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Figure A1: Word co-occurrence view of word clusters - top 2 dimensions. Colors are from
posthoc k means clustering that used 10 clusters on the top 10 dimensions of the output. These
colors are used only to make the figure somewhat easier to read and are not used in the analyses.
The ‘specific’ keywords in the Table A1 are based on the numeric values on the x and y axes
of this output multiplied by the weight of the words in the overall scaling output.
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Figure A2: Word count view of word clusters - top 2 dimensions. Colors are from posthoc k
means clustering that used 10 clusters on the top 10 dimensions of the output. These colors
are used only to make the figure somewhat easier to read and are not used in the analyses. The
‘common’ keywords in the Table A2 are based on the numeric values on the x and y axes of
this output multiplied by the weight of the words in the overall scaling output.
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Figure A3: Comparison of Television News Coverage of Muslims and Twitter mentions of a

Muslim ban. In black, the number of mentions of ‘Muslim’ in the TV news scripts in standard
deviation units; in red, the logged number of mentions of ‘Muslim’ and ‘ban’ on Twitter in
standard deviation units.
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Twitter geotagging – voter record replication and control group compar-
isons
In addition to the analysis of all geotags from Twitter users in the United States with Arabic
sounding names, we also analyze a subset of these users who appear in a data set linked to voter
records, as well as a demographically matched control group.

The linked data set was created by a group of researchers affiliated with one of the authors.
The voter records were provided by a commercial vendor and include basic demographic in-
formation including age, gender, and race. The Twitter-linked data set construction followed
these steps:

• Create list of Twitter user IDs appearing in a 10% sample of all of tweets (Twitter “Dec-
ahose”) between January 2014 and June 2015

• Parse Twitter profile for name and U.S. state

• Keep Twitter user IDs with first name and last name that were unique in a state in the
Twitter sample and unique by city and/or state in the voter record

We created a replication sample of Arabic sounding name users by referencing first name
in the voter record data set against the same distinctively Arabic name data used in our main
analyses.

Table A3 shows the demographic comparisons of the geotagging vs. general Twitter sample
for voters with Arabic sounding names. We observe no large demographic differences for the
two groups. This suggests that, in our Arabic name samples, people sharing location in a
user profile (e.g. “I’m from Texas.”) are demographically similar to those geotagging precise
coordinates.

For the matched control groups, we sampled 50,000 users with similar demographics to
the Twitter users with Arabic sounding names in the voter records. 50,000 demographically
matched Twitter users produced a similar number of geotagging users compared to our Arabic
name sample. The control group was matched on state, gender, age group, and party affiliation.
Age groups were in 5 year increments (e.g. (1985 to 1990)).

Specifically, we calculated the number of Arabic sounding name and total Twitter users for
each combination of state, gender, age group, party affiliation. We sampled individuals pro-
portional to the ratio of Arabic sounding users to total users in each combination, removing
the Arabic sounding users from the sampling stage. This over-sampled individuals with sim-
ilar demographics to the distinctively Arabic named users. In the analyses, we then weighted
individuals following Iacus et al. (2011) according to the same ratios recalculated within the
smaller sample. These users are not matched exactly in the analyses, however, because there
were small differences in who geotags (and we sampled based on having a Twitter account).

This control group appeared to sample users with unusual names because the Arabic sound-
ing name sample was concentrated in states with large populations, increasing the likelihood of
multiple first and last name matches. This potentially over-sampled religious, ethnic, and racial
minorities who might also respond negatively to the campaign rhetoric.
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Table A3: Descriptive statistics for Arabic sounding name voter sample. Percentages do
not add to 100 where data is missing for gender and other category for party affiliation and
race/ethnicity. These variables were not available in all states. The Arabic name sample was
more male than female due to the name dictionary. Where we have detailed ethnicity informa-
tion, we do not observe significantly more Middle Eastern men than women on Twitter.

Arabic sounding name voters Arabic sounding name voters
geotagging on Twitter on Twitter

11/2015 or 12/2015
(unique name in state) (unique name in state)

Age
Mean 33 34
SD 9 13

Gender
Male 74% 72%
Female 26% 26%

Party Affiliation
Democrat 32% 37%
Republican 6% 5%

Top 4 States
California 21% 16%
New York 18% 11%
Texas 13% 9%
Florida 6% 7%

Race/ethnicity (not matched)
White/Caucasian 35% 32%
Black/African-American 17% 21%

N 147 4043
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Because of this, we compare this control group to both our original Arabic name sample,
as well as a more precise Arabic name sample who used posted Arabic language tweets at
some point over our observation period. Including Arabic speakers reduces the likelihood of
an incorrect match to someone who is not Muslim. This matters because our Arabic named
sample likely includes many people who are not Muslim and our control sample potentially
includes many other religious and ethnic minorities. This is an additional test where we might
expect a larger (or better measured) effect.

