## Regression Tables

The following table provides the coefficients, standard errors, and model fit information for the four specifications we present as our primary results. See the replication materials for the results of our robustness tests.

Table 1. Robustness Tests

| Measurement strategy | EFFECTIVENESS, SUPPORT, INFLUENCE | EFFECTIVENESS, DISTANCE, influence | EXPENDITURES, SUPPORT, INFLUENCE | EXPENDITURES, DISTANCE, INFLUENCE |
| :---: | :---: | :---: | :---: | :---: |
| Coefficients | (1) | (2) | (3) | (4) |
| $q_{0}$ | $\begin{aligned} & 0.173^{* * *} \\ & (0.0264) \end{aligned}$ | $\begin{gathered} 0.0783^{* * *} \\ (0.0253) \end{gathered}$ | $\begin{aligned} & 0.259^{* * *} \\ & (0.0262) \end{aligned}$ | $\begin{aligned} & 0.228^{* * *} \\ & (0.0248) \end{aligned}$ |
| $b$ | $\begin{gathered} 0.259^{* * *} \\ (0.026) \end{gathered}$ | $\begin{aligned} & 0.276^{* * *} \\ & (0.0276) \end{aligned}$ | $\begin{aligned} & 0.268^{* * *} \\ & (0.0265) \end{aligned}$ | $\begin{aligned} & 0.292^{* * *} \\ & (0.0292) \end{aligned}$ |
| $E[c]$ | $\begin{aligned} & 0.162^{* * *} \\ & (0.0290) \end{aligned}$ | $\begin{gathered} -0.116^{* * *} \\ (0.0281) \end{gathered}$ | $\begin{aligned} & 0.112^{* * *} \\ & (0.0279) \end{aligned}$ | $\begin{gathered} -0.0815^{* * *} \\ (0.0281) \end{gathered}$ |
| $E[c] \times b$ | $\begin{gathered} 0.0782^{* * *} \\ (0.0279) \end{gathered}$ | $\begin{gathered} -0.0960^{* * *} \\ (0.0298) \end{gathered}$ | $\begin{gathered} 0.0833^{* * *} \\ (0.0278) \end{gathered}$ | $\begin{gathered} -0.111^{* * *} \\ (0.0316) \end{gathered}$ |
| $q_{0} \times E[c]$ | $\begin{aligned} & 0.151^{* * *} \\ & (0.0229) \end{aligned}$ | $\begin{gathered} -0.179^{* * *} \\ (0.0286) \end{gathered}$ | $\begin{aligned} & 0.144^{* * *} \\ & (0.0261) \end{aligned}$ | $\begin{gathered} -0.0939^{* * *} \\ (0.0280) \end{gathered}$ |
| PILOT | $\begin{gathered} -0.108^{*} \\ (0.0591) \end{gathered}$ | $\begin{gathered} -0.306^{* * *} \\ (0.0567) \end{gathered}$ | $\begin{gathered} -0.166^{* * *} \\ (0.0596) \end{gathered}$ | $\begin{gathered} -0.298^{* * *} \\ (0.0569) \end{gathered}$ |
| Length | $\begin{aligned} & 0.348^{* * *} \\ & (0.0274) \end{aligned}$ | $\begin{aligned} & 0.422^{* * *} \\ & (0.0331) \end{aligned}$ | $\begin{aligned} & 0.360^{* * *} \\ & (0.0278) \end{aligned}$ | $\begin{aligned} & 0.432^{* * *} \\ & (0.0335) \end{aligned}$ |
| COMMISSION | $\begin{gathered} -0.679^{* * *} \\ (0.0672) \end{gathered}$ | $\begin{gathered} -0.677^{* * *} \\ (0.0670) \end{gathered}$ | $\begin{gathered} -0.686^{* * *} \\ (0.0683) \end{gathered}$ | $\begin{gathered} -0.664^{* * *} \\ (0.0680) \end{gathered}$ |
| ADDRESSEE | $\begin{aligned} & -0.148 \\ & (0.186) \end{aligned}$ | $\begin{aligned} & -0.155 \\ & (0.185) \end{aligned}$ | $\begin{aligned} & -0.153 \\ & (0.187) \end{aligned}$ | $\begin{aligned} & -0.137 \\ & (0.186) \end{aligned}$ |
| SCOPE | $\begin{gathered} -0.00668^{* *} \\ (0.00163) \end{gathered}$ | $\begin{gathered} -0.119^{* * *} \\ (0.0296) \end{gathered}$ | $\begin{gathered} -0.00694^{* * *} \\ (0.00169) \end{gathered}$ | $\begin{gathered} -0.122^{* * *} \\ (0.0301) \end{gathered}$ |
| Constant | $\begin{gathered} -3.637^{* * *} \\ (0.245) \end{gathered}$ | $\begin{gathered} -0.796^{* * *} \\ (.0370) \end{gathered}$ | $\begin{gathered} -3.749^{* * *} \\ (0.248) \end{gathered}$ | $\begin{gathered} -0.808^{* * *} \\ (0.0376) \end{gathered}$ |
| Marginal Effects | (1) | (2) | (3) | (4) |
| $q_{0}$ | $0.0308^{* * *}$ | $0.014^{* * *}$ | $0.0456^{* * *}$ | $0.0405^{* * *}$ |
|  | (0.00492) | (0.00455) | (0.00478) | (0.00444) |
| $b$ | $\begin{aligned} & 0.0493^{* * *} \\ & (0.00495) \end{aligned}$ | $\begin{aligned} & 0.0496^{* * *} \\ & (0.00501) \end{aligned}$ | $\begin{aligned} & 0.0480^{* * *} \\ & (0.00487) \end{aligned}$ | $\begin{aligned} & 0.0518^{* * *} \\ & (0.00520) \end{aligned}$ |
| $N$ | 9,415 | 9,361 | 9,289 | 9,235 |
| (Pseudo) $R^{2}$ | 0.0767 | 0.0738 | 0.0827 | 0.0774 |

Notes: Logit regressions with heteroskedasticity-robust standard errors in parentheses. Marginal effects calculated holding all other variables at their means. * $p<0.10,{ }^{* *} p<0.05,{ }^{* * *} p<0.01$.

## Proof: Equilibrium Solution

Proof. Assume continuous, unbounded support for all $k_{i}$ and $c$.
The Commission issues a referral to the Court when $E U_{C}(R F)=E\left[q_{3}(c) \mid c \leq c^{\circ}\right] b-$ $k_{1}-k_{2}-k_{3} \geq E U_{C}(\neg R F)=-k_{1}-k_{2}$, where $c^{\circ}$ is the cost below which the government will not comply with a reasoned opinion in equilibrium. This condition simplifies to $k_{3} \leq$ $k_{3}^{\circ}=E\left[q_{3}(c) \mid c \leq c^{\circ}\right] b$. As long as the government cutpoint strategy, $c^{\circ}$, exists, because $q_{3}(c)$ is monotone in $c$ by assumption, the best response function $k_{3}^{\circ}$ exists. Define $\ell_{3}\left(c^{\circ}\right)$ as the belief of the government that the Commission will make a referral. By Bayes' Rule $\ell_{3}\left(c^{\circ}\right)=\operatorname{Pr}(R F)=\operatorname{Pr}\left(k_{3} \leq E\left[q_{3}(c) \mid c \leq c^{\circ}\right] b\right)$.

