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A Probabilistic logics in existing work using

process tracing

The Bayesian formalization of process tracing developed in the paper builds on

an empirical logic that is already common in current accounts and, to a lesser

extent, applications of process tracing.

Van Evera’s hoop, smoking gun, and doubly decisive tests have played a central

role in accounts of the logic of process tracing. Consistent with the logic of

process tracing embedded in the BIQQ framework, these tests involve reasoning

about the likelihood of observing particular pieces of evidence under alternative

hypotheses. A notable feature of early accounts is that they described process

tracing tests as grounded in an empirical logic of necessity and su�ciency. In

a hoop test for a hypothesis, H, for instance, the observation of a given piece

of evidence, K, was characterized as being necessary for the survival of H

(though not su�cient for its a�rmation). This corresponds in our framework

to Pr(K = 1|H) = 1. Likewise, in a smoking gun test, the observation of a piece

of evidence, K, was characterized as being su�cient for the confirmation of H

(though not necessary for its survival), formally Pr(K = 1|¬H) = 0 (Collier,

2011, 825-827; Mahoney, 2012, 5 and 7; Bennett, 2010, 210). Thus, some

test outcomes—the passage of a smoking gun test, the failure of a hoop test,

and either outcome in a double decisive test—were seen as having categorical

(pass/fail) consequences for the hypothesis.

These early accounts thus suggested a deterministic feature of process tracing

tests di↵erent from that taken in this paper.

Even in these accounts, however, the relationship between hypotheses and ev-

idence was at least implicitly understood as partially uncertain; and some test

outcomes were understood as incrementally shifting beliefs in a manner more

consistent with Bayesian reasoning. The passage of a hoop test or the fail-

ure of a smoking gun test were seen as somewhat strengthening and weaken-

ing a hypothesis, respectively. They thus implicitly reflected probabilities for

Pr(K = 1|¬H), for the hoop test, and Pr(K = 1|H), for the smoking gun test,

that lay between 0 and 1 (exclusive). Mahoney (2012) also points out that
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hoop tests and smoking gun tests may be more or less di�cult, depending on

the commonness of the evidence (pp. 7 and 9). This consideration corresponds

directly to the denominator in Bayes’ rule.

Further, “straw in the wind” tests—where, in e↵ect, Pr(K = 1|H) 6= Pr(K =

1|¬H) both lie strictly between 0 and 1—were seen as shifting beliefs somewhat

toward or against the hypothesis, though treated as modest sources of inferen-

tial leverage. Indeed, Zaks (2013) points to the central importance of “pieces

of evidence that are not quite definitive enough to qualify as either su�cient

or necessary”, but that nonetheless “may lend support to (or undermine) an

explanation” (p. 11). Zaks relabels these as “leveraging tests” to highlight the

key probative role that evidence with uncertain implications typically plays in

process tracing.

Collier (2011, p. 827), moreover, addresses the possibility of ambiguity about

the test type to which a causal process observation (CPO) corresponds, arising

from di↵erent background theories of or reasoning about the data-generating

process giving rise to the CPOs. Importantly, the BIQQ framework can capture

this kind of uncertainty not just by allowing the � parameters to take on

intermediate values but also by allowing probability distributions over many

possible values.

We note that the focus of these accounts is, in e↵ect, on the likelihood of

observing within-case data given di↵erent underlying processes. This focus

does not imply the use of a fully Bayesian approach. And, as we demonstrate

elsewhere in the Supplementary Materials (§J), a similar type of analysis to

that we propose can be undertaken using a maximum likelihood framework.

The Bayesian approach, however, better captures the accounts in this work of

how inferences are drawn from clue information (in terms of lending support

for one or another explanation) and, as noted above, the Bayesian approach

provides an intuitive way of handling uncertainty over probative value.

While largely compatible with these accounts, the approach taken in the BIQQ

framework is closest to that presented in recent accounts that embrace a fully

probabilistic view of process tracing. Bennett (2015), Beach and Pedersen

(2013, pp. 83↵), and Rohlfing (2012, p. 187–198) shift from the language of
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su�ciency and necessity to a wholly probabilistic understanding of the re-

lationship between hypotheses and pieces of evidence. Beach and Pedersen

(2013, pp. 102), for instance, construe Van Evera’s concepts of “certainty”

and “uniqueness” as continua, representing di↵ering probabilities of making a

given observation under a hypothesis. These accounts, moreover, formalize the

inferential reasoning involved in process tracing in Bayesian terms — as a func-

tion of the probability of the evidence, given the hypothesis; the unconditional

probability of the evidence; and the prior probability of the hypothesis.18 To

our knowledge, current approaches do not allow for uncertainty over probative

value (as opposed to intermediate probative value) or for joint uncertainty over

causal types, probative value, and assignment processes.

To date, surprisingly few substantive works using process tracing feature ex-

plicit reasoning about the test types to which the search for particular pieces

of evidence correspond or about the likelihood of observing pieces of evidence

under alternative hypotheses. Two rare exceptions are Lengfelder (2012) and

Fairfield (2013), which explicitly analyze CPOs in relation to Van Evera’s test

types. Fairfield (2013)’s treatment, moreover, treats inference from CPOs in an

explicitly probabilistic fashion. Reasoning about “how surprising the evidence

would be if a hypothesis were correct,” Fairfield distinguishes among hoop and

smoking gun tests according to their strength and the degree to which they

“increase or decrease the likelihood that a hypothesis is correct to varying de-

grees” (p. 55). So far, at least, clear probabilistic reasoning about qualitative

evidence has yet make the leap from principles to common practice.

18Critically, a probabilistic understanding of process tracing does not imply a probabilistic un-
derstanding of causal relations. A Bayesian approach to inference is fully compatible, for instance,
with a set-theoretic, deterministic approach to causation. Indeed, the potential outcomes framework
underlying the BIQQ approach itself assumes deterministic outcomes conditional on treatment.
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B Bayesian process tracing: intuition and il-

lustration

B.1 The role of priors in Bayesian updating

We note in the text of the paper that the amount of learning that results from

a given piece of new data depends on prior beliefs.

Figure 5 illustrates these points. In each subgraph, we show how much learning

occurs under di↵erent scenarios. The horizontal axis indicates the level of prior

confidence in the hypothesis and the curve indicates the posterior belief that

arises if we do (or do not) observe the clue. As can be seen, the amount

of learning that occurs—the shift in beliefs from prior to posterior—depends

a good deal on what prior we start out with. For a smoking gun test, the

amount of learning is highest for values roughly in the 0.2 to 0.4 range—and

then declines as we have more and more prior confidence in our hypothesis. For

a hoop test, the amount of learning when the clue is not observed is greatest

for hypotheses in which we have middling-high confidence (around 0.6 to 0.8),

and minimal for hypotheses in which we have a very high or a very low level

of confidence.