We show the results for both the Arabic name and Arabic name plus Arabic language sam-
ple in Figure A4. For the Arabic name plus language sample, drops on both Instagram and other
platforms are visibly larger than the control group. For the somewhat larger control group in
the figure, the counts are the sums of the users’ weights multiplied by the ratios of the two
group means (Arabic over control) before December 2nd, so that the lines can be seen at the
same level before the drop.
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Figure A4: Drops in Arabic name, Arabic name and language, and Arabic name voter samples

compared to a matched control group by source of tweet.

We evaluate the significance of these differences in the Poisson regression table below (Ta-
ble A4). We add the under-powered voter sample replication to this table as well. This test uses
all geotagged data because there was insufficient data to analyze other platforms separately
from Instagram. The data in the regressions is not multiplied by the ratio of the means because
the models measure relative changes rather than absolute ones.
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These tests pick up some declines among the control group, but these changes are smaller
than for the Arabic samples.

In Table A4, the results do not account for some users appearing on more dates than others.
In Table A5, we show quasi-Poisson regressions predicting whether a user was less likely to
geotag at all after December 2nd. These regressions are nearly equivalent to logistic regres-
sions, but the coefficients are more interpretable and can be interpreted as risk ratios (e.g. 10%
less likely to post). Each individual in this analysis is counted twice: once before December
2nd and once after.

Table A4: Change in geotagging in Arabic samples compared to control group – aggregate.

The dependent variable is the number of people geolocating on a given day.

Dependent variable:

Number of users geotagging on a given day
Arabic name, language Arabic name, language Arabic name Arabic name Arabic name, voter

Not Instagram Instagram Not Instagram Instagram All geotags

Arabic �0.98 �2.39 �0.07 �0.52 �2.73
p < 0.01 p < 0.01 p = 0.08 p < 0.01 p < 0.01

Date >"2015-12-02" �0.01 �0.15 �0.01 �0.15 �0.12
p = 0.90 p < 0.01 p = 0.90 p < 0.01 p < 0.01

Arabic:Date >"2015-12-02" �0.40 �0.21 �0.22 �0.02 �0.13
p < 0.01 p = 0.01 p < 0.01 p = 0.54 p = 0.10

Constant 3.66 5.06 3.66 5.06 5.27
p < 0.01 p < 0.01 p < 0.01 p < 0.01 p < 0.01

Observations 122 122 122 122 122

Table A5: Change in geotagging in Arabic samples compared to control group – individual

level. The dependent variable is whether an individual precisely geolocated at all.

Dependent variable:

One or more geotags
Arabic name, language Arabic name, language Arabic name Arabic name Arabic name, voter

Not Instagram Instagram Not Instagram Instagram All geotags

Arabic 0.08 0.02 0.05 �0.02 0.01
p = 0.37 p = 0.70 p = 0.42 p = 0.39 p = 0.86

Date >"2015-12-02" 0.001 �0.20 0.001 �0.20 �0.17
p = 0.99 p < 0.01 p = 0.99 p < 0.01 p < 0.01

Arabic:Date >"2015-12-02" �0.12 �0.16 �0.13 �0.01 �0.15
p = 0.34 p = 0.08 p = 0.11 p = 0.85 p = 0.14

Constant �0.32 �0.25 �0.32 �0.25 �0.24
p < 0.01 p < 0.01 p < 0.01 p < 0.01 p < 0.01

Observations 546 2,652 946 4,664 2,790

Table A5 shows that more active users contributed to the drop in geotags on platforms
other than Instagram among Arabic named users who used Arabic on Twitter, but that the other
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results were not heavily driven by a small number of people. The coefficient for column one
of the table is near the coefficient in the previous table only after modeling the number of days
active.
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Twitter geotagging – supplemental figures and tables
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Figure A5: Other geotagged tweets (i.e. state-level geotags) by Arabic named Twitter users.
The red lines are 1) the 2016 election 2) the executive order.
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Figure A6: Vertical black dotted lines identified using the method described in Bai and Perron
(2003) with the number of breaks set to two. The red lines are 1) the 2016 election 2) the
executive order.
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Survey – Changes in the trends of surveying Muslim Americans in 2016
One of the takeaways from the results presenting changes in geocoded Twitter accounts is that
accounts with Arab names had become less visible around the major political events of the
2016 election year. We substantiate this result in the voter record as well, with the caveat that
after the election, the drops may be limited to non-citizens only.

