ONLINE APPENDIX FOR: Leadership with Trustworthy Associates

Torum Dewan \& Francesco Squintani

Equilibrium beliefs. In our model a politicians' equilibrium updating is based on the standard Beta-binomial model. Suppose that the leader j holds $d+1$ bits of information, i.e. she holds the private signal s_{j} and d politicians truthfully reveal their signals to her. The
probability that l out of such $d+1$ signals equal one, conditional on θ is

$$
f(l \mid \theta, d+1)=\frac{(d+1)!}{l!(d+1-l)!} \theta^{l}(1-\theta)^{(d+1-l)} .
$$

Hence, politician j 's posterior on θ is

$$
f(\theta \mid l, d+1)=\frac{(d+2)!}{l!(d+1-l)!} \theta^{l}(1-\theta)^{(d+1-l)}
$$

the expected value of θ is

$$
E(\theta \mid l, d+1)=\frac{l+1}{d+3},
$$

and the variance is

$$
V(\theta \mid l, d+1)=\frac{(l+1)(d+2-l)}{(d+3)^{2}(d+4)} .
$$

Derivation of Expression (2). Fix a leader j, consider a communication strategy profile \mathbf{m}_{-j} and suppose that it is an equilibrium together with the strategy y_{j} in expression (1). Let $C_{j}\left(\mathbf{m}_{-j}\right)$ be the set of players truthfully communicating with the leader j in the equilibrium. The equilibrium information of j is thus $d_{j}\left(\mathbf{m}_{-j}\right)+1=\left|C_{j}\left(\mathbf{m}_{-j}\right)\right|+1$, the cardinality of $C_{j}\left(\mathbf{m}_{-j}\right)$ plus j 's signal s_{j}. Consider any player $i \in C_{j}\left(\mathbf{m}_{-j}\right)$. Let $\mathbf{s}_{-i}\left(\mathbf{m}_{-j}\right)$ be any vector containing s_{j} and the (truthful) messages of all players in $C_{j}\left(\mathbf{m}_{-j}\right)$ except i. Let also $y_{j}\left(s_{i}, \mathbf{s}_{-i}\left(\mathbf{m}_{-\mathbf{j}}\right)\right)$ be the action that j takes if she has information $\mathbf{s}_{-i}\left(\mathbf{m}_{-j}\right)$ and believes in the signal s_{i} sent from player i, analogously, $y_{j}\left(1-s_{i}, \mathbf{s}_{-i}\left(\mathbf{m}_{-j}\right)\right)$ is the action that j takes if she has information \mathbf{s}_{-i} and believes in the signal $1-s_{i}$ sent from player i. Simplifying notation, player i does not deviate from reporting truthfully signal s_{i} to the leader j if and only if

$$
-\int_{0}^{1} \sum_{\mathbf{s}_{-i} \in\{0,1\}^{d_{j}}}\left[\left(y_{j}\left(s_{i}, \mathbf{s}_{-i}\right)-\theta-b_{i}\right)^{2}-\left(y_{j}\left(1-s_{i}, \mathbf{s}_{-i}\right)-\theta-b_{i}\right)^{2}\right] f\left(\theta, \mathbf{s}_{-i} \mid s_{i}\right) d \theta \geq 0 .
$$

Simplifying, we obtain:

$$
-\int_{0}^{1} \sum_{\mathbf{s}_{-i} \in\{0,1\}^{d_{j}}}\left(y_{j}\left(s_{i}, \mathbf{s}_{-i}\right)-y_{j}\left(1-s_{i}, \mathbf{s}_{-i}\right)\right)\left[\frac{y_{j}\left(s_{i}, \mathbf{s}_{-i}\right)+y_{j}\left(1-s_{i}, \mathbf{s}_{-i}\right)}{2}-\left(\theta+b_{i}\right)\right] f\left(\theta, \mathbf{s}_{-i} \mid s_{i}\right) d \theta \geq 0
$$

Next, observing that

$$
y_{j}\left(s_{i}, \mathbf{s}_{-i}\right)=b_{j}+E\left[\theta \mid s_{i}, \mathbf{s}_{-i}\right],
$$

we obtain

$$
\begin{aligned}
& -\int_{0}^{1} \sum_{\mathbf{s}_{-i} \in\{0,1\}^{d_{j}}}\left(E\left[\theta \mid s_{i}, \mathbf{s}_{-i}\right]-E\left[\theta \mid 1-s_{i}, \mathbf{s}_{-i}\right]\right) . \\
& \left.\left[b_{j}+\frac{E\left[\theta \mid s_{i}, \mathbf{s}_{-i}\right]+E\left[\theta \mid 1-s_{i}, \mathbf{s}_{-i}\right]}{2}-\theta-b_{i}\right)\right] f\left(\theta, \mathbf{s}_{-i} \mid s_{i}\right) d \theta \geq 0 .
\end{aligned}
$$