The implication here is that our inferences with respect to a hypothesis must

be based not just on the search for a clue predicted by the hypothesis but also

on the plausibility of the hypothesis, based on other things we know. Suppose,

for instance, that we fail to observe evidence that we are 90 percent sure we

should observe if a hypothesized causal e↵ect has occurred: a strong hoop test is

failed. But suppose that the existing literature has given us a very high level of

confidence that the hypothesis is right. This high prior confidence, sometimes

referred to as a “base rate,” is equivalent to believing that the causal e↵ect

exists in a very high proportion of cases. Thus, while any given case with a

causal e↵ect has only a 0.1 chance of not generating the clue, the high base

rate means that the vast majority of cases that we observe without the clue

will nonetheless be cases with causal e↵ects. Thus, the failure of even a strong

hoop test, involving a highly certain prediction, should only marginally reduce
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Figure 5: Figure shows how the learning from di↵erent types of tests depends on priors
regarding the proposition. A “smoking gun” test has the greatest impact on beliefs when
priors are middling low and the clue is observed; a “hoop test” has the greatest e↵ect when
priors are middling high and the clue is not observed. Here “PV” denotes the probative
value of the test.

our confidence in a hypothesis that we strongly expect to be true.

A similar line of reasoning applies to smoking-gun tests involving hypotheses

that prior evidence suggests are very unlikely to be true. Innocent people may

be very unlikely to be seen holding smoking guns after a murder. But if a

very high proportion of people observed are known to be innocent, then a very

high proportion of those holding smoking guns will in fact be innocent—and a

smoking-gun clue will be far from decisive.

We emphasize two respects in which these implications depart from common

intuitions. First, we cannot make general statements about how decisive dif-
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ferent categories of test, in Van Evera’s framework, will be. It is commonly

stated that hoop tests are devastating to a theory when they are failed, while

smoking gun tests provide powerful evidence in favor of a hypothesis. But, in

fact the degree of belief change depends not just on features of the clues but

also on prior beliefs.

Second, although scholars frequently treat evidence that goes against the grain

of the existing literature as especially enlightening, in the Bayesian frame-

work the contribution of such evidence may sometimes be modest, precisely

because received wisdom carries weight. Thus, although the discovery of dis-

confirming evidence—an observation thought to be strongly inconsistent with

the hypothesis—for a hypothesis commonly believed to be true is more infor-

mative (has a larger impact on beliefs) than confirming evidence, this does not

mean that we learn more than we would have if the prior were weaker. When

it comes to very strong hypotheses, the “discovery” of disconfirming evidence

is very likely to be a false negative; likewise, the discovery of supporting ev-

idence for a very implausible hypothesis is very likely to be a false positive.

The Bayesian approach takes account of these features naturally. We note,

however, that one common intuition—that little is learned from disconfirm-

ing evidence on a low-plausibility hypothesis or from confirming evidence on a

high-plausibility one—is correct.

B.2 Joint updating over � and type

Here we elaborate on the intuition of multi-parameter Bayesian process trac-

ing, in which updating occurs over both causal type (j) and beliefs about the

probabilities with which clues are observed for each type (� values). The il-

lustration in the text makes clear how updating over type occurs, given beliefs

about � values. But how does updating over � occur?

Suppose that we observe a case with values X = 1, Y = 1. We begin by

defining a prior probability distribution over each parameter. Suppose that we

establish a prior categorical distribution reflecting uncertainty over whether

the case is a b type (e.g., setting a probability of 0.5 that it is a b and 0.5 that
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is a d type). We also start with priors on �
b

and �
d

. For concreteness, suppose

that we are certain that the clue is unlikely for a d type (�
d

= .1), but we are

very uncertain about �
b

; in particular, we have a uniform prior distribution

over [0, 1] for �
b

. Note that, even though we are very uncertain about �
b

, the

clue still has probative value, arising from the fact that the expected value of

�
b

is higher than that of �
d

.

Suppose that we then look for the clue in the case and observe it. This ob-

servation shifts posterior weight away from a belief that the case is a b. See

Figure 6 for an illustration. Yet it simultaneously shifts weight toward a higher

value for �
b

and a lower value for �
d

. The reason is that the observed clue

has a relatively high likelihood both for combinations of parameter values in

which the case is a d and �
b

is low and for combinations in which the case is a

b and �
b

is high (or, equivalently, in this example, where �
d

is low). Since we

now are more confident that the case is a b, however, the marginal posterior

distribution of �
b

will be shifted upward relative to its prior marginal distri-

bution. The joint posterior distribution will also reflect a dependency between

the probability that the case is a b vs. a d, on the one hand, and �
b

and �
d

on

the other.
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Figure 6: Joint posteriors distribution on whether a case is a b or d and on the
probability of seeing a clue for a b type (�

b

).
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C Bayesian correlational inference: intuition

and illustration

In the text, we note that Bayesian updating is commonly used to draw causal

inferences from correlational X, Y data. Here we elaborate on the intuition

underlying correlational Bayesian inference for the binary problem and provide

a simple illustration.

Formally, we update our beliefs over ✓ using Bayes’ rule:

p(✓|D) =
Pr(D|✓)p(✓)R
Pr(D|✓0)p(✓0)d✓0

(6)

Intuitively, we treat each set of possible values of our parameters of interest—

each ✓ vector, that is—as a hypothesis and apply Bayes’ rule to assess its

probability given the data, that is, the posterior.19 We use three quantities to

calculate the posterior.

First, we ask, if this set of parameter values is true, how likely were the observed

X, Y values to have emerged? 20 Consider a hypothesis (a specific value of ✓)

in which most authoritarian countries are assumed to be either susceptible to a

regime-collapsing e↵ect of economic crisis or destined to collapse anyway—i.e.,

a ✓ in which �
b

and �
d

are very high and �
a

and �
c

very low. Suppose we then

observe data in which a large proportion of countries display values X = 1

and Y = 0—they experienced crisis and did not collapse—which pegs them as

either a or c types. The probability of these data under the hypothesized ✓ —

Pr(D|✓) — will then be low, reducing our confidence in this hypothesis. On

the other hand, such data are far more likely under any ✓ vector in which �
a

or �
c

is high, boosting our confidence in such hypotheses.

19More generally we might think of a hypothesis as being a subset of values of ✓ — e.g. “there is
a positive treatment e↵ect” corresponds to the set of values for which �b > �a.

20This calculation in our binary framework is simple. For example, the probability of observing
the event X = 1, Y = 1 for a single randomly selected case is given by event probability w11 =
b⇡b + d⇡d. Note that we assume in this example that each type is drawn independently as would
be the case if cases under study were randomly sampled from a large population.
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Second, we ask, how likely were we to observe these data, D, regardless of

whether this particular ✓ is true? This value appears in the denominator,

where we take into account the likelihood of observing these data for all of

the possible values of ✓, weighted by their prior probabilities. More formally,

under the assumption of independence, the probability of observing D, that is,

a particular collection of X, Y data, is given by the corresponding value of the

multinomial distribution given the event probabilities implied by ✓.

