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A Long Run Multiplier

Another quantity of interest in traditional TSCS models is the long-run multiplier (LRM), which is

the effect of a one-unit change the equilibrium level ofXt on the equilibrium level ofYt (Greene, 2012,

pp. 422, De Boef and Keele, 2008).
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We do not fully consider this quantity in this paper because its definition requires additional as-

sumptions that, while relatively easy to discuss within the context of standard parametric TSCSmod-

els, are more complicated within the nonparametric approach. Most simply, our fixed time-window

approach essentially precludes assessment of this quantity. However, in the interest in clarifying the

differences between our approach and the econometric TSCS traditions, we provide a short discus-

sion here. Equilibrium in the potential outcomes framework would be the long-run averages of the

potential outcomes under a constant treatment history, if they exist. For instance, the equilibrium

level of Yit under treatment would be:

lim
t→∞

E[Yit(1t)].

The LRM, then, is the average causal effect with a comparison between always treated, (1, 1, . . . ), and

never treated, (0, 0, . . .) as we let t go to infinity:

LRM = lim
t→∞

E[Yit(1t)− Yit(0t)]. (1)

Identification of the LRM suffers from a few challenges. First, there is no guarantee that the limit

in (1) exists. One of the principal reasons the time series literature focuses on the dynamics of the

outcome is to ensure that the empirical processes are stable (or stationary) and that such limits exist.

Identification, then, will depend on some assumptions about the distribution of the dependent vari-

able. Second, even if the limit exists, the LRM cannot be nonparametrically identified without further

restrictions since it depends on estimating the mean potential outcome after an infinite number of

time periods.

B Consistent variance estimation

In this section we present a consistent estimator for the variance of the SNMM approach with linear

models, a no time-varying interactions assumption, and time-constant impulse response. Let w j
it be

a 1 × kj vector of unit i covariates for estimating the IRF at lag j. In general, this vector will be some

function of the treatment and the time-varying covariates w j
it = f(zi,1, xi,1, . . . , zi,t−j, xi,t−j). Some

of these covariates, x̃ j
it, are those in the impulse response function and will be used to transform
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the outcome for the next lag. The remaining covariates, z̃ jit, are covariates used to satisfy sequential

ignorability. These two sets of covariates partition the vector, w j
it = (x̃ j

it, z̃
j
it).

We collect these vectors into a Tj × kj matrix of covariates for unit i at lag j, Wij, where the num-

ber of observations per unit, Tj, will depend on the covariates chosen. For instance, certain lagged

covariates might be missing in earlier time periods since they would have occurred before baseline

measurements. We define the matrices X̃ij and Z̃ij similarly. Let Vi = (yi,Wi0, . . . ,WiJ) be the ob-

served data for unit i.

Let γj be a kj × 1 vector of coefficients for w j
it and let βj be the subvector of γj associated with

the IRF covariates, x̃ j
it. The vector γ = (γ′0, γ′′′′1 , . . . , γ′J)′ is the target of inference. Under sequential

ignorability and a linear model with time-constant effects for yi = (yi1, . . . , yit, . . . , yiT), the system

of equations must satisfy the following moment conditions:

E[W′′′
i0 (yi −Wi0γ0)] = 0 (2)

E[W′
i1(yi − X̃i0β0 −Wi1γ1)] = 0 (3)

E[W′
i2(yi − X̃i0β0 − X̃i1β1 −Wi2γ2)] = 0 (4)

... = 0

E[W′
iJ(yi − (

J−1∑
j=0

X̃ijβj)−WiJγJ)] = 0 (5)

To simplify notation, we assume that yi and X̃ij are properly truncated whenever appropriate so that

they are conformable with the other matrices.