The government complies with a reasoned opinion when $E U_{G}\left(C_{R O}\right)=c \geq E U_{G}\left(\neg C_{R O}\right)=$ $\ell_{3}\left(c^{\circ}\right)\left(q_{3}(c)(c-j)+\left(1-q_{3}(c)\right)(0)\right)+\left(1-\ell_{3}(c)\right)(0)$. This condition simplifies to $c \geq c^{\circ}=$ $-\frac{\ell_{3}\left(c^{\circ}\right) q_{3}\left(c^{\circ}\right) j}{1-\ell_{3}\left(c^{\circ}\right) q_{3}\left(c^{\circ}\right)}$. Because $\frac{d q_{3}(c)}{d c}>0, \lim _{c \rightarrow-\infty} q_{3}(c) \rightarrow 0$, and $\lim _{c \rightarrow 0} q_{3}(c) \rightarrow 1$ by assumption, $\frac{d \ell_{3}\left(c^{\circ}\right)}{d c^{\circ}}>0$, and $j>0$ by assumption, $\lim _{c^{\circ} \rightarrow-\infty}-\frac{\ell_{3}\left(c^{\circ}\right) q_{3}\left(c^{\circ}\right) j}{1-\ell_{3}\left(c^{\circ}\right) q_{3}\left(c^{\circ}\right)} \rightarrow 0$. Since $-\frac{\ell_{3}\left(c^{\circ}\right) q_{3}\left(c^{\circ}\right) j}{1-\ell_{3}\left(c^{\circ}\right) q_{3}\left(c^{\circ}\right)}$ is decreasing as $\lim _{c^{\circ} \rightarrow 0}$, for $\ell_{3}\left(c^{\circ}\right)$ sufficiently large (i.e., as long as the distribution of $k_{3} \leq E\left[q_{3}(c) \mid c \leq c^{\circ}\right] b$ has sufficient density) a $c^{\circ}<0$ exists. Otherwise $c^{\circ}=0$. Define $p_{2}$ as the belief of the Commission that the government will comply with a reasoned opinion. By Bayes' Rule $p_{2}\left(c^{\circ}\right)=\operatorname{Pr}\left(C_{R O}\right)=\operatorname{Pr}\left(c \geq c^{\circ} \mid c<0\right)$. We demonstrate below that the government complies with letters of formal notice whenever $c \geq 0$, thus the conditional probability.

The Commission issues a reasoned opinion when $E U_{C}(R O)=p_{2}\left(c^{\circ}\right)\left(b-k_{1}-k_{2}\right)+$ $\left(1-p_{2}\left(c^{\circ}\right)\right)\left(\ell_{3}\left(c^{\circ}\right)\left(E\left[q_{3}(c) \mid c \leq c^{\circ}\right] b-k_{1}-k_{2}-E\left[k_{3} \mid k_{3} \leq k_{3}^{\circ}\right]\right)+\left(1-\ell_{3}\left(c^{\circ}\right)\right)\left(-k_{1}-\right.\right.$ $\left.\left.k_{2}\right)\right) \geq E U_{C}(\neg R O)=-k_{1}$. Solving for $k_{2}$ yields the Commission's best reply function $k_{2} \leq k_{2}^{\circ}=p_{2}\left(c^{\circ}\right) b+\left(1-p_{2}\left(c^{\circ}\right)\right) \ell_{3}\left(c^{\circ}\right)\left(E\left[q_{3}(c) \mid c \leq c^{\circ}\right] b-E\left[k_{3} \mid k_{3} \leq k_{3}^{\circ}\right]\right)$. Define $\ell_{2}\left(c^{\circ}\right)$ as the belief of the government that the Commission will bring a reasoned opinion. By Bayes' Rule $\ell_{2}\left(c^{\circ}\right)=\operatorname{pr}(R O)=\operatorname{pr}\left(k_{2} \leq b\left(p_{2}\left(c^{\circ}\right)+\ell_{3}\left(c^{\circ}\right) E\left[q_{3}(c) \mid c \leq c^{\circ}\right]-p_{2}\left(c^{\circ}\right) \ell_{3}\left(c^{\circ}\right) E\left[q_{3}(c) \mid\right.\right.\right.$ $\left.\left.\left.c \leq c^{\circ}\right]\right)-\ell_{3}\left(c^{\circ}\right)\left(1-p_{2}\left(c^{\circ}\right)\right) E\left[k_{3} \mid k_{3} \leq k_{3}^{\circ}\right]\right)$.

The government complies with a letter of formal notice when $E U_{G}\left(C_{L F N}\right) \geq E U_{G}\left(\neg C_{L F N}\right)$. Note that $E U_{G}\left(C_{L F N}\right)=c$ and $E U_{G}\left(\neg C_{L F N}\right)=\ell_{2}\left(c^{\circ}\right)\left(\max \left\{E U_{G}\left(C_{R O}\right), E U_{G}\left(\neg C_{R O}\right)\right\}\right)+$ $\left(1-\ell_{2}\left(c^{\circ}\right)\right)(0)$. If $c \geq 0$ it is a weakly dominant strategy for the government to comply, because $c \geq \max \left\{E U_{G}\left(C_{R O}\right), E U_{G}\left(\neg C_{R O}\right)\right\}$ when $c \geq 0 . E U_{G}\left(C_{R O}\right)=c$, and $E U_{G}\left(\neg C_{R O}\right)<c\left(E U_{G}\left(\neg C_{R O}\right)\right.$ is a convex combination of payoffs of 0 and $\left.c-j\right)$. If $c<0$, it is a strictly dominant strategy for the government not to comply. Because $E U_{G}\left(C_{R O}\right)=c$, the government can assure itself at least a convex combination of payoffs of $c$ and 0 by playing $E U_{G}\left(\neg C_{L F N}\right)$. Define $p_{1}$ as the belief of the Commission that the government will comply with a letter of formal notice. By Bayes' Rule, $p_{1}\left(c^{\circ}\right)=\operatorname{Pr}\left(C_{L F N}\right)$, where $\operatorname{Pr}\left(C_{L F N}\right)=\operatorname{Pr}\left(c>0 \mid \neg C_{0}\right)=\frac{q_{0} \operatorname{Pr}(c \geq 0)}{1-p_{0}}$. We demonstrate below that the government
plays $C_{0}$ whenever $c \geq 0$, and thus $c \geq 0$ only occurs here if there is an accidental instance of noncompliance.