The more likely the data are in general—whether the hypothesis is true or

not—the smaller the e↵ect of these data on our beliefs. On the other hand,

if the observation of lots of crisis-su↵ering, collapsing regimes was generally

unlikely across all ✓’s, then observing these data will generate a larger shift in

our confidence toward any particular ✓ vector with which the data are relatively

consistent.

Third, we multiply the ratio of these first two quantities by our confidence in

the values in this ✓ prior to seeing the data (p(✓)). The more prior confidence

we have in a hypothesis, the greater the probability that evidence consistent

with and unique to the hypothesis in fact indicates that the hypothesis is true.

Thus, for instance, suppose that prior evidence and logic suggest that a high

proportion of authoritarian regimes in the world are susceptible to a regime-

collapsing e↵ect of crisis (are b types). This strong prior belief in a high �
b

increases the likelihood that any data pattern consistent with a high �
b

—say,

many X = 1, Y = 1 cases—has in fact been generated by a large set of b cases.

We can illustrate Bayesian correlational inference with a simple case. Suppose

we observe for all postwar authoritarian regimes, whether they did or did not

su↵er economic crisis and did or did not collapse. Say for simplicity we know

that all authoritarian regimes were “assigned” to economic crisis with a 0.5

probability during the period under analysis (thus assignment is known to be

as if random). And assume that, prior to observing X, Y data we believe

that each of two propositions is true with 0.5 probability. Under proposition

(✓1), all regimes are of type b (and so the average treatment e↵ect is 1); under

proposition (✓2) 50% of regimes are of type c and 50% are of type d (and so
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the average treatment e↵ect is 0).21

Suppose we draw a random sample of n = 2 cases and observe one case in

which X = Y = 0 and one case in which X = Y = 1. That is, we observe a

perfect correlation between X and Y but only two cases. What then should

we infer?

Applying Bayes’ rule, our posterior probability on proposition ✓1, having ob-

served the data, is:

Pr(✓1|D) =
Pr(D|✓1) Pr(✓1)

Pr(D|✓1) Pr(✓1) + Pr(D|✓2) Pr(✓2)

or equivalently:

Pr(b = 1|D) =
Pr(D|�

b

= 1)Pr(�
b

= 1)

Pr(D|�
b

= 1)Pr(�
b

= 1) + Pr(D|�
b

= 0)Pr(�
b

= 0)

The event probabilities of each of the observed events is 0.5 under ✓1 but just

0.25 under ✓2. Using the binomial distribution (a special case of the multinomial

for this simple case) we know that the chances of such data arising are 1 in 2

under ✓1 but only 1 in 8 under ✓2. Our posterior would then be:

Pr(�
b

= 1|D) =
1
2 ⇥

1
2

1
2 ⇥

1
2 +

1
8 ⇥

1
2

=
4

5

The key di↵erence between this example and more general applications is sim-

ply that in the general case we allow for uncertainty — and updating — not

simply over whether �
b

is 0 or 1, but over a range of possible values for multiple

parameters of interest. Though this adds complexity, it does not change the

fundamental logic of updating.

21In this simple case, we can think of ✓ as being constrained to take on only one of two possible
values: ✓ 2 {✓1 = {a = 0, b = 1, c = 0, d = 0,⇡a = 0.5,⇡b = 0.5,⇡c = 0.5,⇡d = 0.5}, {✓2 = {a =
0, b = 0, c = .5, d = .5,⇡a = 0.5,⇡b = 0.5,⇡c = 0.5,⇡d = 0.5}}.
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D BIQQ Inference Step by Step

Here we use a simplified setup to illustrate the basic mapping from priors on

causal types, assignment probabilities, the probative values of clues, and the

validity of theoretical propositions to posteriors on these quantities.

Table 7, describes a prior distribution that includes only three possible values

for ✓—three possible states of the world. Here the parameters include �, ⇡ and

� as in our baseline model.

In addition we include a new pair of parameters ⌘, where ⌘L and ⌘M are

indicators that one of two rival causal accounts, L or M , is correct.

In this example, the researcher considers two theories, L and M . In one state

of the world, ✓1, L is true. In ✓1, the treatment also has strong causal e↵ects

(ATE = 0.8), all cases receive treatment with equal probability (0.5 each), and

the clue is equally likely to be observed for all types and treatment states (clues

have no probative value). We can also read the table as indicating that theory

L implies no uncertainty about the other parameters, reflected in the fact that

L is associated with only one ✓. A prior probability of one-third is placed on

theory L and all associated parameter values.

Theory M is believed to be true in ✓2 and ✓3, each of which is also given a prior

probability of 0.33. Yet theory M is associated with some uncertainty about

the other parameters: across ✓2 and ✓3, expected treatment e↵ects vary between

weak and negative, and beliefs about the probative value of clues vary.22

Note that each admissible state for this example is consistent with a belief

that the population incidence of clue K is 0.5, the population incidence of the

treatment condition X = 1 is 0.5, and the population incidence of outcome

Y = 1 is 0.5. Uncertainty over three constrained combinations nonetheless

allows for relatively complex priors over causal-type proportions, assignment

processes, theories, and clue predictions as well as correlations among all of

these.
22Note that we do not post an index to explicitly associate theories with di↵erent values of �,

though the association can nevertheless be derived from the probability distribution.
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State of the World: Prior
Parameter ✓1 ✓2 ✓3 expectation

Prior on ✓
j

: 0.33 0.33 0.33

Types

�
a

0 0.1 0.2 0.1
�
b

0.8 0.1 0 0.3
�
c

0.1 0.4 0.4 0.3
�
d

0.1 0.4 0.4 0.3

Assignment Propensities

⇡
a

0.5 0.5 0.5 0.5
⇡
b

0.5 0.5 0.5 0.5
⇡
c

0.5 0.1 0.4 0.33
⇡
d

0.5 0.9 0.6 0.67

Clues

�
a0 0.5 0.9 0.6 0.67
�
a1 0.5 0.1 0.4 0.33
�
b0 0.5 0.9 0.6 0.67
�
b1 0.5 0.1 0.4 0.33
�
c0 0.5 0.1 0.4 0.33
�
c1 0.5 0.9 0.6 0.67
�
d0 0.5 0.1 0.4 0.33
�
d1 0.5 0.9 0.6 0.67

Theory
⌘L 1 0 0 0.33
⌘M 0 1 1 0.67

Values implied by priors:
Population incidence of clue 0.5 0.5 0.5 0.5
Population incidence of treatment 0.5 0.5 0.5 0.5
Population incidence of outcome 0.5 0.5 0.5 0.5
ATE 0.8 0 -0.2 0.2

Table 7: Illustration (Part 1 of 3): Illustration of prior beliefs over potential out-
comes, assignment, and theoretical validity. In this illustration it is assumed that
the researcher starts out uncertain over only three combinations of parameters.

