by 75%.

The purpose of this layer is to speed the convolution process as the image goes deeper

through the network. It also reduces overfitting by forcing the computer not to focus

on the exact location of a feature but, instead, on its relative location to other features

(Scherer, Müller and Behnke 2010).

Batch Normalization: The goal of normalization is to transform the outputs of the convo-

lutional layers to parameters with zero mean/unit variance. This transformation allows

the layer activations to be appropriately handled by any optimization method during the

training phase. The goal of this technique is to avoid the network to focus on outlying

activations and to speed its learning (Ioffe and Szegedy 2015).

Dropout: Dropout layers are included to reduce overfitting during the training stage. As

its name suggests, these layers “drop out” a random set of activations in the layer. This

function forces to provide the right classification based in more than one specific acti-

vation (Srivastava et al. 2014). The model included three dropout layers, each of them

blocking 20%, 30%, and 50% of the neurons before moving to its respective fully con-

nected network.

Dense: The resulting image representations from the last convolutional layer are trans-

formed into a unidimensional vector and sent to three fully connected layers that gradu-

ally glean the features more likely to correlate with each class. The first vector has 2048

Exponential Linear Units, which then pass to a second vector with 512 Exponential Linear

Units. The outputs of the second layer are sent to a third vector with only one unit which

makes whether the image has been altered.
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Activation (sigmoid): The last activation layer has a function of form f(x) = 1
1+exp�x . It

therefore follows an S-shaped curve and produces value outcome between 0 and 1.

The model is compiled using a binary cross-entropy loss function. This function is the

standard choice for binary classifications and it aims to maximize the accuracy of the pre-

dicted labels. The loss function is estimated as Loss = � 1
N

PN
n=1[ynlog(ŷn)+(1�yn)log(1�

ŷn)], where y and ŷ are the vectors for the true and predicted labels, respectively (Rubin-

stein and Kroese 2004). During the learning process, the model uses an gradient descent

optimizer that calibrates the filter weights to gradually minimize the loss function. In

particular, I use the Adadelta algorithm, which does not requires to specify a learning rate

for the gradient to reach the local minimum (Ruder 2016).

The author acknowledges the use of the Opuntia Cluster and the advanced support

from the Center of Advanced Computing and Data Systems at the University of Houston

to carry out the research presented here.
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D.2 Code
#Upload Keras modules (available at keras.io)
#I am running keras with the tensorflow backend.
from keras.preprocessing.image import ImageDataGenerator
from keras.preprocessing.image import load_img
from keras.preprocessing.image import img_to_array
from keras.preprocessing.image import array_to_img
from keras.models import Sequential
from keras.layers import Conv2D, MaxPooling2D
from keras.layers import Activation, Dropout, Flatten, Dense, ZeroPadding2D
from keras.callbacks import History
from keras.callbacks import ModelCheckpoint
from keras.layers.normalization import BatchNormalization
from keras.layers.advanced_activations import ELU
from keras.models import load_model

#os is just one of default python libraries
import os

#numpy is numeric python
import numpy as np

# Change the image size to 227x227.
# Accuracy is much higher for squared images.
# DO NOT MIX IT UP.
img_width, img_height = 227, 227

train_data_dir = ’TrainingSets/’
nb_train_samples = 900 # number of samples in the training set

validation_data_dir = ’Validation/’
nb_validation_samples = 150 # number of samples in the validation set

nb_epoch = 250 # how many epochs to train for. We are loading existing weights.
# so not needed unless training on new data

window_sz = 3 # how many pixels is the window that slides across the image is

# this will initiate a sequential backpropagation network
model = Sequential()

# this adds 3 rows of zeros (black color pixels) to top of images and 3 columns
# to the sides. This is to prevent "washing away" of the sides. Convolutional nets
# tend to assume that anything on the edge is not important.
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model.add(ZeroPadding2D(padding=(3, 3),
input_shape=(227,227,3), data_format="channels_last"))

# 32 is the number of filters I first use. So it is the dimensionality of the output,
# or how many transformations the image goes through.
model.add(Conv2D(32, (window_sz, window_sz)))