The Commission issues a letter of formal notice when $E U_{C}(L F N)=p_{1}\left(b-k_{1}\right)+(1-$ $\left.p_{1}\right)\left(\ell_{2}\left(c^{\circ}\right)\left(p_{2}\left(c^{\circ}\right)\left(b-k_{1}-E\left[k_{2} \mid k_{2} \leq k_{2}^{\circ}\right]\right)+\left(1-p_{2}\left(c^{\circ}\right)\right)\left(\ell_{3}\left(c^{\circ}\right)\left(E\left[q_{3}(c) \mid c \leq c^{\circ}\right] b-k_{1}-E\left[k_{2} \mid\right.\right.\right.\right.\right.$ $\left.\left.\left.\left.\left.k_{2} \leq k_{2}^{\circ}\right]-E\left[k_{3} \mid k_{3} \leq k_{3}^{\circ}\right]\right)+\left(1-\ell_{3}\left(c^{\circ}\right)\right)\left(-k_{1}-E\left[k_{2} \mid k_{2} \leq k_{2}^{\circ}\right]\right)\right)\right)+\left(1-\ell_{2}\left(c^{\circ}\right)\right)\left(-k_{1}\right)\right) \geq$ $E U_{C}(\neg L F N)=0$. Solving for $k_{1}$ yields the Commission's best reply function $k_{1} \leq k_{1}^{\circ}=$ $p_{1} b+\left(1-p_{1}\right)\left(\ell_{2}\left(c^{\circ}\right)\left(p_{2}\left(c^{\circ}\right) b+\left(1-p_{2}\left(c^{\circ}\right)\right)\left(\ell_{3}\left(c^{\circ}\right)\left(E\left[q_{3}(c) \mid c \leq c^{\circ}\right] b-E\left[k_{3} \mid k_{3} \leq k_{3}^{\circ}\right]\right)\right)-E\left[k_{2} \mid\right.\right.\right.$ $\left.\left.k_{2} \leq k_{2}^{\circ}\right]\right)$. Define $\ell_{1}\left(c^{\circ}\right)$ as the belief of the government that the Commission will bring a letter of formal notice. By Bayes' Rule, $\ell_{1}\left(c^{\circ}\right)=\operatorname{Pr}(L F N)=\operatorname{Pr}\left(k_{2} \leq k_{2}^{\circ}\right)$.

The government ex ante complies when $E U_{G}\left(C_{0}\right) \geq E U_{G}\left(\neg C_{0}\right)$. Note that $E U_{G}\left(C_{0}\right)=$ $c$ and $E U_{G}\left(\neg C_{0}\right)=\ell_{1}\left(\max \left\{E U_{G}\left(C_{L F N}\right), E U_{G}\left(\neg C_{L F N}\right)\right\}\right)+\left(1-\ell_{1}\right)(0)$. If $c \geq 0$ it is a weakly dominant strategy for the government to comply. $c \geq \max \left\{E U_{G}\left(C_{L N F}\right), E U_{G}\left(\neg C_{L F N}\right)\right\}$ when $c \geq 0$ since $E U_{G}\left(C_{L N F}\right)=c, E U_{G}\left(C_{R O}\right)=c$, and $E U_{G}\left(\neg C_{R O}\right)<c$. If $c<0$, it is a strictly dominant strategy for the government not to comply. Because $E U_{G}\left(C_{L F N}\right)=c$, the government can assure itself at least a convex combination of payoffs of $c$ and 0 by playing $E U_{G}\left(\neg C_{0}\right)$. Define $p_{0}$ as the belief of the Commission that the government will ex ante comply. By Bayes' Rule, $p_{0}=\operatorname{Pr}\left(C_{0}\right)=\operatorname{Pr}(c \geq 0)\left(1-q_{0}\right)$.

This system of best replies defines the Perfect Bayesian Equilibrium for the game. It is summarized below.

$$
\begin{aligned}
C_{0}^{*} & = \begin{cases}C_{0} & \text { if } c \geq 0 \\
\neg C_{0} & \text { otherwise }\end{cases} \\
L F N^{*} & = \begin{cases}L F N & \text { if } k_{1} \leq k_{1}^{*} \\
\neg L F N & \text { otherwise }\end{cases} \\
C_{L F N}^{*} & = \begin{cases}C_{L F N} & \text { if } c \geq 0 \\
\neg C_{L F N} & \text { otherwise }\end{cases} \\
R O^{*} & = \begin{cases}R O & \text { if } k_{2} \leq k_{2}^{*} \\
\neg R O & \text { otherwise }\end{cases} \\
C_{R O}^{*} & = \begin{cases}C_{R O} & \text { if } 0>c \geq c^{*} \\
\neg C_{R O} & \text { otherwise }\end{cases}
\end{aligned}
$$

$$
\begin{aligned}
& R F^{*}= \begin{cases}R F & \text { if } k_{3} \leq k_{3}^{*} \\
\neg R F & \text { otherwise }\end{cases} \\
& c^{*}=-\frac{\ell_{3}\left(c^{*}\right) q_{3}\left(c^{*}\right) j}{1-\ell_{3}\left(c^{*}\right) q_{3}\left(c^{*}\right)} \\
& k_{1}^{*}= p_{1} b+\left(1-p_{1}\right)\left(\ell _ { 2 } ( c ^ { * } ) \left(p_{2}\left(c^{*}\right) b+\left(1-p_{2}\left(c^{*}\right)\right)\right.\right. \\
&\left.\left(\ell_{3}\left(c^{*}\right)\left(E\left[q_{3}(c) \mid c \leq c^{*}\right] b-E\left[k_{3} \mid k_{3} \leq k_{3}^{*}\right]\right)\right)-E\left[k_{2} \mid k_{2} \leq k_{2}^{*}\right]\right) \\
& k_{2}^{*}= p_{2}\left(c^{*}\right) b+\left(1-p_{2}\left(c^{*}\right)\right) \ell_{3}\left(c^{*}\right)\left(E\left[q_{3}(c) \mid c \leq c^{*}\right] b-E\left[k_{3} \mid k_{3} \leq k_{3}^{*}\right]\right) \\
& k_{3}^{*}= E\left[q_{3}(c) \mid c \leq c^{*}\right] b \\
& \ell_{1}\left(c^{*}\right)= \operatorname{Pr}\left(k_{1} \leq k_{1}^{*}\right) \\
& \ell_{2}\left(c^{*}\right)= \operatorname{Pr}\left(k_{2} \leq k_{2}^{*}\right) \\
& \ell_{3}\left(c^{*}\right)= \operatorname{Pr}\left(k_{3} \leq k_{3}^{*}\right) \\
& p_{0}= \operatorname{Pr}(c \geq 0)\left(1-q_{0}\right) \\
& p_{1}= \frac{q_{0} \operatorname{Pr}(c \geq 0)}{1-p_{0}} \\
& p_{2}\left(c^{*}\right)= \operatorname{Pr}\left(c \geq c^{*} \mid c<0\right)
\end{aligned}
$$

## Proof: Comparative Statics

## Result 1

Proof. To demonstrate $\frac{\partial\left(1-p_{2}\left(c^{*}\right)\right) \ell_{3}\left(c^{*}\right)}{\partial q_{0}}=0$, simply note that both $\ell_{3}\left(c^{*}\right)$ and $p_{2}\left(c^{*}\right)$ are independent of $q_{0}$. We prove the remaining components of the result by first examining how $\ell_{3}\left(c^{*}\right)$ and then $p_{2}\left(c^{*}\right)$ change in $b$ and $E[c]$, respectively.

Consider $\frac{\partial \ell_{3}\left(c^{*}\right)}{\partial b}$. We employ proof by contradiction. Hypothesize $\frac{\partial \ell_{3}\left(c^{*}\right)}{\partial b}<0$. Holding $c^{*}$ constant, because $k_{3}^{*}=E\left[q(c) \mid c \leq c^{*}\right] b$, increasing $b$ increases $k_{3}^{*}$, and therefore $\ell_{3}\left(c^{*}\right)=$ $\operatorname{Pr}\left(k \leq k_{3}^{*}\right)$ increases for a fixed $c^{*}$.