Given the priors described in Table 7, researchers can use Bayes’ rule to form

posteriors on all the parameters listed in Table 7, for any realization of the

data.

Table 8 shows the possible posteriors for a design in which a researcher collects

data on a single case randomly drawn from the population, and observes the

value taken by X, Y , and K.

The table shows the posterior distribution of weights that we would then place

on each state of the world ✓
j

. Each row represents one possible set of observed
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X, Y , and K values for the selected case. Within each row, the first sub-row

indicates the prior probability, under each ✓
j

, that this set of values would be

observed. The second sub-row provides the posterior weight we then place on

each ✓
j

if that set of observations is in fact made.

✓1 ✓2 ✓3 Total
Prior on ✓

j

0.33 0.33 0.33 1
Prob X = 1, Y = 1, K = 1, for each ✓

j

(type b or d) 0.23 0.33 0.14 0.23
Posterior on ✓

j

0.32 0.47 0.21 1
Prob X = 0, Y = 1, K = 1, for each ✓

j

(type a or d): 0.03 0.05 0.12 0.07
Posterior on ✓

j

0.13 0.25 0.63 1
Prob X = 1, Y = 0, K = 1, for each ✓

j

(type a or c) 0.03 0.04 0.14 0.07
Posterior on ✓

j

0.12 0.2 0.67 1
Prob X = 0, Y = 0, K = 1, for each ✓

j

(type b or c): 0.23 0.08 0.1 0.13
Posterior on ✓

j

0.56 0.2 0.24 1
Prob X = 1, Y = 1, K = 0, for each ✓

j

(type b or d): 0.23 0.08 0.1 0.13
Posterior on ✓

j

0.56 0.2 0.24 1
Prob X = 0, Y = 1, K = 0, for each ✓

j

(type a or d): 0.03 0.04 0.14 0.07
Posterior on ✓

j

0.12 0.2 0.67 1
Prob X = 1, Y = 0, K = 0, for each ✓

j

(type a or c): 0.03 0.05 0.12 0.07
Posterior on ✓

j

0.13 0.25 0.63 1
Prob X = 0, Y = 0, K = 0, for each ✓

j

(type b or c): 0.23 0.33 0.14 0.23
Posterior on ✓

j

0.32 0.47 0.21 1

Table 8: Illustration (Part 2 of 3). Given the prior information provided in Table 7,
the probability of each combination of X, Y , and K observations can be calculated
for each possible state of the world (✓

j

). This in turn allows for the calculation of
the posterior probability of each state of the world for each possible pattern of data
using Bayes’ rule.

Table 9 provides our posteriors on all parameters, with each column represent-

ing one possible realization of the data for a single case.

A few implications of this simple exercise are apparent from Table 9. First,

the example demonstrates that observing data—even for a single case—allows

for updating on all parameters of interest: causal e↵ects, the merits of di↵erent

theoretical accounts, assignment propensities, and the probative value of clues.

Note, for instance, how our belief about the ATE falls dramatically when we

observe a single X = 1 case in which Y = 0 and the clue is present. This shift

results from the fact that this pattern of evidence was much more likely under
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✓3 than under ✓1 or ✓2. With the shift in confidence toward ✓3, we in turn place

more weight on that vector’s constituent beliefs in a relatively high �
a

and a

low �
b

, and this updating brings down our estimate of the ATE (�
b

� �
a

).

The exercise demonstrates the sometimes counter-intuitive nature of Bayesian

updating. In particular, we see that a belief can gain support from data that

are unlikely under that belief—as long as those data are even more unlikely

under the alternatives. Consider, for instance, what happens when we observe

X = Y = 1 and K = 0. This observation pushes beliefs in theory L above

50%, even though such an observation was expected under ✓1, in which L was

believed to be true, with only a 0.23 probability. Yet this observation was even

more unexpected under theory M (✓2 and ✓3).

An important implication for case selection also follows. Theory L might seem

to have had only a modest stake in a case with X = Y = 1 and K = 0, which

it predicted to be somewhat but not extremely unlikely. However, even when a

belief makes no strong prediction about a particular configuration of X, Y , or

K values, such a case will have large implications for the belief as long as the

alternative implies a sharp and divergent prediction about the case’s likelihood

of occurring.

Further, the example shows that, in some situations, the most significant up-

dating occurs over analytical assumptions rather than substantive causal e↵ects.

For instance, where X = Y = K = 0 or X = Y = K = 1, there is a small

loss in confidence in theory L relative to theory M and a small increase in

the expected treatment e↵ect. But there is a larger gain in confidence in the

probative value of clues. This latter updating occurs because of a substantial

shift from ✓3 to ✓2, which both contain theory M , and which yields a shift in

support between the alternative clue probabilities that we believed might be

associated with M .
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Event X
=
1,

Y
=
1,

K
=
1

X
=
0,

Y
=
1,

K
=
1

X
=
1,

Y
=
0,

K
=
1

X
=
0,

Y
=
0,

K
=
1

X
=
1,

Y
=
1,

K
=
0

X
=
0,

Y
=
1,

K
=
0

X
=
1,

Y
=
0,

K
=
0

X
=
0,

Y
=
0,

K
=
0

Probability of event: 0.233 0.066 0.067 0.134 0.134 0.067 0.066 0.233
�
a

0.09 0.15 0.15 0.07 0.07 0.15 0.15 0.09
�
b

0.31 0.13 0.12 0.47 0.47 0.12 0.13 0.31
�
c

0.30 0.36 0.36 0.23 0.23 0.36 0.36 0.30
�
d

0.30 0.36 0.36 0.23 0.23 0.36 0.36 0.30
⇡
a

0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50
⇡
b

0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50
⇡
c

0.29 0.34 0.35 0.40 0.40 0.35 0.34 0.29
Posterior on: ⇡

d

0.71 0.66 0.65 0.60 0.60 0.65 0.66 0.71
�
a0 0.71 0.66 0.65 0.60 0.60 0.65 0.66 0.71

�
a1 0.29 0.34 0.35 0.40 0.40 0.35 0.34 0.29

�
b0 0.71 0.66 0.65 0.60 0.60 0.65 0.66 0.71

�
b1 0.29 0.34 0.35 0.40 0.40 0.35 0.34 0.29

�
c0 0.29 0.34 0.35 0.40 0.40 0.35 0.34 0.29

�
c1 0.71 0.66 0.65 0.60 0.60 0.65 0.66 0.71

�
d0 0.29 0.34 0.35 0.40 0.40 0.35 0.34 0.29

�
d1 0.71 0.66 0.65 0.60 0.60 0.65 0.66 0.71
⌘L 0.32 0.13 0.12 0.56 0.56 0.12 0.13 0.32
⌘M 0.68 0.87 0.88 0.44 0.44 0.88 0.87 0.68

Implied posterior on: ATE 0.22 -0.02 -0.04 0.40 0.40 -0.04 -0.02 0.22

Table 9: Illustration (Part 3 of 3) Posteriors on states of the world, (✓
j

), as calculated
in Table 8 given data (X, Y , and K), imply posteriors over all quantities of interest.
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E Code to Implement baseline BIQQ model

using Stan

Here we provide R code that calls Stan, and builds a BIQQ function that
generates draws from a posterior distribution given user supplied priors and
data. This code is for the baseline model in “Mixing Methods,” in which a
fixed number of cases are assumed to be randomly sampled from a population.