Denoting

$$
\Delta\left(s_{i}, \mathbf{s}_{-i}\right)=E\left[\theta \mid s_{i}, \mathbf{s}_{-i}\right]-E\left[\theta \mid 1-s_{i}, \mathbf{s}_{-i}\right],
$$

observing that:

$$
f\left(\theta, \mathbf{s}_{-i} \mid s_{i}\right)=f\left(\theta \mid \mathbf{s}_{-i}, s_{i}\right) \operatorname{Pr}\left(\mathbf{s}_{-i} \mid s_{i}\right),
$$

and simplifying, we get:

$$
-\sum_{\mathbf{s}_{-i} \in\{0,1\}^{d_{j}}} \int_{0}^{1} \Delta\left(s_{i}, \mathbf{s}_{-i}\right)\left(\frac{E\left[\theta \mid s_{i}, \mathbf{s}_{-i}\right]+E\left[\theta \mid 1-s_{i}, \mathbf{s}_{-i}\right]}{2}+b_{j}-b_{i}-\theta\right) f\left(\theta \mid \mathbf{s}_{-i}, s_{i}\right) \operatorname{Pr}\left(\mathbf{s}_{-i} \mid s_{i}\right) \geq 0 .
$$

Furthermore, using

$$
\int_{0}^{1} \theta f\left(\theta \mid \mathbf{s}_{-i}, s_{i}\right) d \theta=E\left[\theta \mid s_{i}, \mathbf{s}_{-i}\right]
$$

we obtain:

$$
\begin{gathered}
-\sum_{\mathbf{s}_{-i} \in\{0,1\}^{d_{j}}} \int_{0}^{1} \Delta\left(s_{i}, \mathbf{s}_{-i}\right)\left(\frac{E\left[\theta \mid s_{i}, \mathbf{s}_{-i}\right]+E\left[\theta \mid 1-s_{i}, \mathbf{s}_{-i}\right]}{2}+b_{j}-b_{i}-E\left[\theta \mid s_{i}, \mathbf{s}_{-i}\right]\right) f\left(\theta \mid \mathbf{s}_{-i}, s_{i}\right) \operatorname{Pr}\left(\mathbf{s}_{-i} \mid s_{i}\right) \\
=-\sum_{\mathbf{s}_{-i} \in\{0,1\}^{d_{j}}} \int_{0}^{1} \Delta\left(s_{i}, \mathbf{s}_{-i}\right)\left(-\frac{\Delta\left(s_{i}, \mathbf{s}_{-i}\right)}{2}+b_{j}-b_{i}\right) f\left(\theta \mid \mathbf{s}_{-i}, s_{i}\right) \operatorname{Pr}\left(\mathbf{s}_{-i} \mid s_{i}\right) \geq 0 .
\end{gathered}
$$

Now, note that, for any number $l=0, \ldots, d_{j}$ of digits equal to one in $\mathbf{s}_{-i}\left(\mathbf{m}_{-j}\right)$,

$$
\begin{aligned}
\Delta\left(s_{i}, \mathbf{s}_{-i}\right) & =E\left[\theta \mid s_{i}, \mathbf{s}_{-i}\left(\mathbf{m}_{-j}\right)\right]-E\left[\theta \mid 1-s_{i}, \mathbf{s}_{-i}(\mathbf{m})\right] \\
& =E\left[\theta \mid l+s_{i}, d_{j}\left(\mathbf{m}_{-j}\right)+1\right]-E\left[\theta \mid l+1-s_{i}, d_{j}\left(\mathbf{m}_{-j}\right)+1\right] \\
& =\left(l+1+s_{i}\right) /\left(d_{j}\left(\mathbf{m}_{-j}\right)+3\right)-\left(l+2-s_{i}\right) /\left(d_{j}\left(\mathbf{m}_{-j}\right)+3\right) \\
& =\left\{\begin{array}{c}
-1 /\left(d_{j}\left(\mathbf{m}_{-j}\right)+3\right) \text { if } s_{i}=0 \\
1 /\left(d_{j}\left(\mathbf{m}_{-j}\right)+3\right) \text { if } s_{i}=1 .
\end{array}\right.
\end{aligned}
$$

We obtain that player i communicates truthfully the signal $s_{i}=0$ to player j if and only if:

$$
-\left(\frac{-1}{d_{j}\left(\mathbf{m}_{-j}\right)+3}\right)\left(-\frac{-1}{2\left(d_{j}\left(\mathbf{m}_{-j}\right)+3\right)}+b_{j}-b_{i}\right) \geq 0
$$

or

$$
b_{i}-b_{j} \leq \frac{1}{2\left(d_{j}(\mathbf{m})+3\right)},
$$

and note that this condition is redundant if $b_{i}-b_{j}<0$.

Likewise, i communicates truthfully the signal $s_{i}=1$ to player j if and only if:

$$
-\left(\frac{1}{d_{j}\left(\mathbf{m}_{-j}\right)+3}\right)\left(-\frac{1}{2\left(d_{j}\left(\mathbf{m}_{-j}\right)+3\right)}+b_{j}-b_{i}\right) \geq 0
$$

or

$$
b_{i}-b_{j} \geq-\frac{1}{2\left(d_{j}\left(\mathbf{m}_{-j}\right)+3\right)},
$$

and note that this condition is redundant if $b_{i}-b_{j}>0$.

