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A Completely mediated effects and the CDE

VanderWeele (2011) stated but did not formally prove that if M and W completely mediate

the effect of A on Y , then any controlled direct effect of A on Y with M = m, ACDE(m),

must be due to an indirect effect of A on Y through W . First, let us define what complete

mediation entails.

Definition 1 (Complete mediation). A set of variables Z = {Z1, . . . , Zk} completely medi-

ates the effect of A on Y if, for all values {z1, . . . , zk} ∈ Z,

Yi(a, z1, . . . , zk) = Yi(z1, . . . , zk),

where Z is the support of Z.

Complete mediation is a common idea in the social sciences, where it is mostly seen in

an instrumental variable design. There, the exclusion restriction assumes that the effect of
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the instrument on the outcome is completely mediated by the treatment. Philosophically, it

is unclear if all effects are possibly completely mediated by some set of variables or whether

there are effects for which no completely mediating set exists. We do not answer this question.

We assume that such a set exists and that we can partition it into two subsets: M the

potential mediator we wish to test and W , the set of all other mediators. The goal of this

analysis is to show that there is some effect that is not through M—that is, that there

is some indirect effect through W . Because W is possibly multivariate with unobserved

components, it may not be possible to determine what part of W mediates the effect. Thus,

this approach represents a falsification test of sorts.

Proposition 1. If the effect of A on Y is completely mediated by Z = M,W and the

consistency assumption holds for all potential outcomes, then the average controlled direct

effect with M fixed is also an indirect effect of W :

E[Yi(a,m)− Yi(a
′,m)] = E[Yi(a,m,Wi(a,m))− Yi(a,m,Wi(a

′,m))].

Proof.

E[Yi(a,m)− Yi(a
′,m)] = E[Yi(a,m,Wi(a,m))− Yi(a

′,m,Wi(a
′,m))]

= E[Yi(a,m,Wi(a,m))− Yi(a,m,Wi(a
′,m))

+ Yi(a,m,Wi(a
′,m))− Yi(a

′,m,Wi(a
′,m))]

= E[Yi(a,m,Wi(a,m))− Yi(a,m,Wi(a
′,m))]

The first equality follows from the consistency assumption and the last equality follows from

the definition of complete mediation.

Note that this is a type of natural indirect effect—natural because the other mediators,

W , are allowed to take their natural value under a, a′, and m. Of course this indirect effect

fixes the value of M to m, so that it ignores any potential interaction between the indirect
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effect size and the natural value of M . It is also for this reason that this result holds whether

M affects W , W affects M , or they are independent.

B Consistent Variance estimation for the ACDE in

linear blip-down estimation

Let Wi be the 1× k vector of variables in the first stage of the blip-down estimation. In the

paper above, we took this to include Ai, Mi, Xi, and Zi, but here we will be more general so

as to allow interactions and possible non-nesting of the first and second stages. Let Vi be the

1×p vector of variables in the second stage, direct effect model. Obviously, this includes Ai,

but might also include baseline covariates (and interactions with baseline covariates) as well.

Let Mi ⊂ Wi be the vector of mediators, functions of mediators, and interactions between

the mediators and the treatment or baseline covariates. This vector will be the vector of

variables defined by the blip-down function for m. Let Mi have dimension km. We gather

each of these row vectors in matrices W , V , and M , so that W for instance is an n × k

matrix.

Let α be the vector of regression coefficients for the first model, αm be the subvector

of coefficients for Mi, and β be the vector of coefficients for the direct effect model. Given

linear models for each stage, we can write the regression errors ui1(α) = Yi − Wiα and

ui2(β, α) = Yi − Miαm − Viβ. Let α̂ be the estimator for α based on the sample moment

conditions n−1
∑

iW
T
i ui1(α̂) = 0 and β̂ = β̂(α̂) be the estimator based on the sample

moment condition n−1
∑

i V
T
i ui2(β̂, α̂) = 0. These are simply the OLS estimates from the

first and second stages and ui1(α̂) and ui2(β̂, α̂) are the residuals.