# Sample code to implement Bayesian Integration of Quantitative and Qualitative data.

# Provided as Supplementary Material for:

# Macartan Humphreys and Alan M Jacobs, 2015. "Mixing Methods: A Bayesian Approach."

#

# This code has been developed for R (Version 3.1.1).

# Requirements: rstan package (Version 2.4.0).

library(rstan)

# Code used to build Stan model

biqq.stan.code <- ’

# User supplies the following data:

data {

# Counts of the different XY and XYK outcomes observed:

int<lower=0> XYK[8]; # summary of N of XYK outcomes

int<lower=0> XY[4]; # summary of N of XY outcomes

# And the hyperparameters for the prior:

vector[4] alpha_prior; # Dirichlet shape parameters for share of types (abcd)

vector[4] pi_alpha; # Beta shape parameters for assignment probabilities

vector[4] pi_beta ;

vector[4] phi0_alpha ; # Beta shape parameters for probative value of clues

vector[4] phi0_beta ;

vector[4] phi1_alpha ;
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vector[4] phi1_beta ;

}

# The parameters to be modelled are defined:

parameters {

simplex[4] abcd; # The share of abcd types in the population

# (constrained to sum to 1)

real<lower=0,upper=1> pi_a; # The probabilities of assignment

real<lower=0,upper=1> pi_b; # (constrained between 0 and 1 inclusive)

real<lower=0,upper=1> pi_c;

real<lower=0,upper=1> pi_d;

real<lower=0,upper=1> phi_a0; # The probative values of clues for each type

real<lower=0,upper=1> phi_b0; # (constrained between 0 and 1 inclusive)

real<lower=0,upper=1> phi_c0;

real<lower=0,upper=1> phi_d0;

real<lower=0,upper=1> phi_a1;

real<lower=0,upper=1> phi_b1;

real<lower=0,upper=1> phi_c1;

real<lower=0,upper=1> phi_d1;

}

# The multinomial event probabilities are calculated:

transformed parameters {

simplex[4] w_XY;

simplex[8] w_XYK;

w_XY[1] <- (1-pi_b)*abcd[2] + (1-pi_c)*abcd[3] ; # Pr(00*)

w_XY[2] <- (1-pi_a)*abcd[1] + (1-pi_d)*abcd[4] ; # Pr(01*)

w_XY[3] <- pi_a*abcd[1] + pi_c*abcd[3] ; # Pr(10*)

w_XY[4] <- pi_b*abcd[2] + pi_d*abcd[4] ; # Pr(11*)

w_XYK[1]<- (1-pi_b)*(1-phi_b0)*abcd[2] + (1-pi_c)*(1-phi_c0)*abcd[3]; # Pr(000)
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w_XYK[2]<- (1-pi_b)*phi_b0*abcd[2] + (1-pi_c)*phi_c0*abcd[3] ; # Pr(001)

w_XYK[3]<- (1-pi_a)*(1-phi_a0)*abcd[1] + (1-pi_d)*(1-phi_d0)*abcd[4]; # Pr(010)

w_XYK[4]<- (1-pi_a)*phi_a0*abcd[1] + (1-pi_d)*phi_d0*abcd[4] ; # Pr(011)

w_XYK[5]<- pi_a*(1-phi_a1)*abcd[1] + pi_c*(1-phi_c1)*abcd[3] ; # Pr(100)

w_XYK[6]<- pi_a*phi_a1*abcd[1] + pi_c*phi_c1*abcd[3] ; # Pr(101)

w_XYK[7]<- pi_b*(1-phi_b1)*abcd[2] + pi_d*(1-phi_d1)*abcd[4] ; # Pr(110)

w_XYK[8]<- pi_b*phi_b1*abcd[2] + pi_d*phi_d1*abcd[4] ; # Pr(111)

}

# The parameters are then modeled as follows:

model {

abcd ~ dirichlet(alpha_prior); # Priors for abcd types

pi_a ~ beta(pi_alpha[1], pi_beta[1]); # Priors for assignment probs

pi_b ~ beta(pi_alpha[2], pi_beta[2]);

pi_c ~ beta(pi_alpha[3], pi_beta[3]);

pi_d ~ beta(pi_alpha[4], pi_beta[4]);

phi_a0 ~ beta(phi0_alpha[1], phi0_beta[1]); # Priors for clues

phi_a1 ~ beta(phi1_alpha[1], phi1_beta[1]);

phi_b0 ~ beta(phi0_alpha[2], phi0_beta[2]);

phi_b1 ~ beta(phi1_alpha[2], phi1_beta[2]);

phi_c0 ~ beta(phi0_alpha[3], phi0_beta[3]);

phi_c1 ~ beta(phi1_alpha[3], phi1_beta[3]);

phi_d0 ~ beta(phi0_alpha[4], phi0_beta[4]);

phi_d1 ~ beta(phi1_alpha[4], phi1_beta[4]);

XY ~ multinomial(w_XY); # Likelihood Part 1

XYK ~ multinomial(w_XYK); # Likelihood Part 2

}

’
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# Compile the model, giving it simple starting values

ones <- rep(1,4)

biqq.stan.model <- stan(

# The code for the model

model_code = biqq.stan.code,

# The initial data

data = list(XY = c( 1, # Number of 00*

1, # Number of 01*

1, # Number of 10*

1 # Number of 11*

),

XYK = c( 1, 1, # Number of 000 & 001

1, 1, # Number of 010 & 011

1, 1, # Number of 100 & 101

1, 1 # Number of 110 & 111

),

# Shape parameters for flat priors:

alpha_prior = ones,

pi_alpha = ones, pi_beta = ones,

phi0_alpha = ones, phi0_beta = ones,

phi1_alpha = ones, phi1_beta = ones),

# Run a low number of iterations to warm the model up:

iter = 100,

chains = 4

)