# Batch Normalization helps the learning process to find
# consistent patterns in the batch
BatchNormalization()

# This adds a non-linear layer that is in our case Exponential Linear
# Unit. This is where learning happens through backpropagation.
model.add(ELU())

# Pooling layer, it is used to improve speed. Usually after we learned some things
# from initial image, it is harmless to downsample the image some. So we are pooling
# together every 4 pixels and taking an average, making it 1.
model.add(MaxPooling2D(pool_size=(2, 2)))

# The rest is just the above repeated five more times.
# As the network goes deeper, I include larger layers by increasing its filters
model.add(ZeroPadding2D(padding=(3, 3)))
model.add(Conv2D(32, (3, 3)))
BatchNormalization()
model.add(ELU())
model.add(MaxPooling2D(pool_size=(2, 2)))

model.add(ZeroPadding2D(padding=(3, 3)))
model.add(Conv2D(64, (3, 3)))
BatchNormalization()
model.add(ELU())
model.add(MaxPooling2D(pool_size=(2, 2)))

model.add(ZeroPadding2D(padding=(3, 3)))
model.add(Conv2D(64, (3, 3)))
BatchNormalization()
model.add(ELU())
model.add(MaxPooling2D(pool_size=(2, 2)))

model.add(ZeroPadding2D(padding=(3, 3)))
model.add(Conv2D(128, (3, 3)))
BatchNormalization()
model.add(ELU())
model.add(MaxPooling2D(pool_size=(2, 2)))
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model.add(ZeroPadding2D(padding=(3, 3)))
model.add(Conv2D(256, (3, 3)))
BatchNormalization()
model.add(ELU())
model.add(MaxPooling2D(pool_size=(2, 2)))

#with each iteration we randomly turn off 20% of the neurons. This is a biological
#idea that works quite well. Basically, we are forcing the network to not focus
#too much on one single thing. If it does that, it becomes obsessed with little
#patterns ignoring the big picture. So this is sort of like how brain reacts to
#a sensory overload - receptors just start ignoring further stimulation.
model.add(Dropout(0.2))

#now we take the output which is a square and turn it into a 1D vector
model.add(Flatten())

#now that we have a vector we can put into a vector of 4096 Rectified Linear Units
#so the final conclusion can be made
model.add(Dense(4096))
BatchNormalization()
model.add(Activation(’elu’))
model.add(Dropout(0.3))
model.add(Dense(512))
model.add(Activation(’elu’))
model.add(Dropout(0.5))

#the last layer makes the decision. Decision is made by just 1 neuron, it says
# fake or not.
model.add(Dense(1))
BatchNormalization()
model.add(Activation(’sigmoid’))

#now the network is created.
model.compile(loss=’binary_crossentropy’,

optimizer=’adadelta’,
metrics=[’accuracy’])

# this is the augmentation configuration we for training. This just creates
# additional images. So if we say choose to flip an image, we now have a normal image
# and a copy of it that is flipped.
train_datagen = ImageDataGenerator(

rescale=1./255, #because neural nets like numbers in range 0-1, we divide by 255
shear_range=0.3, #we shear the image a little
zoom_range=0.3, #zoom in and out
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horizontal_flip=True, #randomly flip some images
vertical_flip=True,
samplewise_center=True,
rotation_range=30,
channel_shift_range=5)

# this is the augmentation configuration for testing:
# only rescaling
test_datagen = ImageDataGenerator(rescale=1./255,

samplewise_center=True)

#so to train the model I uncomment the following
#train_generator = train_datagen.flow_from_directory(
# train_data_dir,
# target_size=(img_width, img_height),
# batch_size=16,
# class_mode=’binary’)

# uncomment this to validate on the test set
#validation_generator = test_datagen.flow_from_directory(
# validation_data_dir,
# target_size=(img_width, img_height),
# batch_size=16,
# class_mode=’binary’)

# this is where you train or fit the data, this line actually executes it.
model.fit_generator(

train_generator,
samples_per_epoch=nb_train_samples,
validation_data=validation_generator,
nb_val_samples=nb_validation_samples,
nb_epoch=nb_epoch,
callbacks=callbacks_list,
verbose=2)
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