Now consider $c^{*}=-\frac{\ell_{3}\left(c^{*}\right) q_{3}\left(c^{*}\right) j}{1-\ell_{3}\left(c^{*}\right) q_{3}\left(c^{*}\right)}$. Increasing $\ell_{3}\left(c^{*}\right)$, holding $q_{3}\left(c^{*}\right)$ constant, decreases $c^{*}$. Note that $\frac{\partial q_{3}\left(c^{*}\right)}{\partial c^{*}}>0$, and therefore the effect of a change in $\ell_{3}\left(c^{*}\right)$ on $c^{*}$ is moderated by $q_{3}\left(c^{*}\right)$ If this indirect effect yields $\frac{\partial c^{*}}{\partial \ell_{3}\left(c^{*}\right)}>0$ we immediately have a contradiction since that would increase $\ell_{3}\left(c^{*}\right)$. Otherwise, $\frac{\partial c^{*}}{\partial \ell_{3}\left(c^{*}\right)}<0$.

Recall $\ell_{3}\left(c^{*}\right)=\operatorname{Pr}\left(k_{3} \leq E\left[q_{3}(c) \mid c \leq c^{*}\right] b\right)$. Because $\frac{\partial \ell_{3}\left(c^{*}\right)}{\partial c^{*}}>0$, for $\frac{\partial \ell_{3}\left(c^{*}\right)}{\partial b}<0$, as hypothesized, the decrease in $\ell_{3}\left(c^{*}\right)$ caused by the indirect effect of $b$ on $\ell_{3}\left(c^{*}\right)$ through $c^{*}$ must be larger than $b$ 's direct increase in $\ell_{3}\left(c^{*}\right)$. However, if $\frac{\partial \ell_{3}\left(c^{*}\right)}{\partial b}<0$, increasing $b$ does not decrease $c^{*}$ and we have a contradiction. Therefore, $\frac{\partial \ell_{3}\left(c^{*}\right)}{\partial b}>0$.

A nearly identical argument holds for $\frac{\partial \ell\left(c^{*}\right)}{\partial E[c]}$. Hypothesize $\frac{\partial \ell\left(c^{*}\right)}{\partial E[c]}<0$. Because $E\left[q_{3}(c) \mid\right.$ $\left.c \leq c^{*}\right]$ is increasing in $E[c]$, holding $c^{*}$ constant, $\ell_{3}\left(c^{*}\right)$ is also increasing in $E[c]$, holding $c^{*}$ constant. The remainder of the proof by contradiction from $\frac{\partial \ell_{3}\left(c^{*}\right)}{\partial b}$ follows as above. Thus, we have $\frac{\partial \ell_{3}\left(c^{*}\right)}{\partial b}>0$ and $\frac{\partial \ell_{3}\left(c^{*}\right)}{\partial E[c]}>0$.

Now consider $\frac{\partial p_{2}\left(c^{*}\right)}{\partial b}$. From the equilibrium proof, $p_{2}\left(c^{*}\right)=\operatorname{Pr}\left(\left.c \geq \frac{\ell_{3} q_{3}\left(c^{*}\right) j}{1-\ell_{3} q_{3}\left(c^{*}\right)} \right\rvert\, c<0\right)$. Let $F$ be the CDF of $c$. Then, $p_{2}\left(c^{*}\right)=\frac{1-F\left(c^{*}\right)-(1-F(0))}{F(0)}=\frac{F(0)-F\left(c^{*}\right)}{F(0)}$, or equivalently, $p_{2}\left(c^{*}\right)=\frac{\operatorname{Pr}(c<0)-\operatorname{Pr}\left(c<c^{*}\right)}{\operatorname{Pr}(c<0)}$. Because $\frac{\partial \ell_{3}\left(c^{*}\right)}{\partial b}>0$ and $\frac{\partial c^{*}}{\partial \ell_{3}\left(c^{*}\right)}<0$ (from above), and $\frac{\partial \operatorname{Pr}\left(c<c^{*}\right)}{\partial c^{*}}>$ $0, \frac{\partial p_{2}\left(c^{*}\right)}{\partial b}>0$.

Finally, consider $\frac{\partial p_{2}\left(c^{*}\right)}{\partial E[c]}$. Because $\frac{\partial \ell_{3}\left(c^{*}\right)}{\partial E[c]}>0$ and $\frac{\partial c^{*}}{\partial \ell_{3}\left(c^{*}\right)}<0$ (from above), $\frac{\partial c^{*}}{\partial E[c]}<0$. Since $\frac{\partial c^{*}}{\partial E[c]}<0$ and $\frac{\partial \operatorname{Pr}\left(c \ll^{*}\right)}{\partial c^{*}}>0, \frac{\partial \operatorname{Pr}\left(c<c^{*}\right)}{\partial E[c]}<0$. We also know by definition $\frac{\partial \operatorname{Pr}(c<0)}{\partial E[c]}<0$. Because $\frac{\partial c^{*}}{\partial E[c]}<0, \frac{\partial\left(\operatorname{Pr}(c<0)-\operatorname{Pr}\left(c<c^{*}\right)\right)}{\partial E[c]}>0$. That, combined with $\frac{\partial_{\frac{1}{\operatorname{Pr}(c c 0)}}^{\partial E[c]}}{}>0$, implies $\frac{\partial p_{2}\left(c^{*}\right)}{\partial E[c]}>0$.

Since $\frac{\partial \ell_{3}\left(c^{*}\right)}{\partial b}>0$ and $\frac{\partial p_{2}\left(c^{*}\right)}{\partial b}>0$, the sign of $\frac{\partial\left[\left(1-p_{2}\left(c^{*}\right)\right) \ell_{3}\left(c^{*}\right)\right]}{\partial b}$ is ambiguous. Since $\frac{\partial \ell_{3}\left(c^{*}\right)}{\partial E[c]}>0$ and $\frac{\partial p_{2}\left(c^{*}\right)}{\partial E[c]}>0$, the sign of $\frac{\partial\left[\left(1-p_{2}\left(c^{*}\right)\right)_{3}\left(c^{*}\right)\right]}{\partial E[c]}$ is ambiguous.

## Result 2

Proof. From the equilibrium proof, $p_{1}=\frac{q_{0} \operatorname{Pr}(c \geq 0)}{1-p_{0}}=\frac{q_{0}(1-\operatorname{Pr}(c<0))}{1-(1-\operatorname{Pr}(c<0))\left(1-q_{0}\right)}$. Then, $\frac{\partial p_{1}}{\partial q_{0}}=$ $\frac{\operatorname{Pr}(c<0)-\operatorname{Pr}(c<0)^{2}}{\left(\operatorname{Pr}(c<0)+q_{0}-\operatorname{Pr}(c<0) q_{0}\right)^{2}}$. Both the numerator and denominator are positive; thus, $\frac{\partial p_{1}}{\partial q_{0}}>0$. Note that $\ell_{2}\left(c^{*}\right)$ does not contain $q_{0}$. Thus, $\frac{\partial\left[\left(1-p_{1}\right)\left(\ell_{2}\left(c^{*}\right)\right)\right]}{\partial q_{0}}<0$.