# BIQQ function for drawing from posterior distribution using STAN:

biqq <- function(fit = biqq.stan.model,

# Define the default arguments of the function:

XY = c( 1, 1, 1, 1),

XYK = c( 1, 1,

73



1, 1,

1, 1,

1, 1),

alpha_prior = ones,

pi_alpha = ones, pi_beta = ones,

phi0_alpha = ones, phi0_beta = ones,

phi1_alpha = ones, phi1_beta = ones,

iter = 1000, chains = 4,

warmup = 100, seed = 100

) {

# Function takes inputs on data and priors and implements the baseline BIQQ model using rstan

# Define the model inputs, based on user-supplied or default arguments

data <- list(

XY = XY,

XYK = XYK,

alpha_prior = alpha_prior,

pi_alpha = pi_alpha, pi_beta = pi_beta,

phi0_alpha = phi0_alpha, phi0_beta = phi0_beta,

phi1_alpha = phi1_alpha, phi1_beta = phi1_beta

)

# Use Stan to sample from the posterior distribution:

posterior <-

stan(fit = fit,

data = data,

iter = iter,

chains = chains,

warmup = warmup,

seed = seed

)

# Display the results

return(posterior)

}

# Demonstration 1:

# Simple demonstration using default values

biqq()
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# Demonstration 2:

# In this example we assume that we know that b types leave a clue in the

# treatment condition. Compare inferences on lambda_b and on q_d for cases

# where clues are or are not seen in the X=Y=1 cases

biqq(XYK = c(5,0, 0,0, 0,0, 0,5), XY = rep(0,4), q1_alpha = c(1,20,1,1))

biqq(XYK = c(5,0, 0,0, 0,0, 5,0), XY = rep(0,4), q1_alpha = c(1,20,1,1))
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F Extensions

F.1 Alternative data generating processes

The likelihood function contains information about how cases are selected for

the overall study and also how cases are selected for qualitative analysis. In

this appendix we demonstrate how the likelihood function can change given

di↵erent research strategies.

F.1.1 Independent case selection strategy

In the text we considered a situation in which the researcher examines a fixed

number of cases for clue information. An alternative strategy that produces

a simpler likelihood is one in which each case is selected for within-case data

gathering with some independent probability. The likelihood below introduces

a case selection probability 
xy

that covers this situation and allows for the

possibility that selection probabilities are di↵erent for di↵erent X, Y combina-

tions.

We assume again that X, Y data is observed for all n cases under study, but

that K data may be sought for only a random subset of these (we use the

wildcard symbol “⇤” to denote that the value of the clue is unknown). Unlike

in our baseline model, however, the number of cases for which clue data is

sought is not fixed. We let n
xyk

denote the number of cases with each possible

data realization. Then, assuming the data are independently and identically

distributed, the likelihood is:

Pr(D|✓) = Multinomial((n000, n001, n00⇤, n010, n010, n01⇤, n100, n101, n10⇤, n110, n111, n11⇤)

|n, (w000, w001, w00⇤, w010, w010, w01⇤, w100, w101, w10⇤, w110, w111, w11⇤))

where the event probabilities are now given by:
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0

BBBBB@

w000

w001

...

w11⇤

1

CCCCCA
=

0

BBBBB@

�
b

(1� ⇡
b

)00(1� �
b0) + �

c

(1� ⇡
c

)00(1� �
c0)

�
b

(1� ⇡
b

)00�b0 + �
c

(1� ⇡
c

)00�c0

...

�
b

⇡
b

(1� 11) + �
d

⇡
d

(1� 11)

1

CCCCCA

We use a Greek symbol to denote the case selection probabilities to highlight

that these may also be unknown and an object of inquiry, entering into the

vector of parameters, ✓.

F.1.2 Non-random XY Sample Selection

While we have assumed in our baseline model that cases are selected at random

for quantitative analysis, this need not be the case. Suppose instead that each

case of type j is selected into the study with probability ⇢
j

. In that situation,

assuming independent selection of cases for qualitative analysis, the likelihood

function is now:

Pr(D|✓) = Multinomial((n000, n001, n00⇤, n010, n010, n01⇤, n100, n101, n10⇤, n110, n111, n11⇤)

|n, (w000, w001, w00⇤, w010, w010, w01⇤, w100, w101, w10⇤, w110, w111, w11⇤))

where the event probabilities are now, given by:

0
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w000

w001

...

w11⇤

1

CCCCCA
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(1� ⇡

b

)00(1� �
b0) +

⇢c�c

⇢a�a+⇢b�b+⇢c�c+⇢d�d
(1� ⇡

c

)00(1� �
c0)

⇢b�b

⇢a�a+⇢b�b+⇢c�c+⇢d�d
(1� ⇡

b

)00�b0 +
⇢c�c

⇢a�a+⇢b�b+⇢c�c+⇢d�d
(1� ⇡

c

)00�c0

...
⇢b�b

⇢a�a+⇢b�b+⇢c�c+⇢d�d
⇡
b

(1� 11) +
⇢d�d

⇢a�a+⇢b�b+⇢c�c+⇢d�11
⇡
d

(1� 11)

1

CCCCCA

We use a Greek symbol for the selection probabilities to highlight that these

probabilities may be unknown and could enter into the set of parameters of
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interest, ✓.

F.1.3 Conditional random case selection

Finally, consider the likelihood for a design in which a researcher selects cases

in which to search for clues as a function of the X, Y values. This is a somewhat

harder situation because the size of each X, Y group will be stochastic. Let

n
xy

= n
xy0 + n

xy1 + n
xy⇤ denote the number of cases with particular values on

X and Y , and let n
XY

= (n00, n01, n10, n11) denote the collection of n
xy

values.

Say now that, conditional on the X, Y observations, a researcher sets a target

of k
xy

(n
XY

) cases for clue examination (note here that the number of clues

sought for a particular X, Y combination can be allowed to depend on what is

observed across all X, Y combinations). Then the likelihood is:

Multinomial(n
XY

|n,w
XY

)
Y

x2{0,1},y2{0,1}

Binom(n
xy1|kxy(nxy

), 
xy

)

The multinomial part of this expression gives the probability of observing the

particular X, Y combinations; the event probabilities for these depend on �

and ⇡ only — for example w11 = �
b

⇡
b

+ �
d

⇡
d

. The subsequent binomials give

the probability of observing the clue patterns conditional on searching for a

given number of clues (k
xy

(n
xy

)) and given an event probability  
xy

for seeing

a clue given that the clue is sought for an x, y combination; thus for example:

 11 =
�
b

⇡
b

�
b

⇡
b

+ �
d

⇡
d

�
b1 +

�
d

⇡
d

�
b

⇡
b

+ �
d

⇡
d

�
d1

F.2 Multiple Causes

Here we provide additional intuition for how the BIQQ framework can handle

multiple causal variables characterized by either equifinality (multiple poten-

tial causes of the same outcome) or interaction e↵ects. The core approach is to

expand the number of types to take into account the more complex combina-

tions of causal conditions for which potential outcomes must now be defined.
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Table 10 displays the set of potential outcomes for two binary causal variables.