Under standard theory (Newey and McFadden, 1994), Assumptions 1 and 2, and the

assumption of correct linear models, we can show that β̂ is asymptotically Normal with

asymptotic variance:

Var
[
β̂
]
=
(
E[V T

i Vi]
)−1

E
[
gig

T
i

] (
E[V T

i Vi]
)−1

, (1)
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with

gi = V T
i ui2 − F

(
E[W T

i Wi]
)−1

W T
i ui1 (2)

Here, F = E[−V T
i W̃i], where W̃i = [Mi 0] is the vector of Wi with all non-Mi entries set

to 0. To prove this, one only need note that the population moment conditions here are

E[V T
i ui2] = 0 and E[W T

i ui1] = 0. Using the above assumptions and these moment conditions

into Theorem 6.1 of Newey and McFadden (1994, p. 2178) yields (1).

To derive a consistent estimator for the variance, we simply plug sample versions of

the population expectations in (1). Under regularity conditions V TV/n
p→ E[V T

i Vi] and

W TW/n
p→ E[W T

i Wi] and we can use

F̂ = − 1

n

∑
i

V T
i W̃i, (3)

which is consistent for F . Finally, we plug in the residuals to form:

ĝi = V T
i ui2(β̂, α̂)− F̂

(
W TW

)−1
W T

i ui1(α̂). (4)

Finally, we can combine each of these to form consistent variance estimator:

V̂ar
[
β̂
]
= (V TV )−1

(
n−1

∑
i

ĝiĝ
T
i

)
(V TV )−1 (5)

Note that this variance estimator is “robust” in the sense that it is consistent even if there is

heteroskedasticity in either model. Given the structure of gi and F , the variance of β̂ with

α estimated will always be higher than if we were to have knowledge about the true α.

C Bias formulas and sensitivity analysis details

Let ∆(Vi|Wi) ≡ Vi−Ê[Vi|Wi] be the residuals of a regression of Vi on Wi By the Frisch-Waugh

Theorem, we can write the estimated coefficient of Mi on Yi as the following:

α̂2 = α2 +

∑n
i=1 εiy∆(Mi|Zi, Ai, Xi)∑n
i=1∆(Mi|Zi, Ai, Xi)
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Note that 1
n

∑
i∆(Mi|Zi, Ai, Xi)

2 converges in probability to Var[εim] and 1
n

∑
i εiy∆(Mi|Zi, Ai, Xi)

converges to Cov[εiy, εim]. Combining these two facts with Slutsky’s theorem gives the fol-

lowing:

plim α̂2 = α2 +
Cov[εiy, εim]

Var[εim]
(6)

= α2 +
ρσyσm

σ2
m

(7)

= α2 +
ρσy

σm

(8)

Let the true blipped-down outcome be Ỹi = Yi − α2Mi. We can write Ỹi = β0 + β1Ai +

XT
i β2 + ηi, where β1 is the ACDE. Let β̂1 be the coefficient from the regression of ̂̃Y i on Ai

and Xi. By the Frisch-Waugh theorem, we have:

β̂1 =

∑n
i=1(Yi − α̂2Mi)∆(Ai|Xi)∑n

i=1∆(Ai|Xi)2
(9)

=

∑n
i=1(Ỹi − α2Mi + α̂2Mi)∆(Ai|Xi)∑n

i=1 ∆(Ai|Xi)2
(10)

=

∑n
i=1 Ỹi∆(Ai|Xi)∑n
i=1∆(Ai|Xi)2

− (α2 − α̂2)
∑n

i=1Mi∆(Ai|Xi)∑n
i=1∆(Ai|Xi)2

(11)

Let Mi = δ̃0+ δ̃1Ai+XT
i δ̃2+ ε̃im be the regression of Mi on Ai and Xi. Basic regression re-

sults establish that
∑

i Ỹi∆(Ai|Xi)/
∑

i ∆(Ai|Xi)
2 converges to β1 and

∑
iMi∆(Ai|Xi)/

∑
i∆(Ai|Xi)

2

converges to δ̃1. And given our above results, we have that α − α̂2 converges to ρσy/σm.