Let g(Vi, γ) be the K × 1 vector of estimating equations defined above, where K =
∑J

j=1 kj is

the dimensionality of γ. Thus, we can compactly write the moment conditions as E[g(Vi, γ∗)] = 0,

where γ∗ is the true value of the parameters. The usual GMM approach here is to find γ̂ such that

(1/n)
∑

i g(Vi, γ̂) = 0. Here we have as many moment conditions as parameters to estimate so there

is an exact solution, which can easily be found with standard software by iterating through the lags,

estimating γ̂j and using it to transform yi to estimate γ̂j+1. The point estimate from that approach

will be identical to one from estimating all parameters jointly. The standard errors on γ̂, though,

3



will be incorrect because they ignore the fact that estimates for one period depend on estimates from

previous periods.

Standard theory on GMM estimators can help us derive asymptotically correct standard errors.

Let γ∗ be the true value ofDefine theK×KmatricesG ≡ E[∇γg(Vi, γ∗)] andB ≡ E[g(Vi, γ∗)g(Vi, γ∗)′].

Then, under regularity conditions, γ̂ will be asymptotically Normal with asymptotic variance,

Avar(γ̂) = (G′G)−1G′BG(G′G)−1
/N.

Let W̃ij = [X̃ij 0] be the matrix of covariates at lag j with zeros replacing any covariates not

included in the IRF. Then it is easy to show that with the above moment conditions, G will have the

following form:

G = E



W′
i0Wi0 0 0 0 · · · 0

W′
i1W̃i0 W′

i1Wi1 0 0 · · · 0

W′
i2W̃i0 W′

i2W̃i1 W′
i2Wi2 0 · · · 0

...
...

...
... . . . ...

W′
iJW̃i0 W′

iJW̃i1 W′
iJW̃i2 W′

iJW̃i3 · · · W′
iJWiJ


. (6)

LetWj be the stackedNTj × kj matrix of allWij and define W̃j similarly. Then, under the appropriate

regularity conditions, a consistent estimator of G will be:

Ĝ = N−1



W′
0W0 0 0 0 · · · 0

W′
1W̃0 W′

1W1 0 0 · · · 0

W′
2W̃0 W′

2W̃1 W′
2W2 0 · · · 0

...
...

...
... . . . ...

W′
JW̃0 W′

JW̃1 W′
JW̃2 W′

JW̃3 · · · W′
JWJ


. (7)

To estimate B it is useful to derive it for this specific context. Let uij(γ) = yi−
∑j

s=0 X̃isβs−Wijγj
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be errors associated with lag j. Then we can write B in the following form:

B = E



W′
i0ui0(γ)ui0(γ)′Wi0 W′

i0ui0(γ)ui1(γ)′Wi1 · · · W′
i0ui0(γ)uiJ(γ)′WiJ

W′
i1ui1(γ)ui0(γ)′Wi0 W′

i1ui1(γ)ui1(γ)′Wi1 · · · W′
i1ui1(γ)uiJ(γ)′WiJ

...
... . . . ...

W′
iJuiJ(γ)ui0(γ)′Wi0 W′

iJuiJ(γ)ui1(γ)′Wi1 · · · W′
iJuiJ(γ)uiJ(γ)′WiJ


. (8)

Letting ûij = uij(γ̂) be the residuals from lag j, we can consistently estimate B with:

B̂ = N−1
N∑
i=1



W′
i0ûi0û′i0Wi0 W′

i0ûi0û′i1Wi1 · · · W′
i0ûi0û′iJWiJ

W′
i1ûi1û′i0Wi0 W′

i1ûi1û′i1Wi1 · · · W′
i1ûi1û′iJWiJ

...
... . . . ...

W′
iJûiJû′i0Wi0 W′

iJûiJû′i1Wi1 · · · W′
iJûiJû′iJWiJ


. (9)

Given these two consistent estimators, we can apply standard asymptotic theory to derive the

following estimator which is consistent for Avar(γ̂):

V̂ar[γ̂] = (Ĝ′Ĝ)
−1
Ĝ′B̂Ĝ(Ĝ′Ĝ)

−1
. (10)

Note that this estimator is robust to heteroskedasticity and serial correlation. The asymptotic prop-

erties hold as N → ∞ with both T and J fixed, so this estimator is likely to perform best if N is

large relative to T and J. One could impose a system homoskedasticity assumption and estimate the

variance under a feasible GLS approach, which might be more efficient if T and N are closer in size.