Collecting the two conditions yields expression (2).

Derivation of equilibrium welfare, expression (4). We consider any equilibrium (\mathbf{m}_{-j}, y_{j}). The ex-ante expected utility of each player i is:

$$
\begin{aligned}
E u_{i}\left(\mathbf{m}_{-j}, y_{j}\right) & =-E\left[\left(y_{j}\left(s_{j}, \hat{\mathbf{m}}_{-j}\right)-\theta-b_{i}\right)^{2}\right] \\
& =-E\left[\left(b_{j}+E\left[\theta \mid s_{j}, \hat{\mathbf{m}}_{-j}\right]-\theta-b_{i}\right)^{2}\right] .
\end{aligned}
$$

Hence

$$
\begin{aligned}
E u_{i}\left(\mathbf{m}_{-j}, y_{j}\right) & =-E\left[\left(b_{j}-b_{i}\right)^{2}+\left(E\left[\theta \mid s_{j}, \hat{\mathbf{m}}_{-j}\right]-\theta\right)^{2}-2\left(b_{j}-b_{i}\right)\left(E\left[\theta \mid s_{j}, \hat{\mathbf{m}}_{-j}\right]-\theta\right)\right] \\
& =-\left[\left(b_{j}-b_{i}\right)^{2}+E\left[\left(E\left[\theta \mid s_{j}, \hat{\mathbf{m}}_{-j}\right]-\theta\right)^{2}\right]-2\left(b_{j}-b_{i}\right)\left(E\left[E\left[\theta \mid s_{j}, \hat{\mathbf{m}}_{-j}\right]\right]-E[\theta]\right)\right],
\end{aligned}
$$

by the law of iterated expectations, $E\left[E\left[\theta \mid s_{j}, \hat{\mathbf{m}}_{-j}\right]\right]=E[\theta]$, so we obtain

$$
E u_{i}\left(\mathbf{m}_{-j}, y_{j}\right)=-\left(b_{j}-b_{i}\right)^{2}-E\left[\left(E\left[\theta \mid s_{j}, \hat{\mathbf{m}}_{-j}\right]-\theta\right)^{2}\right] .
$$

Letting l be the number of digits equal to one in the $\left(d_{j}\left(\mathbf{m}_{-\mathbf{j}}\right)+1\right)$-digit leader's information $\operatorname{vector}\left(s_{j}, \hat{\mathbf{m}}_{-j}\right)$,

$$
\begin{aligned}
E\left[\left(E\left[\theta \mid s_{j}, \hat{\mathbf{m}}_{-j}\right]-\theta\right)^{2}\right] & =\int_{0}^{1} \sum_{l=0}^{d_{j}\left(\mathbf{m}_{-\mathbf{j}}\right)+1}\left(E\left[\theta \mid l, d_{j}\left(\mathbf{m}_{-j}\right)+1\right]-\theta\right)^{2} f\left(l \mid d_{j}\left(\mathbf{m}_{-j}\right)+1, \theta\right) d \theta \\
& =\int_{0}^{1} \sum_{l=0}^{d_{j}\left(\mathbf{m}_{-j}\right)+1}\left(E\left[\theta \mid l, d_{j}\left(\mathbf{m}_{-j}\right)+1\right]-\theta\right)^{2} \frac{f\left(\theta \mid l, d_{j}\left(\mathbf{m}_{-j}\right)+1\right)}{d_{j}\left(\mathbf{m}_{-j}\right)+2} d \theta
\end{aligned}
$$

where the second equality follows from $f\left(l \mid d_{j}\left(\mathbf{m}_{-j}\right)+1, \theta\right)=f\left(\theta \mid l, d_{j}\left(\mathbf{m}_{-j}\right)+1\right) /\left(d_{j}\left(\mathbf{m}_{-j}\right)+2\right)$.

Because the variance of a beta distribution of parameters l and $d+1$, is

$$
V(\theta \mid l, d+1)=\frac{(l+1)(d+2-l)}{(d+3)^{2}(d+4)}
$$

we obtain:

$$
\begin{aligned}
E\left[\left(E\left[\theta \mid s_{j}, \hat{\mathbf{m}}_{-j}\right]-\theta\right)^{2}\right] & =\frac{1}{d_{j}\left(\mathbf{m}_{-j}\right)+2}\left[\sum_{l=0}^{d_{j}\left(\mathbf{m}_{-j}\right)+1} V\left(\theta \mid l, d_{j}\left(\mathbf{m}_{-\mathbf{j}}\right)+1\right)\right] \\
& =\sum_{l=0}^{d_{j}\left(\mathbf{m}_{-j}\right)+1} \frac{(l+1)\left(d_{j}\left(\mathbf{m}_{-j}\right)+2-l\right)}{\left(d_{j}\left(\mathbf{m}_{-j}\right)+2\right)\left(d_{j}\left(\mathbf{m}_{-\mathbf{j}}\right)+3\right)^{2}\left(d_{j}\left(\mathbf{m}_{-j}\right)+4\right)} \\
& =\frac{1}{6\left(d_{j}\left(\mathbf{m}_{-j}\right)+3\right)} .
\end{aligned}
$$