Here, we provide evidence that it also became increasingly difficult to survey Muslim Amer-
ican respondents throughout the 2016 election year. Between June 2016 - February 2017, we
contracted with Survey Sampling International (SSI) to survey Muslim Americans on three
occasions.

Table A8: Descriptives on Surveying Muslim Americans in Three Data Collection Efforts

Dataset

Number of individuals
sent to the

Qualtrics survey

Number of Muslims
SSI sent to the survey

who consented to the survey
and identified as Muslim

Number of Muslim
respondents who finished

the full survey
June 2016 280 – 204
December 2016 289 169 149
February 2017 1062 – 204

Our first data collection effort was in June 2016, one month before the Republican National
Convention. We contracted with Survey Sampling International (SSI) for a convenience sample
of 200 Muslim American respondents. SSI sent 280 respondents to our survey. Of those who
began the survey, 204 completed the full questionnaire.

Next and in December 2016, one month after the November 2016 election, we once again
contracted with SSI to sample another 200 Muslim American respondents. When we began to
explore the results in January 2017, we found some inconsistencies in the survey responses.
On February 13, 2017, SSI conducted a fraud investigation on the December 2016 dataset and
found that 24.2% of the 289 sample sent to the survey was not Muslim (70 respondents). After
removing these individuals, 169 observations in the dataset identified as Muslim and consented
to the survey. Of the 169 respondents who were Muslim, 149 completed the survey. SSI agreed
to field a third survey for us to correct for the 70 non-Muslim responses.

The third survey was launched on February 24, 2017. The results presented in this paper
come from this third survey. In this survey, individuals were prompted to answer a series
of demographic questions, including identifying their religion. If they selected “Islam,” they
were allowed to continue with the survey. If not, they were excluded from the survey. In
sum, SSI sent 1,062 potential Muslim American respondents to Qualtrics survey, yet only 230
selected Islam as their religion. It remains unknown whether this was because individuals were
afraid of selecting “Islam” as their religion, whether this was because non-Muslims have been
impersonating Muslims on online surveys or whether there is another reason remains unknown.
When all was said and done, SSI recruited 208 completes in 10 days.

As Table A9 indicates, over 750 potential Muslim respondents were sent to the survey in
two days (between February 28, 2017 and March 1, 2017). While we cannot know for certain,
it appears that identifying Muslim respondents who were willing to take the survey proved in-
creasingly more difficult, despite the target number of respondents being very small. Overall,
we present this information as additional evidence demonstrating that reaching Muslim Amer-
icans during the 2016 election year and in its aftermath proved progressively more difficult.
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Table A9: Recruitment Efforts by Date for the Third Survey

Date

Number of individuals
sent to the

Qualtrics survey
2/24/17 31
2/25/17 38
2/26/17 36
2/27/17 37
2/28/17 552
3/1/17 205
3/2/17 82
3/3/17 59
3/4/17 21
3/5/17 1

As researchers trying to survey Muslim Americans, using the same survey company that many
other scholars rely on, our anecdotal experience proved that reaching the group as research
subjects became more difficult.
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Survey – Explanation of Variables and Descriptive Table
Respondents were asked to answer a question on their religiosity on a 5 point scale. The ques-
tion was: “How often do you attend religious services at the mosque or masjid?” Possible
answers were: (1) Never, (2) Only on religious holidays, (3) Once a month, (4) Once a week,
and (5) More than once a week. From here, we created a “religious” variable where a value of
1 indicated that the individual respondent attended religious services ‘once a week’ or ‘more
than once a week’ and 0 if the subject attended the mosque or masjid ‘never,’ ‘only on religious
holidays’ or ‘once a month.’ In sum, 101 respondents (48.56%) fell into the high religious cat-
egory and 107 respondents (51.54%) into the low religious category. Our linked fate question
asks “Do you think that what happens to Muslims in this country will affect what happens to
your life?” Of the 208 respondents in our sample, 115 answered ‘Yes, a lot’ and 67 answered
‘Yes, a little’ and 26 answered ‘No.’ We coded those who responded with ‘Yes, a lot’ as having
high linked fate and those who responded ‘Yes, a little’ or ‘No’ as having low linked fate.