## Result 3

Proof. From Result 2, $\frac{\partial p_{1}}{\partial q_{0}}=\frac{\operatorname{Pr}(c<0)-\operatorname{Pr}(c<0)^{2}}{\left(\operatorname{Pr}(c<0)+q_{0}-\operatorname{Pr}(c<0) q_{0}\right)^{2}}>0$. Taking the cross-partial with respect to $\operatorname{Pr}(c<0)$, we have $\frac{\partial p_{1}}{\partial q_{0} \partial \operatorname{Pr}(c<0)}=\frac{\operatorname{Pr}(c<0)-q_{0}+\operatorname{Pr}(c<0) q_{0}}{\left(\operatorname{Pr}(c<0) q_{0}-\operatorname{Pr}(c<0)-q_{0}\right)^{3}}$. The sign of $\frac{\partial p_{1}}{\partial q_{0} \partial \operatorname{Pr}(c<0)}$ depends on parameter values; $\frac{\partial p_{1}}{\partial q_{0} \partial \operatorname{Pr}(c<0)}<0$ when $\operatorname{Pr}(c<0)>\frac{q_{0}}{1+q_{0}}$. Thus, the positive effect of $q_{0}$ on $p_{1}$ is decreasing in $\operatorname{Pr}(c<0)$, which implies that the negative effect of $q_{0}$ on $\operatorname{Pr}(R O \mid L F N)=\left(1-p_{1}\right) \ell_{2}\left(c^{*}\right)$ is decreasing in $\operatorname{Pr}(c<0)$.

Note that $q_{0}$ is the probability of unintentional noncompliance conditional on the government choosing to comply. The unconditional probability of unintentional noncompliance is the joint probability that the government chooses to comply and unintentionally commits a violation, $q_{0} \operatorname{Pr}(c \geq 0)$. The probability of intentional noncompliance, $\operatorname{Pr}(c<0)$, is greater than the probability of accidental noncompliance when $\operatorname{Pr}(c<0) \geq q_{0} \operatorname{Pr}(c \geq 0)$, which is equivalent to the condition under which $\frac{\partial p_{1}}{\partial q_{0} \partial \operatorname{Pr}(c<0)}<0$.

## Result 4

Proof. From the equilibrium proof, $\ell_{2}\left(c^{*}\right)=\operatorname{Pr}\left(k_{2} \leq k_{2}^{*}\right)$. Since $\operatorname{Pr}\left(k_{2} \leq k_{2}^{*}\right)$ is increasing in $k_{2}^{*}$, we prove that $\frac{\partial k_{2}^{*}}{\partial b}>0$. Substituting in $k_{3}^{*}$, we have $k_{2}^{*}=b p_{2}\left(c^{*}\right)+\ell_{3}\left(c^{*}\right) k_{3}^{*}-$ $p_{2}\left(c^{*}\right) \ell_{3}\left(c^{*}\right) k_{3}^{*}-\ell_{3}\left(c^{*}\right) E\left[k_{3} \mid k_{3} \leq k_{3}^{*}\right]+p_{2}\left(c^{*}\right) \ell_{3}\left(c^{*}\right) E\left[k_{3} \mid k_{3} \leq k_{3}^{*}\right]$. We then take the derivative with respect to $b$ :

$$
\begin{aligned}
\frac{\partial k_{2}^{*}}{\partial b}= & \left(\frac{\partial p_{2}\left(c^{*}\right)}{\partial b} b+p_{2}\left(c^{*}\right)\right)+\left(\frac{\partial \ell_{3}\left(c^{*}\right)}{\partial b} k_{3}^{*}+\ell_{3}\left(c^{*}\right) \frac{\partial k_{3}^{*}}{\partial b}\right) \\
& -\left(\frac{\partial p_{2}\left(c^{*}\right)}{\partial b} \ell_{3}\left(c^{*}\right) k_{3}^{*}+p_{2}\left(c^{*}\right) \frac{\partial \ell_{3}\left(c^{*}\right)}{\partial b} k_{3}^{*}+p_{2}\left(c^{*}\right) \ell_{3}\left(c^{*}\right) \frac{\partial k_{3}^{*}}{\partial b}\right) \\
& -\left(\frac{\partial \ell_{3}\left(c^{*}\right)}{\partial b} E\left[k_{3} \mid k_{3} \leq k_{3}^{*}\right]+\ell_{3}\left(c^{*}\right) \frac{\partial E\left[k_{3} \mid k_{3} \leq k_{3}^{*}\right]}{\partial b}\right) \\
& +\left(\frac{\partial p_{2}\left(c^{*}\right)}{\partial b} \ell_{3}\left(c^{*}\right) E\left[k_{3} \mid k_{3} \leq k_{3}^{*}\right]+p_{2}\left(c^{*}\right) \frac{\partial \ell_{3}\left(c^{*}\right)}{\partial b} E\left[k_{3} \mid k_{3} \leq k_{3}^{*}\right]\right. \\
& \left.+p_{2}\left(c^{*}\right) \ell_{3}\left(c^{*}\right) \frac{\partial E\left[k_{3} \mid k_{3} \leq k_{3}^{*}\right]}{\partial b}\right) .
\end{aligned}
$$

Reorganizing terms yields:

$$
\begin{aligned}
\frac{\partial k_{2}^{*}}{\partial b}= & p_{2}\left(c^{*}\right)+\frac{\partial p_{2}\left(c^{*}\right)}{\partial b}\left(b-\ell_{3}\left(c^{*}\right) k_{3}^{*}\right)+\frac{\partial \ell_{3}\left(c^{*}\right)}{\partial b}\left(1-p_{2}\left(c^{*}\right)\right)\left(k_{3}^{*}-E\left[k_{3} \mid k_{3} \leq k_{3}^{*}\right]\right) \\
& +\ell_{3}\left(c^{*}\right)\left(1-p_{2}\left(c^{*}\right)\right)\left(\frac{\partial k_{3}^{*}}{\partial b}-\frac{\partial E\left[k_{3} \mid k_{3} \leq k_{3}^{*}\right]}{\partial b}\right)+p_{2}\left(c^{*}\right) \ell_{3}\left(c^{*}\right) \frac{\partial E\left[k_{3} \mid k_{3} \leq k_{3}^{*}\right]}{\partial b} .
\end{aligned}
$$

The first term, $p_{2}\left(c^{*}\right)$, is positive because $p_{2}\left(c^{*}\right) \in(0,1)$.
The second term, $\frac{\partial p_{2}\left(c^{*}\right)}{\partial b}\left(b-\ell_{3}\left(c^{*}\right) k_{3}^{*}\right)$, is strictly positive, because $b$ is strictly greater than $\ell_{3}\left(c^{*}\right) k_{3}^{*}=\ell_{3}\left(c^{*}\right) E\left[q_{3}(c) \mid c \leq c^{*}\right] b$ and $\frac{\partial p_{2}\left(c^{*}\right)}{\partial b}>0$ from Result 1.