Proof of Lemma 1. We note that

$$
\begin{aligned}
U_{i}^{*}(j) & =-\left(b_{i}-b_{j}\right)^{2}-\left[6\left(d_{j}^{*}+3\right)\right]^{-1}=-\left(b_{i}-b_{i^{\prime}}+b_{i^{\prime}}-b_{j}\right)^{2}-\left[6\left(d_{j}^{*}+3\right)\right]^{-1} \\
& =-\left(b_{i}-b_{i^{\prime}}\right)^{2}-\left(b_{i^{\prime}}-b_{j}\right)^{2}-2\left(b_{i}-b_{i^{\prime}}\right)\left(b_{i^{\prime}}-b_{j}\right)-\left[6\left(d_{j}^{*}+3\right)\right]^{-1} \\
& =-\left(b_{i}-b_{i^{\prime}}\right)\left(\left(b_{i}-b_{i^{\prime}}\right)+2\left(b_{i^{\prime}}-b_{j}\right)\right)+U_{i^{\prime}}^{*}(j) \\
& =-\left(b_{i}-b_{i^{\prime}}\right)\left(b_{i}+b_{i^{\prime}}-2 b_{j}\right)+U_{i^{\prime}}^{*}(j)
\end{aligned}
$$

and

$$
U_{i}^{*}\left(j^{\prime}\right)=-\left(b_{i}-b_{i^{\prime}}\right)\left(b_{i}+b_{i^{\prime}}-2 b_{j^{\prime}}\right)+U_{i^{\prime}}^{*}\left(j^{\prime}\right) .
$$

If $i<i^{\prime}, j<j^{\prime}$ and $U_{i^{\prime}}^{*}(j)>U_{i^{\prime}}^{*}(j)$, then $U_{i}^{*}(j)>U_{i}^{*}\left(j^{\prime}\right)$ is implied by

$$
-\left(b_{i}-b_{i^{\prime}}\right)\left(b_{i}+b_{i^{\prime}}-2 b_{j}\right) \geq-\left(b_{i}-b_{i^{\prime}}\right)\left(b_{i}+b_{i^{\prime}}-2 b_{j^{\prime}}\right)
$$

or, because $i<i^{\prime}$, by

$$
b_{i}+b_{i^{\prime}}-2 b_{j} \geq b_{i}+b_{i^{\prime}}-2 b_{j^{\prime}}
$$

which is implied by $j<j^{\prime}$.

Proof of Proposition 3. Suppose that there is a constant $\beta>0$ such that $b_{i+1}-b_{i}=\beta$ for all $i=1, \ldots, n-1$. Then, for any real number $b>0$, the size of ideological neighborhood $N_{j}(b)$ is constant in j for all players j such that the number of politicians $i<j$ who belong to $N_{j}(b)$ is the same as the number of politicians $i>j$ who belong to $N_{j}(b)$. Formally, letting $\bar{\imath}_{j}(b)=\max \left\{i \in N:\left|b_{i}-b_{j}\right| \leq b\right\}$ and $\underline{i}_{j}(b)=\min \left\{i \in N:\left|b_{i}-b_{j}\right| \leq b\right\}$, we have that $N_{j}(b)=2\lfloor b / \beta\rfloor+1$, for any j such that $\bar{\imath}_{j}(b)-j=j-\underline{i}_{j}(b)$, where the notation $\lfloor b / \beta\rfloor$ denotes the largest integer smaller than b / β.

The remaining players j are constrained by the boundaries of the ideology spectrum b_{1} and b_{n} in the size of their ideological neighborhood $N_{j}(b)$, so that it is either the case that $\bar{\imath}_{j}=n$, in which case $N_{j}(b)=\lfloor b / \beta\rfloor+1+\bar{\imath}_{j}(b)-j$, or that $\underline{i}_{j}=1$, in which case $N_{j}(b)=\lfloor b / \beta\rfloor+1+j-\underline{i}_{j}(b)$; and in both cases $N_{j}(b)<2\lfloor b / \beta\rfloor+1$.

Because $m=(n+1) / 2$, by construction $N_{m}(b)=2\lfloor b / \beta\rfloor+1$ for all values of b, and hence $N_{m}(b) \geq N_{j}(b)$ for all other politician j and values of b. We note that $N_{j}(b)$ weakly increases
in b and $\frac{1}{2(d+3)}$ decreases in d, and hence d_{j}^{*} is maximal for the index(es) j that maximize the function $N_{j}(\cdot)$. That is to say, when there is a constant $\beta>0$ such that $b_{i+1}-b_{i}=\beta$ for all $i=1, \ldots, n-1$, the median politician m weakly dominates all other politicians in terms of judgement, and should always be selected as group leader.

Analysis of the 5 Player Case in Section 6, Proof of Lemma 2 and of Proposition 4.