Respondents were also asked to rate their behavioral shifts over the last 12 months: “[t]o
what extent have you changed your behavior in the following ways?” They were asked to
evaluate the following statements on a 4-point Likert scale (1= Never, 2 = Once in a while, 3 =
Somewhat often, and 4 = Very often): (1) Avoided interactions with members of another social
group, (2) Avoided interactions with members of another political party, (3) Limited posts on
social media, and (4) Less frequently visited restaurants, shopping malls, parks or other public
places. On average, respondents rated these avoidance statements as 2 or higher, indicating that
they reported having had segregated or censored themselves at least somewhat often or very
often over the last 12 months (see Table A10).

Across the board, we observe significant differences in means between those with low re-
ligiosity and those with high religiosity for each of the avoidance statements examined. In
other words, those who attended the mosque about once a week or more than once a week
were significantly more likely to reduce their visibility and visit public spaces less often. We
find similar results for those with high linked fate and those with low linked fate; except for
with respect to avoidance statement 1, which measures avoiding interactions with members of
another social group. In this instance, the difference is in the same direction as with the other
avoidance behaviors, but is not statistically significant.
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Table A10: Descriptive Statistics for avoidance statements

Mean SD Min Max N

Low Religiosity
Avoidance Statement 1 1.803738 1.041038 1 4 107
Avoidance Statement 2 1.88785 .9936316 1 4 107
Avoidance Statement 3 1.897196 1.106879 1 4 107
Avoidance Statement 4 1.747664 1.000881 1 4 107

High Religiosity
Avoidance Statement 1 2.326733 1.105522 1 4 101
Avoidance Statement 2 2.534653 1.212966 1 4 101
Avoidance Statement 3 2.514851 1.162875 1 4 101
Avoidance Statement 4 2.376238 1.1563 1 4 101

Low Linked Fate
Avoidance Statement 1 1.956989 1.122051 1 4 93
Avoidance Statement 2 1.967742 1.117563 1 4 93
Avoidance Statement 3 1.903226 1.142694 1 4 93
Avoidance Statement 4 1.817204 1.031527 1 4 93

High Linked Fate
Avoidance Statement 1 2.13913 1.083261 1 4 115
Avoidance Statement 2 2.391304 1.144749 1 4 115
Avoidance Statement 3 2.434783 1.148076 1 4 115
Avoidance Statement 4 2.243478 1.159184 1 4 115

Full Sample
Avoidance Statement 1 2.057692 1.101838 1 4 208
Avoidance Statement 2 2.201923 1.149499 1 4 208
Avoidance Statement 3 2.197115 1.173208 1 4 208
Avoidance Statement 4 2.052885 1.121632 1 4 208
Avoidance Statement 1: “Avoided interactions with members of another social group”

Avoidance Statement 2: “Avoided interactions with members of another political party”

Avoidance Statement 3: “Limited posts on social media”

Avoidance Statement 4: “Less frequently visited restaurants, shopping malls, parks, or other public places”

Responses measured on a Likert scale: 1 = never, 2 = once in awhile, 3 = somewhat often, 4 = very often
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Survey – supplemental figure
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Figure A7: Self-reported avoidance behaviors among Muslim Americans by religiosity and linked fate.
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Survey – supplemental tables on societal and political discrimination
We cannot be sure whether those with Twitter accounts belonging to individuals with Arabic
names reduced their visibility due to experiences with direct or indirect societal or political
discrimination. However, using our survey data, we can begin to test how societal and political
discrimination may have shaped these behaviors.

Here, we very briefly build off of Oskooii (2016)’s theory of discrimination that societal
discrimination often reduces Muslim American political participation, while political discrim-
ination increases their political participation. Since we are interested in reductions of visibility
– or avoidance behaviors – and not political participation, we use the four avoidance statements
as our dependent variables. Like Oskooii (2016), we expect experiences with societal discrim-
ination to increase avoidance behaviors in societal contexts (with respect to each of the four
dependent variables we examine). We are agnostic about the role of experiences with political
discrimination, since the behaviors we measure do not capture avoidance of the political realm
or political officials.

We explore two key independent variables of interest. Respondents were asked to evaluate
statements with the following prompt: “In the past 12 months, how often have any of the
following things happened to you because you are a Muslim.” The first independent variable
is an aggregated measure of societal discrimination made up of five statements, as follows: (1)
You have received poorer service than other people at restaurants and stores, (2) People act as
if they are afraid of you, (3) People act as if they are suspicious of you, (4) People called you
offensive names or treated you with less respect, (5) You were physically threatened or attacked.
The second is an aggregated measure of political discrimination made up of three statements:
(1) You were singled out or treated unfairly by airport security, (2) You were singled out or
treated unfairly by other government officials or institutions such as the police, and (3) You
heard or saw your local government officials or politicians make negative comments about
Muslims. Respondents rated each of the statements on a 1-4 Likert scale ranging from ‘Never’
(1), ‘Once in awhile’ (2), ‘Somewhat often’ (3), and ‘Very often’ (4).