Alternatively, there are several finite-sample corrections that can improve inference with T is large.

C Proof of Sequential g-estimation/ADL near equivalence

Suppose the vectorsYt,Yt−1,Xt andXt−1 have been centered, anddefine theXmatrixX = [Xt−1 Xt Yt−1]

to be the combination of these column vectors. Let β̂ be the coefficient vector from the regression of

Yt on X so that β̂ = (X′X)−1X′Yt and has entries, β̂ = (β̂2, β̂1, α̂)′. Note the lack of an intercept due

to centering of all variables.

5



The SNMM approach can be accomplished by blipping down and regressing on Xt−1. This can

also be re-written as the difference between the coefficient on Xt−1 from the simple regression of Yt

on Xt−1 and the coefficient on Xt−1 from the simple regression of Xt on Xt−1 times the coefficient on

Xt−1 from the multiple regression.

Ỹt = Yt − Xtβ̂1

ψ̂1 = (X′
t−1Xt−1)

−1X′
t−1Ỹt

= (X′
t−1Xt−1)

−1X′
t−1(Yt − Xtβ̂1)

= (X′
t−1Xt−1)

−1X′
t−1Yt − (X′

t−1Xt−1)
−1X′

t−1Xtβ̂1

We also know from the normal equations of the full multivariate regression that

(X′
t−1Xt−1)β̂2 + (X′

t−1Xt)β̂1 + (X′
t−1Yt−1)α̂ = (X′

t−1Yt)

β̂2 = (X′
t−1Xt−1)

−1X′
t−1Yt

− (X′
t−1Xt−1)

−1
(X′

t−1Xt)β̂1 − (X′
t−1Xt−1)

−1
(X′

t−1Yt−1)α̂

β̂2 + (X′
t−1Xt−1)

−1
(X′

t−1Yt−1)α̂ = (X′
t−1Xt−1)

−1X′
t−1Yt − (X′

t−1Xt−1)
−1
(X′

t−1Xt)β̂1

= ψ̂1

Note that ψ̂1 = β̂2 + (X′
t−1Xt−1)

−1(X′
t−1Yt−1)α̂ is close to the estimated impulse response from the

ADL approach (β̂2 + β̂1α̂). The difference is that the ADL approach uses the contemporaneous

effect β̂1 (the estimate of the effect of Xt on Yt) while the sequential g-estimation approach uses

(X′
t−1Xt−1)

−1(X′
t−1Yt−1) (the estimate of the effect ofXt−1 onYt−1). Therefore, note that the approaches

will only be equivalent when the effects of X on Y are constant across time.

D Simulation Details

For the simulations, we generated the baseline covariate as Zi1 ∼ N (0.4, 0.12) and a time-constant

omitted variable as Ui ∼ N (0, 0.12). Then, in each period, we generated the data with the following
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specification:

Yit(1, 1) = 0.8 + μ1.1 + μ2.11 + 0.9 · Ui +N (0, 0.12)

Yit(1, 0) = 0.8 + μ1.1 + 0.9 · Ui +N (0, 0.12)

Yit(0, 1) = 0.8 + μ2.01 + 0.9 · Ui +N (0, 0.12)

Yit(0, 0) = 0.8 + 0.9 · Ui +N (0, 0.12)

Zit(1) = γ0 + γ1 + 0.7 · Ui +N (0, 0.12)

Zit(0) = γ0 + 0.1 · Ui +N (0, 0.12)

Zit = Xi,t−1Zit(1) + (1 − Xi,t−1)Zit(0)

Pr[Xit = 1|Zit,Yi,t−1] = inv.logit(α0 + α1 · Zit + α2 · Yi,t−1)

In the simulations in the paper, we set μ1.1 = μ2.01 = μ2.11 = −0.1, α = (−1.3, 1.5, 2.5), and