The third term, $\frac{\partial \ell_{3}\left(c^{*}\right)}{\partial b}\left(1-p_{2}\left(c^{*}\right)\right)\left(k_{3}^{*}-E\left[k_{3} \mid k_{3} \leq k_{3}^{*}\right]\right)$, is strictly positive, because $\frac{\partial \ell_{3}\left(c^{*}\right)}{\partial b}>0$ from Result $1,\left(1-p_{2}\left(c^{*}\right)\right)>0$ since $p_{2}\left(c^{*}\right) \in(0,1)$, and $\left(k_{3}^{*}-E\left[k_{3} \mid k_{3} \leq k_{3}^{*}\right]\right)>0$ because $k_{3}$ is unbounded.

The fourth term, $\ell_{3}\left(c^{*}\right)\left(1-p_{2}\left(c^{*}\right)\right)\left(\frac{\partial k_{3}^{*}}{\partial b}-\frac{\partial E\left[k_{3} \mid k_{3} \leq k_{3}^{*}\right]}{\partial b}\right)$, is strictly positive on average. First, we know $\ell_{3}\left(c^{*}\right)\left(1-p_{2}\left(c^{*}\right)\right)>0$, because $\ell_{3}\left(c^{*}\right)$ and $p_{2}\left(c^{*}\right)$ are probabilities. Second, from above, $k_{3}^{*}>E\left[k_{3} \mid k_{3} \leq k_{3}^{*}\right]$, which means $k_{3}^{*}$ and $E\left[k_{3} \mid k_{3} \leq k_{3}^{*}\right]$ can not cross. Because they can not cross, $\frac{\partial k_{3}^{*}}{\partial b}-\frac{\partial E\left[k_{3} \mid k_{3} \leq k_{3}^{*}\right]}{\partial b}>0$ must hold on average.

The fifth term, $p_{2}\left(c^{*}\right) \ell_{3}\left(c^{*}\right) \frac{\partial E\left[k_{3} \mid k_{3} \leq k_{3}^{*}\right]}{\partial b}$ is strictly positive because $p_{2}\left(c^{*}\right)$ and $\ell_{3}\left(c^{*}\right)$ are probabilities and $\frac{\partial E\left[k_{3} \mid k_{3} \leq k_{3}^{*}\right]}{\partial b}$ must be greater than zero since $\frac{\partial k_{3}^{*}}{\partial b}>0$ from Result 1 .

Since all terms are strictly positive on average, $\frac{\partial k_{2}^{*}}{\partial b}>0$ on average. More generally, as long as the fourth term is not too negative at some point, the partial derivative is positive everywhere. Note that $p_{1}$ does not contain $b$. Thus, $\frac{\partial\left[\left(1-p_{1}\right)\left(\ell_{2}\left(c^{*}\right)\right)\right]}{\partial b}>0$.

## Result 5

Proof. Consider $\frac{\partial \ell_{2}\left(c^{*}\right)}{\partial E[c]}$. From the equilibrium proof, $\ell_{2}\left(c^{*}\right)=\operatorname{Pr}\left(k_{2} \leq k_{2}^{*}\right)$. Since $\operatorname{Pr}\left(k_{2} \leq\right.$ $\left.k_{2}^{*}\right)$ is increasing in $k_{2}^{*}$, we prove that $\frac{\partial k_{2}^{*}}{\partial E[c]}>0$. Substituting in $k_{3}^{*}$, we have $k_{2}^{*}=b p_{2}\left(c^{*}\right)+$ $\ell_{3}\left(c^{*}\right) k_{3}^{*}-p_{2}\left(c^{*}\right) \ell_{3}\left(c^{*}\right) k_{3}^{*}-\ell_{3}\left(c^{*}\right) E\left[k_{3} \mid k_{3} \leq k_{3}^{*}\right]+p_{2}\left(c^{*}\right) \ell_{3}\left(c^{*}\right) E\left[k_{3} \mid k_{3} \leq k_{3}^{*}\right]$. We then take the derivative with respect to $E[c]$ :

$$
\begin{aligned}
\frac{\partial k_{2}^{*}}{\partial E[c]}= & \left(\frac{\partial p_{2}\left(c^{*}\right)}{\partial E[c]} b\right)+\left(\frac{\partial \ell_{3}\left(c^{*}\right)}{\partial E[c]} k_{3}^{*}+\ell_{3}\left(c^{*}\right) \frac{\partial k_{3}^{*}}{\partial E[c]}\right) \\
& -\left(\frac{\partial p_{2}\left(c^{*}\right)}{\partial E[c]} \ell_{3}(c *) k_{3}^{*}+p_{2}\left(c^{*}\right) \frac{\partial \ell_{3}\left(c^{*}\right)}{\partial E[c]} k_{3}^{*}+p_{2}\left(c^{*}\right) \ell_{3}\left(c^{*}\right) \frac{\partial k_{3}^{*}}{\partial E[c]}\right) \\
& -\left(\frac{\partial \ell_{3}\left(c^{*}\right)}{\partial E[c]} E\left[k_{3} \mid k_{3} \leq k_{3}^{*}\right]+\ell_{3}\left(c^{*}\right) \frac{\partial E\left[k_{3} \mid k_{3} \leq k_{3}^{*}\right]}{\partial E[c]}\right) \\
& +\left(\frac{\partial p_{2}\left(c^{*}\right)}{\partial E[c]} \ell_{3}\left(c^{*}\right) E\left[k_{3} \mid k_{3} \leq k_{3}^{*}\right]+p_{2}\left(c^{*}\right) \frac{\partial \ell_{3}\left(c^{*}\right)}{\partial E[c]} E\left[k_{3} \mid k_{3} \leq k_{3}^{*}\right]\right. \\
& \left.+p_{2}\left(c^{*}\right) \ell_{3}\left(c^{*}\right) \frac{\partial E\left[k_{3} \mid k_{3} \leq k_{3}^{*}\right]}{\partial E[c]}\right) .
\end{aligned}
$$

Reorganizing terms yields:

$$
\begin{aligned}
\frac{\partial k_{2}^{*}}{\partial E[c]}= & \frac{\partial p_{2}\left(c^{*}\right)}{\partial E[c]}\left(b-\ell_{3}\left(c^{*}\right) k_{3}^{*}\right)+\frac{\partial \ell_{3}\left(c^{*}\right)}{\partial E[c]}\left(1-p_{2}\left(c^{*}\right)\right)\left(k_{3}^{*}-E\left[k_{3} \mid k_{3} \leq k_{3}^{*}\right]\right) \\
& +\ell_{3}\left(c^{*}\right)\left(1-p_{2}\left(c^{*}\right)\right)\left(\frac{\partial k_{3}^{*}}{\partial E[c]}-\frac{\partial E\left[k_{3} \mid k_{3} \leq k_{3}^{*}\right]}{\partial E[c]}\right)+p_{2}\left(c^{*}\right) \ell_{3}\left(c^{*}\right) \frac{\partial E\left[k_{3} \mid k_{3} \leq k_{3}^{*}\right]}{\partial E[c]} .
\end{aligned}
$$

The first term, $\frac{\partial p_{2}\left(c^{*}\right)}{\partial E[c]}\left(b-\ell_{3}\left(c^{*}\right) k_{3}^{*}\right)$, is strictly positive, because $b$ is strictly greater than $\ell_{3}\left(c^{*}\right) k_{3}^{*}=\ell_{3}\left(c^{*}\right) E\left[q_{3}(c) \mid c \leq c^{*}\right] b$ and $\frac{\partial p_{2}\left(c^{*}\right)}{\partial E[c]}>0$ from Result 1.