We calculate all the parameter regions in which $d_{2}^{*}>d_{3}^{*}$. We first note that $d_{3}^{*}=0$ if $\beta_{2}>1 / 8$ and $\beta_{3}>1 / 8$; so that $d_{2}^{*} \leq 1$ as 3 will never be truthful to 2 , and $d_{2}^{*}=1$ if $\beta_{1} \leq 1 / 8$. We then see that $d_{3}^{*}=1$ if $\beta_{2} \leq 1 / 8$ and $\beta_{3}>1 / 10$; so that $d_{2}^{*} \leq 2$ as 4 will never be truthful to 2 , and $d_{2}^{*}=2$ if $\beta_{1} \leq 1 / 10$ and $\beta_{2} \leq 1 / 10$. Also, we see that $d_{3}^{*}=1$ if $\beta_{2}>1 / 10$ and $\beta_{3} \leq 1 / 8$; so that $d_{2}^{*} \leq 1$ as 3 will never be truthful to 2 . Then, we note that $d_{3}^{*}=2$ if $\beta_{2} \leq 1 / 10, \beta_{3} \leq 1 / 10, \beta_{1}+\beta>1 / 12$ and $\beta_{3}+\beta_{4}>1 / 12$; so that $d_{2}^{*} \leq 3$ as 5 will never be truthful to 2 , and $d_{2}^{*}=3$ if $\beta_{2}+\beta_{3} \leq 1 / 12$ and $\beta_{1} \leq 1 / 12$. Further, we note that $d_{3}^{*}=3$ if $\beta_{1}+\beta_{2} \leq 1 / 12, \beta_{3} \leq 1 / 12$ and $\beta_{3}+\beta_{4}>1 / 14$; so that $d_{2}^{*} \leq 3$ as 5 will never be truthful to 2 . Finally we see that $d_{3}^{*}=3$ if $\beta_{1}+\beta_{2}>1 / 14$, $\beta_{2} \leq 1 / 12$ and $\beta_{3}+\beta_{4} \leq 1 / 12$; so that $d_{2}^{*} \leq 4$, and $d_{2}^{*}=4$ if $\beta_{2}+\beta_{3}+\beta_{4} \leq 1 / 16$ and $\beta_{1} \leq 1 / 16$.

We consider the case in which $W^{*}(2)>W^{*}(4), U_{3}^{*}(2)>U_{3}^{*}(4), \beta_{1} \leq 1 / 10, \beta_{2} \leq 1 / 10, \beta_{3}>1 / 10$ and hence $\delta=\beta_{4}-\beta_{1}+2 \beta_{3}>1 / 10, d_{2}^{*}=2, d_{1}^{*}=1$. Using expression (4), we can calculate the aggregate expected payoffs for selecting either politician 2 or 3 as the leader:

$$
\begin{aligned}
& W^{*}(2)=-\beta_{1}^{2}-\beta_{2}^{2}-\left(\beta_{2}+\beta_{3}\right)^{2}-\left(\beta_{2}+\beta_{3}+\beta_{4}\right)^{2}-5 \frac{1}{6(2+3)}, \\
& W^{*}(3)=-\left(\beta_{1}+\beta_{2}\right)^{2}-\beta_{2}^{2}-\beta_{3}^{2}-\left(\beta_{3}+\beta_{4}\right)^{2}-5 \frac{1}{6(1+3)} .
\end{aligned}
$$

The centre-left politician 3 is optimally selected as the leader whenever

$$
W^{*}(2)-W^{*}(3)=-2 \delta \beta_{23}-\beta_{2}^{2}+\frac{1}{24}>0 \text { or } \beta_{2}<\tau(\delta) \equiv \sqrt{\delta^{2}+1 / 24}-\delta
$$

It is easy to verify that the threshold $\tau(\delta)$ is strictly decreasing in δ, with $\tau(1 / 10) \approx 0.1273>$ $1 / 10$, that $\tau(\delta)$ is strictly positive for any δ and equals zero only in the limit as δ approaches infinity.

In sum, we conclude that, whenever β_{2} is sufficiently small - i.e., smaller than $1 / 10$ and than $\tau(\delta), \beta_{1} \leq 1 / 10$ and $\beta_{3}>1 / 10$, then the centre-left politician 2 should be optimally selected
as the leader in lieu of the most moderate candidate, politician 3. This is because 2 has better judgement, as it can count on two trustworthy associates, whereas 3 has only one; and 2 is not too much more extremist than 3 , as β_{2} is small.

Turning to studying the election of the leader by majority vote, we first calculate player 3's payoffs for selecting politician 2 or 3 as the leader, using expression (5):

$$
U_{3}^{*}(2)=-\beta_{2}^{2}-\frac{1}{6(1+3)} \text { and } U_{3}^{*}(3)=-\frac{1}{6(3)},
$$

the median politician 3 will delegate leadership to player 2 whenever

$$
U_{3}^{*}(2)-U_{3}^{*}(3)=\frac{1-120 \beta_{23}^{2}}{120}>0 \text { or } \beta_{2}<\frac{1}{2 \sqrt{30}} \approx 0.0913 .
$$

In light of Proposition 2, we obtain that, whenever β_{2} is smaller than $\frac{1}{2 \sqrt{30}}, \beta_{1} \leq 1 / 10$ and $\beta_{3}>1 / 10$, the politician 2 is the Condorcet winner of the election game. Again, this is because 2 can count on two ideologically close trustworthy associates, whereas 3 has only one, and because 2 does not hold views too different from the ones of 3 .