γ0 = 0.5. In the two settings discussed in the paper, γ1 was set to −0.5 when the time-varying

confounder is affected by treatment and 0 when it is not. Note that for each time-series, i, the DGP

does not depend on t and the DGP for period t only relies on data for periods t and t− 1. Conditional

on Xi,t−1:t, the vector {Yit,Zit} is clearly stationary because its only remaining time-varying variation

comes from i.i.d. errors. It is easy to show that after marginalizing over these vectors, the process

Xit forms a time-homogeneous Markov chain, implying the overall DGP is stationary. We checked

this via simulation by simulating 1000 time-series of length T = 1000 and found that the means and

autocovariances of each process were constant over time. Furthermore, all process clearly rejected

the unit-root null hypothesis of an augmented Dickey-Fuller test.

In addition to the results in the paper, we also conducted a second simulation study withmisspec-

ification in the time-varying covariates. In particular, we assume that Zit was not directly observable,

and instead we observe a non-linear transformation of that covariate, Z∗
it = exp(0.25 ∗ (Zit − 0.5)3).

If an analyst knew this deterministic transformation, then she could correctly specify the functional

form as log(Zit)
1/3. Theoretically, this misspecification two possible effects. First, it can increase

omitted variable bias for the contemporaneous effect of treatment because we are not conditioning

on the correct confounders. Second, it could actually reduce post-treatment bias for the lagged effect
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since we now conditioning on a noisier version of the post-treatment variable. Thus, we show four

scenarios in figure 1 that vary whether or not we have the correct Zit and investigating the RMSE of

the contemporaneous and lagged effects. In these results, the Zit is endogenous.

From these results, we can see that even under misspecification, the ADL model has significant

bias for the lagged effect. The ADL and MSM models have worse performance in that setting, but

they still outperform the ADL model. Likewise, the SNMM and MSM approaches also see increases

in RMSE for the contemporaneous effect due to omitted variable bias and model misspecification.

These results show that post-treatment bias of the ADL model can easily overwhelm any problems

with misspecification of the proposed modeling strategies in this paper.

Finally, we also show the results how the performance of the estimators changes as the number

of time periods grows keeping the number of units fixed. Figure 2 shows that the MSM and SNMM

approaches perform well when Zit is either endogenous or exogenous and their RMSE decreases as

the number of time periods increases. The rank order of performance is similar to that of the setting

where we increaseN and doesn’t change asT → ∞. The story for the ADL approach is very similar to

the setting in the main paper—badly biased at all values of T when Zit is endogenous, and performs

similarly to the SNMM approach when Zit is exogenous. These results appear to confirm that the

proposed estimator can perform well even when the sample size is fixed and the number of time

periods is growing.

E Additional illustration: The effect of trade on taxation in

OECD countries

In this section, we describe another empirical illustration that shows how the MSM/IPTW approach

gives strikingly different results from the conventional TSCS approachwhenwe apply each to the data

fromSwank and Steinmo (2002). These scholars estimate the effects of domestic economic policies on

tax rates in advanced industrialized democracies. Herewe focus on one of their explanatory variables,

trade openness, and its effect on one of their outcomes, the effective tax rate on labor. In their models,

8



20 40 60 80 100

0.00

0.05

0.10

0.15

Lagged effect, correct Z

Sample Size (N)

R
M

S
E

20 40 60 80 100

0.00

0.05

0.10

0.15

Lagged effect, misspecified Z

Sample Size (N)
R

M
S

E

20 40 60 80 100

0.00

0.05

0.10

0.15

Contemporaneous effect, correct Z

Sample Size (N)

R
M

S
E

20 40 60 80 100

0.00

0.05

0.10

0.15

Contemporaneous effect, misspecified Z

Sample Size (N)

R
M

S
E

ADL SNMM MSM Raw Truth

Figure 1: Simulation results when the time-varying confounder is correctly specified in all models (left column)
and when it is incorrectly specified in all models (right column). Top row is the RMSE for the lagged effect of
treatment and the bottom row is the contemporaneous effect of treatment. In the bottom row, the ADL results
are identical to the SNMM. In these simulations, T = 20.