The second term, $\frac{\partial \ell_{3}\left(c^{*}\right)}{\partial E[c]}\left(1-p_{2}\left(c^{*}\right)\right)\left(k_{3}^{*}-E\left[k_{3} \mid k_{3} \leq k_{3}^{*}\right]\right)$, is strictly positive, because $\frac{\partial \ell_{3}\left(c^{*}\right)}{\partial E[c]}>0$ from Result $1,\left(1-p_{2}\left(c^{*}\right)\right)>0$ since $p_{2}\left(c^{*}\right) \in(0,1)$, and $\left(k_{3}^{*}-E\left[k_{3} \mid k_{3} \leq k_{3}^{*}\right]\right)>0$ because $k_{3}$ is unbounded.

The third term, $\ell_{3}\left(c^{*}\right)\left(1-p_{2}\left(c^{*}\right)\right)\left(\frac{\partial k_{3}^{*}}{\partial E[c]}-\frac{\partial E\left[k_{3} \mid k_{3} \leq k_{3}^{*}\right]}{\partial E[c]}\right)$, is strictly positive on average. First, we know $\ell_{3}\left(c^{*}\right)\left(1-p_{2}\left(c^{*}\right)\right)>0$, because $\ell_{3}\left(c^{*}\right)$ and $p_{2}\left(c^{*}\right)$ are probabilities. Second, from above, $k_{3}^{*}>E\left[k_{3} \mid k_{3} \leq k_{3}^{*}\right]$, which means $k_{3}^{*}$ and $E\left[k_{3} \mid k_{3} \leq k_{3}^{*}\right]$ can not cross. Because they can not cross, $\frac{\partial k_{3}^{*}}{\partial E[c]}-\frac{\partial E\left[k_{3} \mid k_{3} \leq k_{3}^{*}\right]}{\partial E[c]}>0$ must hold on average.

The fourth term, $p_{2}\left(c^{*}\right) \ell_{3}\left(c^{*}\right) \frac{\partial E\left[k_{3} \mid k_{3} \leq k_{3}^{*}\right]}{\partial b}$ is strictly positive because $p_{2}\left(c^{*}\right)$ and $\ell_{3}\left(c^{*}\right)$ are probabilities and $\frac{\partial E\left[k_{3} \mid k_{3} \leq k_{3}^{*}\right]}{\partial E[c]}$ must be greater than zero since $\frac{\partial k_{3}^{*}}{\partial E[c]}>0$ from Result 1 .

Since all terms are strictly positive on average, the derivative is strictly positive on average. More generally, as long as the third term is not too negative at some point, the partial derivative is positive everywhere.

Consider $\frac{\partial p_{1}}{\partial E[c]}$. From the equilibrium proof, $p_{1}=\frac{q_{0} \operatorname{Pr}(c \geq 0)}{1-p_{0}}=\frac{q_{0} \operatorname{Pr}(c \geq 0)}{1-\operatorname{Pr}(c \geq 0)\left(1-q_{0}\right)}$. The numerator is increasing in $E[c]$, and the denominator is decreasing in $E[c]$, so $\frac{\partial p_{1}}{\partial E[c]}>0$.

Since $\frac{\partial \ell_{2}\left(c^{*}\right)}{\partial E[c]}>0$ and $\frac{\partial p_{1}}{\partial E[c]}>0$, the sign of $\frac{\partial\left[\left(1-p_{1}\right) \ell_{2}\left(c^{*}\right)\right]}{\partial E[c]}$ is ambiguous.
We cannot feasibly sign the cross-partial with respect to $b$. It is

$$
\begin{aligned}
\frac{\partial^{2} k_{2}^{*}}{\partial E[c] \partial b}= & \frac{\partial^{2} p_{2}\left(c^{*}\right)}{\partial E[c] \partial b}\left(b-\ell_{3}\left(c^{*}\right) X\right)+\frac{\partial p_{2}\left(c^{*}\right)}{\partial E[c]}\left(1-\left(\frac{\partial \ell_{3}\left(c^{*}\right)}{\partial b} X+\ell_{3}\left(c^{*}\right) \frac{\partial X}{\partial b}\right)\right. \\
& +\frac{\partial^{2} \ell_{3}\left(c^{*}\right)}{\partial E[c] \partial b} X+\frac{\partial \ell_{3}\left(c^{*}\right)}{\partial E[c]} \frac{\partial X}{\partial b}-\frac{\partial p_{2}\left(c^{*}\right)}{\partial b} \frac{\partial^{2} \ell_{3}\left(c^{*}\right)}{\partial E[c]} X-p_{2}\left(c^{*}\right) \frac{\partial^{2} \ell_{3}\left(c^{*}\right)}{\partial E[c] \partial b} X \\
& +\frac{\partial \ell_{3}\left(c^{*}\right)}{\partial b} \frac{\partial X}{\partial E[c]}+\ell_{3}\left(c^{*}\right) \frac{\partial^{2} X}{\partial E[c] \partial b}-\frac{\partial p_{2}\left(c^{*}\right)}{\partial b} \ell_{3}\left(c^{*}\right) \frac{\partial X}{\partial E[c]} \\
& -p_{2}\left(c^{*}\right) \frac{\partial \ell_{3}\left(c^{*}\right)}{\partial b} \frac{\partial X}{\partial E[c]}-p_{2}\left(c^{*}\right) \ell_{3}\left(c^{*}\right) \frac{\partial^{2} X}{\partial E[c] \partial b},
\end{aligned}
$$

where $X=E\left[q_{3}(c) \mid c \leq c^{*}\right] b-E\left[k_{3} \mid k_{3} \leq k_{3}^{*}\right]$. Thus, we turn to a numeric solution.