Again using repeated applications of Slutsky’s theorem, we can derive the asymptotic bias:

plim β̂1 = β1 −
ρσy δ̃1
σm

Of course, σy is not identified due to the confounding. We take a similar approach to

Imai, Keele and Yamamoto (2010) and note the following relationships between the various

parameters:

Var[ε̃iy] = σ̃2
y = α2

2σ
2
m + σ2

y + 2ρα2σmσy (12)

Cov[ε̃iy, εim] = ρ̃σ̃yσm = α2σ
2
m + ρσmσy (13)
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Solving for σy, we find that σy = σ̃y

√
(1− ρ̃2)/(1− ρ2). Plugging this into above yields the

asymptotic bias formula.

To complete the proof note that (12) implies that δ̃1 is identified from a regression of Mi

on Ai and Xi. Under the LSEM and (12), we can use the

̂̃σy =

√
Var[̂ε̃iy] =

√∑
i

(Yi − ̂̃α0 − ̂̃α1Ai −XT
i
̂̃α3 − ZT

i
̂̃α4)2,

which is consistent for σ̃y. Furthermore,

σ̂m =
√

Var[ε̂im] =
√∑

i

(Mi − δ̂0 − δ̂1Ai −XT
i δ̂2 − ZT

i δ̂3)
2

which is consistent for σm. Finally, we can estimate ρ̃ with the correlation between the

residuals ̂̃εiy and ε̂im. Thus, given ρ the asymptotic bias of β̂1 is identified and we can use

this to identify β1.

To get standard errors and confidence intervals for the sensitivity analysis, it is easier to

correct for the bias in α̂2 and pass this bias-corrected estimate to the second stage. Then,

the variance estimator of B consistently estimates the variance of β̂ as if the first stage were

correctly specified. That is, it is the correct variance under the assumption that we have

correctly chosen ρ.

Finally, note that we can reparameterize this sensitivity analysis to be as a function of

the residual variation explained by unmeasured confounding. To see this, we introduce an

unmeasured confounder, Ui:

εiy = αuUi + ε∗iy (14)

εim = δuUi + ε∗im (15)

With these in hand, we can define the partial R2 for Ui in terms of the outcome and the

mediator:

R2
y = 1−

Var[ε∗iy]
Var[εiy]

(16)

R2
m = 1− Var[ε∗im]

Var[εim]
(17)
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These values represent the share of the unexplained variance in Yi and Mi, respectively,

that Ui explains. As shown by Imai, Keele and Yamamoto (2010), we have the following

relationship between ρ and these partial R2 values: ρ2 = R2
yR

2
m. Thus, we can vary these

parameters, which imply differing values of ρ and consequently differing levels of bias. The

advantage of this parameterization of the sensitivity analysis is that the partial R2 may be

more natural to interpret. For instance, we can compare them to the partial R2 values of

observed covariates in Xi and Zi in order to gauge their relative magnitude (Imbens, 2004).

D Simulation setup

Here we present the simulation setup we discussed in Section and present results from

entire set of draws as opposed to only a single draw. This simulation is not meant to prove

any property of any estimator—these results are largely known and have been established

analytically. Instead, we show these for illustrative purposes.

N = 500

Ai ∼ N(50, 152)

Zi ∼ N(50, 152)

Mi ∼ N(0.5Ai + 0.5Zi, 5
2)

Yi ∼ N(75− 0.5Zi, 5
2)

We took 10,000 draws from this data generating process and ran three estimators on the

samples. First, we ran a simple unconditional model of Yi on Ai. Next, we ran a conditional

model of Yi on Ai and Mi. Finally, we applied the sequential g-estimation to estimate the

direct effect of Ai, using Zi as an intermediate confounder. We plot the results in Fig-

ure 1. Given the data generating process, it is unsurprising that both the unconditional and

sequential g-estimation approach recover the truth on average, while conditioning on Mi in-

duces very severe post-treatment bias. Note also that the sequential g-estimator has slightly
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Figure 1: Simulated sampling distribution of the post-treatment bias estimator that condi-
tions on Mi and the unbiased estimator that does not condition on Mi. Conditioning on a
post-treatment covariate in this case produces serious bias.

higher variance than unconditional approach, which makes sense because the unconditional

estimator is taking advantage of an addition restriction in this example: no effect of Ai on

Zi. If that were not true, then the unconditional estimator would also be biased.
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