It is interesting to compare this situation with the equidistant case in which $b_{i+1}-b_{i}$ is constant for all $i=1, \ldots, 4$ and smaller than $\frac{1}{2 \sqrt{30}}$. Suppose that the centre-right politician 4 extremizes her ideology b_{4} away from the median b_{3}, so as to increase β_{3} beyond $1 / 10$. Paradoxically, by doing so, she will make the elected leader's ideology move in the opposite direction, as the centre-left politician 2 will gain better judgement than the median politician 3 , and win the election. Equivalently, suppose that, initially $b_{i+1}-b_{i}=\beta>1 / 10$ for all $i=1, \ldots, 4$. If the leftist politicians 1 and 2 moderate their views, so that β_{2} becomes smaller than $\frac{1}{2 \sqrt{30}}$ and β_{1} becomes smaller than $1 / 10$, then they move the elected leader's decision towards their views, by making the centre-left politician 2 the leader, in lieu of the median politician 3.

We now compare election and selection of the leader. Because $\tau(\delta)$ is strictly decreasing in δ, $\tau(1 / 10)>1 / 10$ and $\tau(\delta) \rightarrow 0$ as $\delta \rightarrow \infty$, it is immediate to see that there is a unique threshold $\bar{\delta}>1 / 10$ such that $\tau(\delta)>\frac{1}{2 \sqrt{30}}$ for all $\delta<\bar{\delta}$ and $\tau(\delta)<\frac{1}{2 \sqrt{30}}$ for all $\delta>\bar{\delta}$. This implies that, whenever $\delta<\bar{\delta}$, there exists an interval $(1 /[2 \sqrt{30}], 1 / 10)$ of the parameter β_{2} such that the centre-left politician 2 should be optimally selected as leader but the median politician 3 is the Condorcet winner of the election game. A surprising result occurs when $\delta>\bar{\delta}$, so that
$b_{5}-b_{3}$ and $b_{4}-b_{3}$ are sufficiently large relative to $b_{2}-b_{1}$. For values of β_{2} larger than $\tau(\delta)$ but smaller than $\frac{1}{2 \sqrt{30}}$, the Condorcet winner is the centre-left politician 2 despite the fact that optimal leader is the median politician 3. In the election game, the median politician 3 delegates leadership to a less moderate politician, 2 , despite the fact that it would be optimal for the group if she retained leadership for herself.

Analysis of the 6 Player Example in Section 7, Proof of Proposition 5. Suppose that there are 6 politicians, with ideologies such that $b_{i+1}-b_{i}=\beta$ for all $i=1, \ldots, 5$, arranged symmetrically around the median ideology zero, so that $b_{3}=-\beta / 2$ and $b_{4}=\beta / 2$. Politicians 1 , 2,3 belong to party A, and politicians $4,5,6$ to party B. Unless politicians 2 and 5 can count of more trustworthy advisers than 3 and 4 , the latter will be selected by their parties and tie the general election, in equilibrium. Because of symmetry of \mathbf{b}, let us now just focus on the selection of party A candidates. Candidate 1 will never be selected, so we consider 2 and 3 . Because 3 can rely on 2 , if 3 communicates to 2 in equilibrium, it follows that the only case in which 2 has better judgement than 3 is when $d_{2}^{*}=2$ and $d_{3}^{*}=1$, which requires that $\beta \leq 1 / 10$ and that $2 \beta>1 / 10$.

Because of symmetry of \mathbf{b}, if $U_{0}(2)>U_{0}(3)$, then there cannot be an equilibrium in which party A selects 3 as its candidate in the general election; if they did, in fact, party B would select 5 as candidate and win the election. When $U_{0}(2)>U_{0}(3)$, the unique equilibrium of the game has candidates 2 and 5 tie the general election. Simplifying this condition, we obtain:

$$
U_{0}(2)-U_{0}(3)=-(\beta+\beta / 2)^{2}-\frac{1}{6(2+3)}-\left[-(\beta / 2)^{2}-\frac{1}{6(1+3)}\right]=\frac{1}{120}\left(1-240 \beta^{2}\right)>0
$$

Because the last inequality holds if and only if $\beta<\frac{1}{4 \sqrt{15}}$, we conclude that when $1 / 20<\beta<$ $\frac{1}{4 \sqrt{15}}$, the winners of the general election are not the most moderate politicians 3 and 4 , despite the fact that the politicians' ideologies are evenly distributed on the line.