Table A11: Effects of Societal and Political Discrimination on Self-Reported Avoidance Be-
haviors - Without Controls

(1) (2) (3) (4)
Avoidance

Statement 1
Avoidance

Statement 2
Avoidance

Statement 3
Avoidance

Statement 4
Societal Discrimination (aggregate) 0.140⇤⇤⇤ 0.137⇤⇤⇤ 0.0792⇤⇤⇤ 0.140⇤⇤⇤

(0.0199) (0.0212) (0.0222) (0.0197)
Political Discrimination (aggregate) 0.0255 0.0369 0.132⇤⇤⇤ 0.0411

(0.0321) (0.0342) (0.0359) (0.0317)
Constant 0.424⇤⇤ 0.528⇤⇤⇤ 0.520⇤⇤⇤ 0.324⇤

(0.138) (0.147) (0.154) (0.136)
N 208 208 208 208
adj. R

2 0.458 0.437 0.404 0.489
Standard errors in parentheses
⇤

p < 0.05, ⇤⇤ p < 0.01, ⇤⇤⇤ p < 0.001

Table A11 presents an OLS regression examining the effects of the aggregated societal and
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political discrimination measures on each of the four avoidance statements examined. As each
of the four models demonstrates, societal discrimination has a substantive, consistent, and ro-
bust effect on each of the avoidance statements examined. Political discrimination, meanwhile,
does not similarly predict avoidance behaviors, except for the third statement, pertaining to
limiting posts on social media. This finding is provides some insights into the larger findings
of this paper; perhaps it is a combination of societal and political discrimination that propelled
U.S. Muslims to lessen their visibility during the 2016 election season.

Table A12: Effects of Societal and Political Discrimination on Self-Reported Avoidance Be-
haviors - With Controls

(1) (2) (3) (4)
Avoidance

Statement 1
Avoidance

Statement 2
Avoidance

Statement 3
Avoidance

Statement 4
Societal Discrimination (aggregate) 0.137⇤⇤⇤ 0.137⇤⇤⇤ 0.0713⇤⇤ 0.146⇤⇤⇤

(0.0204) (0.0222) (0.0238) (0.0201)
Political Discrimination (aggregate) 0.0278 0.0370 0.134⇤⇤⇤ 0.0405

(0.0331) (0.0360) (0.0385) (0.0325)
Male 0.131 0.0941 0.0303 0.00311

(0.116) (0.126) (0.134) (0.114)
White 1.906⇤ 1.854⇤ -0.406 0.241

(0.806) (0.877) (0.938) (0.793)
Age -0.00147 0.00111 -0.00405 0.0111⇤⇤

(0.00420) (0.00457) (0.00489) (0.00413)
Income -0.0795 -0.0464 -0.0445 -0.0330

(0.0408) (0.0444) (0.0475) (0.0401)
Education 0.0592 0.0735 0.0290 0.0791

(0.0434) (0.0472) (0.0505) (0.0427)
Democrat -0.289 -0.0308 0.0381 -0.372⇤

(0.151) (0.164) (0.175) (0.148)
Independent -0.226 0.0717 0.0625 -0.123

(0.160) (0.174) (0.186) (0.157)
Citizen -0.217 -0.161 0.0830 -0.169

(0.199) (0.216) (0.231) (0.195)
Constant 0.836⇤ 0.410 0.631 0.00406

(0.336) (0.365) (0.391) (0.330)
N 205 205 205 205
adj. R

2 0.477 0.435 0.379 0.519

Standard errors in parentheses
⇤

p < 0.05, ⇤⇤ p < 0.01, ⇤⇤⇤ p < 0.001

When we add controls to the models, the effect of societal discrimination on avoidance be-
haviors remains strong. As Table A12 demonstrates, standard controls such as male, white, age,
income, education, Democrat, Independent, and citizen, do not detract from the important role
that societal discrimination plays in shaping self-reported avoidance behaviors. Interestingly,
political discrimination continues to not shape avoidance behaviors except for with respect to
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limiting posts on social media, once again. This finding suggests that future research should
work on disentangling the cumulative and interactive effects of societal and political discrim-
ination on avoidance behaviors. Nevertheless, the role of societal discrimination is clear: it
plays a similar role in shaping reductions in visibility as it does for reductions in political par-
ticipation, providing more support for Oskooii (2016)’s theory that nuanced experiences with
societal and political discrimination can lead to divergent outcomes.
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