## Numeric Solution

We estimate the sign of the cross-partial in Result 5 using a numeric solution. In each round of the simulation, we randomly draw values of exogenous parameters from uniform distributions and calculate endogenous parameters numerically, providing functional forms of probability distributions where necessary. We perform one thousand iterations of the simulation, keeping only in-equilibrium combinations of parameter values, and estimate the effect of exogenous parameters on endogenous parameters using OLS models. To simulate changes in $E[c]$, we change the lower bound of its uniform distribution, as changes in the upper bound do not effect endogenous parameters. Replication code is provided below.

```
#################################################
# set up
##################################################
# libraries
library(rootSolve)
library(numDeriv)
library(dplyr)
library(reshape2)
# set parameter values
c.lb <- -7
c.ub <- 7
k3.lb <- -5
k3.ub <- 5
b.par <- 3
j.par <- 1
#################################################
# functions
##################################################
u.pdf <- function(u.lower, u.upper) {
    1 / (u.upper - u.lower)
}
u.cdf <- function(value, u.lower, u.upper) {
    (value - u.lower) / (u.upper - u.lower)
}
q3 <- function(c, z = 1) {
    1 / (1 + exp(-z * c))
}
E.q3 <- function(c.star, c.lb, c.ub) {
```

```
        integrand <- function(c, c.lb, c.ub) {
        q3(c = c) * u.pdf(u.lower = c.lb, u.upper = c.ub)
    }
    integrate(f = Vectorize(integrand), lower = c.lb, upper = c.star, c.lb = c.lb, c
        .ub = c.ub)$value / u.cdf(value = c.star, u.lower = c.lb, u.upper = c.ub)
}
13 <- function(c.star, b.par, c.lb, c.ub, k3.lb, k3.ub) {
    integrand <- function(k3, k3.lb, k3.ub) {
        u.pdf(u.lower = k3.lb, u.upper = k3.ub)
    }
    integrate(f = Vectorize(integrand), lower = k3.lb, upper = E.q3(c.star = c.star,
            c.lb = c.lb, c.ub = c.ub) * b.par, k3.lb = k3.lb, k3.ub = k3.ub)$value
}
c.star <- function(b.par, j.par, c.lb, c.ub, k3.lb, k3.ub) {
    fun <- function (c.star = c.star, b.par = b.par, j.par = j.par, c.lb = c.lb, c.
        ub = c.ub, k3.lb = k3.lb, k3.ub = k3.ub) {
        - (l3(c.star = c.star, b.par = b.par, c.lb = c.lb, c.ub = c.ub, k3.lb = k3.lb,
            k3.ub = k3.ub) * q3(c = c.star) * j.par) / (1 - (l3(c.star = c.star, b.par
                        = b.par, c.lb = c.lb, c.ub = c.ub, k3.lb = k3.lb, k3.ub = k3.ub) * q3(c =
                c.star))) - c.star
    }
    multiroot(fun, start = -1, b.par = b.par, j.par = j.par, c.lb = c.lb, c.ub = c.
        ub, k3.lb = k3.lb, k3.ub = k3.ub)$root
}
p2 <- function(c.star, c.lb, c.ub) {
    (u.cdf(value = 0, u.lower = c.lb, u.upper = c.ub) - u.cdf(value = c.star, u.
        lower = c.lb, u.upper = c.ub)) / u.cdf(value = 0, u.lower = c.lb, u.upper =
        c.ub)
}
E.k3 <- function(c.star, b.par, c.lb, c.ub, k3.lb, k3.ub) {
    integrand <- function(k3, k3.lb, k3.ub) {
        k3 * u.pdf(u.lower = k3.lb, u.upper= k3.ub)
    }
    integrate(f = integrand, lower = k3.lb, upper = E.q3(c.star = c.star, c.lb = c.
        lb, c.ub = c.ub) * b.par, k3.lb = k3.lb, k3.ub = k3.ub)$value
}
k2 <- function(c.star, b.par, j.par, c.lb, c.ub, k3.lb, k3.ub) {
```

```
    p2(c.star = c.star, c.lb = c.lb, c.ub = c.ub) * b.par + (1 - p2(c.star = c.star,
        c.lb = c.lb, c.ub = c.ub)) * l3(c.star = c.star, b.par = b.par, c.lb = c.lb
        , c.ub = c.ub, k3.lb = k3.lb, k3.ub = k3.ub) * (E.q3(c.star = c.star, c.lb =
        c.lb, c.ub = c.ub) * b.par - E.k3(c.star = c.star, b.par = b.par, c.lb = c.
        lb, c.ub = c.ub, k3.lb = k3.lb, k3.ub = k3.ub))
}
##################################################
# set up simulation
##################################################
# function to estimate one round of the simulation
sim.round <- function(b.par.range, j.par.range, c.lb.range, c.ub.range, k3.lb.
    range, k3.ub.range) {
    b.par.draw <- runif(1, b.par.range[1], b.par.range[2])
    j.par.draw <- runif(1, j.par.range[1], j.par.range[2])
    c.lb.draw <- runif(1, c.lb.range[1], c.lb.range[2])
    c.ub.draw <- runif(1, c.ub.range[1], c.ub.range[2])
    k3.lb.draw <- runif(1, k3.lb.range[1], k3.lb.range[2])
    k3.ub.draw <- runif(1, k3.ub.range[1], k3.ub.range[2])
    c.star.solution <- c.star(b.par = b.par.draw, j.par = j.par.draw, c.lb = c.lb.
        draw, c.ub = c.ub.draw, k3.lb = k3.lb.draw, k3.ub = k3.ub.draw)
    E.q3.sim <- E.q3(c.star = c.star.solution, c.lb = c.lb.draw, c.ub = c.ub.draw)
    l3.sim <- l3(c.star = c.star.solution, b.par = b.par.draw, c.lb = c.lb.draw, c.
        ub = c.ub.draw, k3.lb = k3.lb.draw, k3.ub = k3.ub.draw)
    p2.sim <- p2(c.star = c.star.solution, c.lb = c.lb.draw, c.ub = c.ub.draw)
    k2.sim <- k2(c.star = c.star.solution, b.par = b.par.draw, j.par = j.par.draw, c
        .lb = c.lb.draw, c.ub = c.ub.draw, k3.lb = k3.lb.draw, k3.ub = k3.ub.draw)
    output <- data.frame(b.par = b.par.draw, j.par = j.par.draw, c.lb = c.lb.draw, c
        .ub = c.ub.draw, k3.lb = k3.lb.draw, k3.ub = k3.ub.draw,
                c.star = c.star.solution, E.q3 = E.q3.sim, 13 = 13.sim, p2 =
                        p2.sim, k2 = k2.sim)
    return(output)
}
# function to perform the full simulation
run.sim <- function(iterations, b.par.range, j.par.range, c.lb.range, c.ub.range,
    k3.lb.range, k3.ub.range) {
    output <- list()
    for(i in 1:iterations) {
```

```
        output[[i]] <- sim.round(b.par.range = b.par.range, j.par.range = j.par.range,
            c.lb.range = c.lb.range, c.ub.range = c.ub.range, k3.lb.range = k3.lb.
            range, k3.ub.range = k3.ub.range)
    }
        rbind(output)
    output <- do.call("rbind", output)
    return(output)
}
#################################################
# run simulation
##################################################
# run simulation
output <- run.sim(iterations = 1000, b.par.range = c(0, 10), j.par.range = c(0,
    10), c.lb.range = c(-10, 0), c.ub.range = c(0, 10), k3.lb.range = c(0, 1), k3.
    ub.range = c(1, 10))
# keep in-equilibrium values
output <- filter(output, p2 > 0 & p2 < 1 & 13 > 0 & 13 < 1 & c.star > -10 & c.star
    < 0 & k2 > 0)
# check l3 comparative statics
f.l3<- (l3 ~ b.par + j.par + c.lb + c.ub + k3.lb + k3.ub)
mod.13 <- lm(formula = f.13, data = output)
summary(mod.13)
# check p2 comparative statics
f.p2 <- (p2 ~ b.par + j.par + c.lb + c.ub + k3.lb + k3.ub)
mod.p2 <- lm(formula = f.p2, data = output)
summary(mod.p2)
# estimate first-order derivatives
f.k2<- (k2 ~ b.par + j.par + c.lb + c.ub + k3.lb + k3.ub)
mod.k2 <- lm(formula = f.k2, data = output)
summary(mod.k2)
# estimate cross-partial derivative
f.k2 <- (k2 ~ b.par * c.lb + j.par + c.ub + k3.lb + k3.ub)
mod.k2 <- lm(formula = f.k2, data = output)
summary(mod.k2)
```