With two causes, X1 and X2, we now have 16 types as defined by the potential

outcomes under alternative combinations of causal conditions.

Type Label (Y |X1 = 0, (Y |X1 = 1, (Y |X1 = 0, (Y |X1 = 1,
X2 = 0) X2 = 0) X2 = 1) X2 = 1)

1 chronic 0 0 0 0
2 jointly-beneficial 0 0 0 1
3 2-alone-beneficial 0 0 1 0
4 2-beneficial 0 0 1 1
5 1-alone-beneficial 0 1 0 0
6 1-beneficial 0 1 0 1
7 any-alone-beneficial 0 1 1 0
8 any-beneficial 0 1 1 1
9 any-adverse 1 0 0 0
10 any-alone-adverse 1 0 0 1
11 1-adverse 1 0 1 0
12 1-alone-adverse 1 0 1 1
13 2-adverse 1 1 0 0
14 2-alone-adverse 1 1 0 1
15 jointly-adverse 1 1 1 0
16 destined 1 1 1 1

Table 10: Types given two treatments (or one treatment and one covariate)

Taking interaction e↵ects first, Type 3 (2-alone-beneficial), for instance, is a

type in which X2 = 1 causes Y = 1 only when X1 = 0, and not when X1 = 1.

The hypothesis of no-interaction-e↵ects is the hypothesis that all cases are of

type 1, 4, 6, 11, 13, or 16 (that is chronic, destined, 1-beneficial, 2-beneficial,

1-adverse, or 2-adverse). Note that the binary outcome framework excludes

possibilities, such as two countervailing or two additive e↵ects of X1 and X2.

Turning now to equifinality, in the simple typological setup in the main paper,

the di↵erence between a b and a d type already implies equifinality: for a b type,

the positive outcome was caused by treatment; for a d type, the same outcome

is caused by some other (unspecified) cause. Table 10, however, explicitly

builds multiple causes into the framework. Suppose, for instance, that we have

two cases, one of Type 4 and one of Type 6, and that X1 = X2 = 1 in both

cases. For both cases, we will observe Y = 1. However, for the Type 4 case,
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the outcome was caused by X2 (in the sense that it would not have occurred if

X2 had been 0, but would have even if X1 was 0) whereas the outcome in the

Type 6 case was caused by X1, but not by X2.

The parameters in the model would now be defined in terms of these 16 types

and two causal variables.

For estimating population-level causal e↵ects, we would state priors about the

population proportions of these 16 types.

Assignment probabilities would be expressed, separately for each independent

variable, as the probability that each type is assigned to the value 1 on that

variable, yielding 32 ⇡ values in total.

Clue probabilities, finally, would be supplied for each type. In principle, these

� values could be made conditional on the combination of X1 and X2 values,

potentially yielding 64 � values. In practice, greater structure might facilitate

analysis. For example, if a given clue’s likelihood depends only on the value of

one of the independent variables, rather than that of both, this greatly reduces

the required number of � priors.
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G Notes on Applications

G.1 Notes on Application 1

For the Kreuzer application we treat the � values as known (or at least as

known with a very high level of certainty). Unfortunately we do not have, nor

do Kreuzer’s analyses provide, an empirical basis for claims about � values.

Instead we present here an approach to “filling in the values” in the absence

of empirical information, based on reasoning about the theoretical logic and

background information about the world. The conclusions in the analysis can

be understood to be conditional on the phi values given below, though not on

the specific the reasoning that led to these values.

We begin with a few general comments:

– We refer throughout to the reasons for supporting PR that Boix (1999)

attributes to non-socialist parties under conditions of high left threat as

“electoral engineering” (EE) motives.

– We assume that there exist non-EE reasons why a governing coalition

of parties might prefer PR over single-member districts. These might

include, for instance, normative beliefs that PR is more democratic or a

response to mass demands for PR.

– We assume the socialist party never constitutes by itself a winning coali-

tion for enacting electoral reform, but that the non-socialist parties may

in some cases require socialist support to enact reform (see a-type cases).

– In our illustration, the “clue” is found if all three of the process-tracing

tests in Kreuzer (2010) are passed.

�
a0 = 0.1: Probability of the clue for an untreated a type

An a (adverse) case is one in which strong left threat will prevent PR from being

adopted. We assume that adverse e↵ects happen via the strategic calculations

and veto power of the left.
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When the socialists are electorally strong and the right is divided, the left seeks

to stop any switch to PR since plurality rules now advantage them. Adverse

cases are those in which the non-socialist parties cannot enact electoral reform

without the support of the socialists — i.e., there the left has the institutional

leverage to veto a move to PR initiated by the right.

In an untreated “adverse” case (X = 0, Y = 1), the right does not have an EE

motive to favor PR. The left does favor PR for EE reasons, but by assumption

does not by itself form a winning coalition for enactment. Thus, PR must

emerge via support from non-socialist parties that is motivated by non-EE

reasons. However, PR can emerge without the support of all non-socialist

parties; all that is needed is some winning coalition.

The question for generating �
a0, then, is in what proportion of untreated a

cases will all non-socialist parties favor a move to PR and do so shortly after

the expansion of the franchise. In other words, in what proportion of such cases

will there be non-EE motivations for PR that apply to all non-socialist parties

at this historical point in time, thus generating all three of Kreuzer’s clues?

Assuming that this is very unlikely, we assign a �
a0 value of 0.1.

�
a1 = 0.95: Probability of the clue for a treated a type

Under the adverse-e↵ect logic above, we should see the clues in a treated a case

with a greater probability than in a treated b case (see below). This is because

there are two logics that might generate the clue in a treated a case.

1. In an a case with high left threat, right parties have the same EE incentives

that they do in a treated b case, where the clue probability is set at 0.9.

2. In addition, as explained for �
a0, a cases are those in which a winning

coalition – which must include non-socialists – has non-EE reasons to

prefer PR. Further, we have assumed above that with 0.1 probability

those non-EE reasons apply to all non-socialist parties and emerge with

the expansion of su↵rage, thus generating the clue.
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We assume that reason 2 for the clue coexists with reason 1 in half of cases

with reason 2. Thus, the total probability of seeing the clue in a treated a type

is 0.9 + 0.1⇥ 0.5 = 0.95.

�
b0 = 0.1: Probability of the clue for an untreated b type

The lack of a left threat removes EE motives for the ruling parties under Boix’s

logic, thus reducing the likelihood of observing the clue in any untreated case.

Further, however, b (beneficial) cases are those in which no move to PR will

happen without high left threat. Thus, b cases are those in which there is also

no non-EE reason for adopting PR that obtains for any winning coalition of

parties.