Analysis of the 5 Player Example in Section 7 and Proof of Proposition 6 Suppose that there are 5 politicians, with $b_{2}<0<b_{3}$. Politicians 1,2 belong to party A and $3,4,5$ belong to party B, and we assume that $b_{3}<-b_{2}$. Party B has more informed politicians, and it can also select a candidate, player 3 , whose views are closer to the median voter. If
there were no communication to the winner of the general election, party B would always win by selecting politician 3 . However, politician 2 wins the general election if she has better judgement than player 3. As there is only another informed politician in party A, this may only happen if $d_{2}^{*}=1>d_{3}^{*}=0$, and this requires $\beta_{1} \leq 1 / 8, \beta_{3}>1 / 8$ and $\beta_{4}>1 / 8$. Party A is more ideologically cohesive, and can express a candidate, 2 , with a larger network of trustworthy associates than any candidate available to party B. The median voter turns out to prefer to elect politician 2 than politician 3 whenever

$$
U_{0}(2)-U_{0}(3)=-b_{2}^{2}-\frac{1}{6(1+3)}-\left[-b_{3}^{2}-\frac{1}{6(3)}\right]=\frac{1}{72}-\left(b_{2}^{2}-b_{3}^{2}\right)>0,
$$

i.e., $b_{2}^{2}-b_{3}^{2}<1 / 72$.

To prove the claim that candidate 2 can lose the election by moving closer to the median voter, suppose that we start from an ideology profile \mathbf{b} such that β_{1} is smaller than but close to $1 / 8$. If politician 2 moves ideologically closer to the median voter (i.e., $-b_{2}$ decreases), then the condition $\beta_{1} \leq 1 / 8$ will not be satisfied anymore, candidate 2 will lose the truthful advice of party fellow 1 , in turn losing the informational advantage over 3, and the general election.

Shared leadership. Consider a group of politicians $i=1, \ldots, n$. Suppose that, instead of electing a single leader j, it is possible to select a vector α of shares of leadership α_{j} for $j=1, \ldots, n$ such that $\alpha_{j} \geq 0$ for all j, and $\sum_{j=1}^{n} \alpha_{j}=1$. For every vector α, its support $L_{\alpha} \equiv$ $\left\{j: \alpha_{j}>0\right\}$ denotes the associated set of leaders. The communication by each player i to the leaders L_{α} may be private (hence, the message $\hat{m}_{i j} \in\{0,1\}$ sent by i to j may differ across $j \in L_{\alpha}$), or public (and then $\hat{m}_{i j}$ must be the same for all $j \in L_{\alpha}$).

A vector of authority shares α determines the mixture over outcomes:

$$
y(\mathbf{s}, \mathbf{m} ; \alpha)=\sum_{j=1}^{n} \alpha_{j}\left[b_{j}+E\left[\theta \mid s_{j}, \mathbf{m}_{-j}\right]\right],
$$

given the signals $\mathbf{s}=\left(s_{j}\right)_{j=1}^{n}$ and the equilibrium communication strategies $\mathbf{m}=\left(\mathbf{m}_{-j}\right)_{j=1}^{n}$. And this yields each player i expected utility:

$$
U_{i}(\mathbf{s}, \mathbf{m} ; \alpha)=-\sum_{j=1}^{n} \alpha_{j}\left(b_{i}-b_{j}\right)^{2}-\sum_{j=1}^{n} \alpha_{j} \frac{1}{6\left(d_{j}^{*}\left(\mathbf{m}_{-j}\right)+3\right)} .
$$

In terms of optimal choice, the possibility of choosing α optimally improves utilitarian welfare over single leadership weakly by definition, in our model. It is easy to find examples where it improves utilitarian welfare strictly-see Example 1 in Dewan et al. (2015), for instance.

Let us consider now the majority choice among share of leadership vectors α. The space of vectors α can be linearly ordered according to the mixture over biases $\bar{b}(\alpha)=\sum_{j=1}^{n} \alpha_{j} b_{j}$. It is immediate to then extend the proof of Lemma 1 to this environment. As a consequence, the set of Condorcet winning share of leadership vectors α coincides with the set of vectors α that maximize the expected payoff of the median player m.

The same kinds of inefficiency described in Lemma 2 and Proposition 4 extends to this richer environment. As we now demonstrate, there are examples, parametrized by the bias vector \mathbf{b}, in which the optimal share of leadership vector α differs from the majority choice.

We consider the 5-player case studied in Section 6.3, and so assume $\beta_{1} \leq 1 / 10, \beta_{2} \leq 1 / 10$, $\beta_{3}>1 / 10$, and hence $\delta>1 / 10$. Suppose that $\tau(\delta)<\frac{1}{2 \sqrt{30}}$, and that $\tau(\delta)<\beta_{2}<\frac{1}{2 \sqrt{30}}$. As shown in Lemma 2, the optimal leader is 3, but 3 delegates to 2 who is better informed, because $d_{2}^{*}=2$ and $d_{3}^{*}=1$. Allowing for shared leadership, it would be possible to get 4 to communicate truthfully to 3 only if including 5 in the set of leaders L_{α}, and considering public communication. With private communication, 4 would not be truthful to 3 in equilibrium, as it would wish to distort the decision y_{3} regardless of the message \hat{m}_{45} she sends to player 5 . Using Lemma 1 of Dewan et al. (2015), there is an equilibrium in which players 2 and 4 are truthful to 3 and 5 if and only if:

$$
\begin{align*}
\left|b_{4}-\left(\gamma_{3} b_{3}+\gamma_{5} b_{5}\right)\right| & \leq \gamma_{3} \frac{1}{2\left(d_{3}+2\right)}+\gamma_{5} \frac{1}{2\left(d_{5}+2\right)} \tag{6}\\
\left|b_{2}-\left(\gamma_{3} b_{3}+\gamma_{5} b_{5}\right)\right| & \leq \gamma_{3} \frac{1}{2\left(d_{3}+2\right)}+\gamma_{5} \frac{1}{2\left(d_{5}+2\right)} \tag{7}
\end{align*}
$$

where $\gamma_{3}=\frac{\alpha_{3} / 2\left(d_{3}+2\right)}{\alpha_{3} / 2\left(d_{3}+2\right)+\alpha_{5} / 2\left(d_{5}+2\right)}$ and $\gamma_{5}=\frac{\alpha_{5} / 2\left(d_{5}+2\right)}{\alpha_{3} / 2\left(d_{3}+2\right)+\alpha_{5} / 2\left(d_{5}+2\right)}$, and $\alpha_{3}+\alpha_{5}=1$.
Here, because $b_{5}-b_{3}>b_{4}-b_{3}>1 / 10$, player 3 and 5 cannot be truthful to each other, hence $d_{3}=2$ and $d_{5}=2$. Conditions (6) and (7) become:

$$
\begin{aligned}
& \left|b_{4}-\left(\alpha_{3} b_{3}+\left(1-\alpha_{3}\right) b_{5}\right)\right|=\alpha_{3} \beta_{3}-\left(1-\alpha_{3}\right) \beta_{4} \leq \frac{1}{10} \\
& \left|b_{2}-\left(\alpha_{3} b_{3}+\left(1-\alpha_{3}\right) b_{5}\right)\right|=\alpha_{3} \beta_{2}+\left(1-\alpha_{3}\right)\left(\beta_{2}+\beta_{3}+\beta_{4}\right) \leq \frac{1}{10} .
\end{aligned}
$$

Condition (6) is satisfied tightly for $\alpha_{3}=\frac{\beta_{4}+1 / 10}{\beta_{3}+\beta_{4}}$, plugging this into condition (7), we obtain:

$$
\frac{\beta_{4}+1 / 10}{\beta_{3}+\beta_{4}}\left(\beta_{2}-1 / 10\right)+\left(1-\frac{\beta_{4}+1 / 10}{\beta_{3}+\beta_{4}}\right)\left(\beta_{2}+\beta_{3}+\beta_{4}-1 / 10\right)=\beta_{2}+\beta_{3}-1 / 5 \leq 0 .
$$

that is violated for $\beta_{3}>1 / 5-\beta_{2}$, i.e., $\beta_{3}>1 / 10$, because $\beta_{2} \leq 1 / 10$. We conclude that, for $0<\beta_{2} \leq 1 / 10,0<\beta_{4} \leq 1 / 10$ and $\beta_{3}>1 / 10$, it is not possible to get 2 and 4 to communicate truthfully to 3 in equilibrium with any shared leadership vector α. In other terms, $d_{3}^{*} \leq 1$ in equilibrium.

Suppose further that $\tau(\delta)<\frac{1}{2 \sqrt{30}}$, noting that $\tau(\delta)=\sqrt{\delta^{2}+1 / 24}-\delta$ decreases in $\delta=\beta_{4}+$ $2 \beta_{3}-\beta_{1}$, so that the condition $\tau(\delta)<\frac{1}{2 \sqrt{30}}$ is satisfied for $\delta>\tau^{-1}\left(\frac{1}{2 \sqrt{30}}\right)=1 / \sqrt{30} \approx 0.18257$, and does impose any upper bound on β_{3}. Consider any β_{2} such that $\tau(\delta)<\beta_{2}<\frac{1}{2 \sqrt{30}}$, and note that $0<\tau(\delta)<\beta_{2}<\frac{1}{2 \sqrt{30}}<1 / 10$. The proof of Lemma 2 implies that, because $d_{2}^{*}=2$ and $d_{3}^{*}=1$, the optimal leader is 3 , but 3 prefers to delegates to 2 who is better informed, and hence 2 is elected by majority voting. The same kind of inefficiency described in Lemma 2 and Proposition 4 extends to the environment that includes the possibility of shared leadership.

We conclude by noting that a different way to define shared leadership would be to fix a system α of sharing rules α_{L} for all possible sets of leaders $L \subseteq\{1, \ldots, n\}$, and restrict the optimal and majority choice only to the set of leaders L given the system α. For example, α could be an "egalitarian system" such that $\alpha_{j L}=1 /|L|$ for all sets of leaders L, and all $j \in L$. Regardless of the selected/elected set of leaders L, each leader $j \in L$ has equal share of power. Alternatively, the system α could include forms of seniority among politicians.

It is obvious that fixing the system α and selecting L optimally is a weak improvement upon optimal individual leadership, and that it is weakly dominated by optimal selection of a vector of shares α. Further, the extended example above demonstrates that the kinds of inefficiency described in Lemma 2 occur also in this environment. There are examples, parametrized by the bias vector band leadership sharing system α, in which the optimal choice of L given α differs from the majority choice.