Swank and Steinmo find trade openness to have no statistically significant effect on these tax rates,

but they only considered the effect of trade openness in the previous year. While Swank and Steinmo
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Figure 2: Simulation results fixing the number of units at N = 50 and allowing the number of time periods to
grow.

discuss the long-run effects of economic policies, they only estimate the contemporaneous effect of

this trade policy, leaving aside any effects of history.

Swank and Steinmo adhere to the guidance of previous methodological research on TSCS data

(Beck and Katz, 1996). The authors regress the tax rate in a given year on economic and political fea-

tures of each country from the previous year. In addition to trade openness (Xi,t−1), these attributes

include liberalization of capital controls, unemployment, leftist share of the government, and impor-

tantly, a lagged measure of the dependent variable. We refer to the lagged dependent variable as Yi,t−1

and the set of attributes (excluding trade openness) as Zi,t−1. Thus we can write their main estimating

equation as:

Yit = β0 + β1Xi,t−1 + β2Yi,t−1 + β3Zi,t−1 + εit. (11)

Keep in mind that β1 only has a causal interpretation as the CET when sequential ignorability holds

and when the effect of Xi,t−1 is constant across the covariates, Yi,t−1 and Zi,t−1, and across time.

To uncover any historical effects of trade openness on the labor tax rate, we expand the model of

Swank and Steinmo beyond a single lag. We instead take the cumulative years of trade openness as

10



our main independent variable:1

Yit = β0 + β1

(
t−1∑
k=1

Xi,k

)
+ β2Yi,t−1 + β3Zi,t−1 + νit. (12)

Unfortunately, post-treatment bias ruins the causal interpretation of the coefficient on our new mea-

sure, β1. Earlier values of trade openness, such as Xi,t−2, might affect the lagged tax rate, for instance.

To avoid this difficulty, we can take a second approach—omitting the time-varying confounders,

Yi,t−1 and Zi,t−1, from our model. Here we would estimate the effect of trade openness only condi-

tioning on a time trend:

Yit = β̃0 + β̃1

(
t−1∑
k=1

Xi,k

)
+ β̃2t+ ηit. (13)

While this method avoids the issue of post-treatment bias entirely, it admits the possibility of omitted

variable bias. If past values of the tax rate affect future trade openness, for instance, then excluding

these lags of the dependent variable will produce bias in our estimated effects. Each approach has

its drawbacks, but we can learn a great deal by comparing their results to our preferred weighting

method.

What do these approaches discover about the effects of trade openness? As Figure 3 shows, both

methods—omitting and controlling for time-varying confounders—lead to the same basic conclu-

sion: there is no statistically significant effect of trade openness on tax policy.2 These results are con-

sistent with the findings of Swank and Steinmo (2002). An alternative to both of these approaches

is the above weighting method. To implement IPTW in this case, we omit the time-varying con-

founders from the tax rate model and instead include those in a propensity score model to create

weights as shown the main text. We then use those weights in a weighted GEE model. Instead of

controlling for the time-varying confounders in our regression model, these weights adjust for the

confounding in the time-varying covariates without inducing post-treatment bias. Figure 3 shows
1Here we need trade openness as a binary treatment, so we create a new trade openness variable which is 1 if the

county-year had a score at or above the median of the entire sample. The results are substantively unchanged if we
use continuous measures, though, as noted above, IPTW in those situations has much poorer properties (Goetgeluk,
Vansteelandt and Goetghebeur, 2008).

2We estimate both of these models using a generalized estimating equations approach with robust standard errors,
allowing for arbitrary correlation of observations within a country (Liang and Zeger, 1986).
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Figure 3: Estimated effect on labor tax rates of cumulative trade openness using three models. They represent
the estimated effect and 95% confidence interval (a) when controlling for variables that trade openness affects,
(b) when omitting those variables from the model, and (c) using the recommended IPTW approach.

the IPTW estimates are not only significant and positive, but also far larger in magnitude than either

of the other approaches.
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