Under Boix’s logic, therefore, it is very unlikely that we would see unanimous

non-socialist party support for a move to PR for a b case when left threat is

low. We thus set �
b0 to 0.1, allowing only for a margin of measurement error.

�
b1 = 0.9: Probability of the clue for a treated b type

A treated b case is one in which PR emerges under high left threat for precisely

the EE reasons that Boix outlines. As Kreuzer’s clues are tightly linked to

Boix’s logic, we place a high probability (0.9) on observing the clue for such

cases, allowing only for a margin of measurement error (e.g., the possibility

that we cannot find evidence of a right party’s support for PR even when that

support was in fact present).

�
c0 = 0.05: Probability of the clue for an untreated c type

Cases of c (chronic) type are those in which PR will never emerge, even if left

threat is great. We posit that two processes may cause a case to be chronic:

1. Institutional obstacles: the right parties may prefer PR for EE or other

reasons, but some other actor has veto power over the decision. Here we

might observe the clue; or,
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2. Preferences: a significant share of right parties have reasons, outside of

the logic of electoral engineering, for opposing PR. Here the clue should

never be observed.

We assume that each process is responsible for chronicness in 0.5 of all chronic

cases.

In an untreated case, there can be no EE reasons for the clue to emerge.

There could, however, be non-EE reasons for unanimous right-party support

in (and only in) the “institutionally” chronic cases. We have assumed that

0.5 of chronic cases are “institutional.” Then, consistent with the assumptions

made for a cases about the prevalence of non-EE reasons, we posit that in

0.1 of all “institutional” chronic cases, there are non-EE reasons that generate

unanimous right-party support for PR.

The total probability of observing the clue in an untreated c case, then, is

0.1⇥ 0.5 = 0.05.

�
c1 = 0.475: Probability of the clue for a treated c type

In treated chronic cases of the “preference” variety (0.5 of c cases), the clue

will never emerge.

However, there are two ways in which the clue could emerge in institutionally

chronic cases:

1. As discussed above, 0.1 of such cases will have non-EE reasons for gener-

ating the clue.

2. In addition, however, in a treated institutionally Chronic case, the clue

could emerge via the same logic that generates EE motives in 0.9 of treated

b cases.

As we do for treated a cases, we assume that reason 2 for the clue coexists

with reason 1 in half of cases with reason 2. We thus get 0.95 of institutionally

chronic cases having the clue, giving �
c1 = 0.5⇥ 0.95 = 0.475.
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�
d0 = 0.3: Probability of the clue for an untreated d type

In d (destined) cases, PR will always emerge, regardless of whether left threat

is high.

This means that in d cases some winning coalition always has a non-EE reason

su�cient to support PR. This coalition might:

1. include a unified right and take place at the time of su↵rage expansion,

in which case we will observe the clue, or

2. be a coalition of part of the right and the left or happen at some other

time, in either of which case we will not observe the clue.

So the question is: how common will situation 1 be in d cases? Since d cases are

those that always generate PR, we assume that this is because the normative

and other non-EE pressures to adopt PR are inherently stronger in these cases

than in the other types. We thus assume a higher probability that such pres-

sures will apply to all non-socialist parties, and we posit that such pressures

are likely to be strongest of all at the “democratic moment” that produces the

universal male franchise.

We thus put the probability of observing the clue in such a case at the low-

moderate value of 0.3.

�
d1 = 0.5: Probability of the clue for a treated d type

We see two processes that might produce the clue in a treated d case.

1. In a d case, any EE motives for supporting PR must be causally redun-

dant: there must be a winning coalition for PR for reasons outside Boix’s

framework. As discussed for untreated d cases, any winning coalition gen-

erated by non-EE reasons might not include all right parties. We have

assumed above that non-EE reasons a↵ect all non-socialist parties follow-

ing the su↵rage expansion, and thus produce the clue, in 0.3 of cases.
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2. At the same time, in a treated d case some EE strategic considerations

may also operate on right parties. Thus, high left threat in a d case may

bring the remaining right parties (those unmoved by non-EE motives) into

support of PR, generating the clue. We assume that this configuration is

relatively rare, obtaining in 0.2 of cases.

We add the probabilities of the two processes together, yielding �
d1 = 0.3 +

0.2 = 0.5.

G.2 Notes on Application 2

G.2.1 Case selection

To integrate the inferences from Ross’s (2004) analysis with the wider Collier

and Hoe✏er (2004) population of cases we faced two challenges that a↵ected

the set of cases that we could use for this analysis.

First, we had to create a binary measure of natural resource wealth. This is

done implicitly in Ross’s analysis but not explicitly. Consulting Collier and

Hoe✏er’s data, we could find no threshold that separated cases with high and

low levels of natural resources consistent with Ross’s analysis. Most cases

in the Ross sample had relatively high levels of natural resources, but one,

Afghanistan, did not — even though experts linked natural resources to the

conflict in this case. This coding raises a subtle issue: it is possible that X is

causally linked to Y in a given case even thoughX takes on an exceptionally low

value in the case. Should such a case count as evidence that natural resource

wealth causes conflict or not? We take it that the general proposition X causes

Y should be interpreted as a claim that some minimal level of X causes Y .

Under this reading cases with very low levels of X in which Y = 1 are not

supportive of the proposition that X causes Y , even if paths can be found

between X and Y . Under this interpretation, we selected a threshold level of

resource dependence that separated cases in a way as consistent with Ross’s

coding as possible; in doing so we were forced to omit Afghanistan from the

qualitative analysis.
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Second, we had to identify the population of cases from which Ross’s subset

were drawn. We discuss one selection criterion used by Ross — expert judg-

ments — in the main text. A second selection criterion for Ross was the timing

of the conflicts. Ross selected cases of conflicts that started or were ongoing

in a given time period. Including cases that began before the period in ques-

tion, on the grounds that they had a conflict that continued into the period,

makes identification of the population of cases di�cult because we do not know

whether a given case that did not have a conflict prior to the period would have

had a conflict long enough to take it into the sample, conditional on having

had a conflict. To deal with this problem, we limited the population to all

cases in which there was not a conflict ongoing in the 1990s and interpreted

the outcome variable as an indicator of a conflict start in this period.

G.2.2 Probative values of clues and graphical representation of pos-

teriors

For our analyses we considered two sets of values (informative and uninfor-

mative) for each of two types of clue, K1 and K2. For K1 uninformative, we

supposed that �1
b1 = �1

d1 = 0.5; for K1 informative, we set �1
b1 = .9, �1

d1 = 0.3,

making clue 1 a strong (i.e., di�cult) hoop test. For K2 uninformative, we sup-

posed that �2
b1 = �2

d1 = 0.5; for K2 informative, we set �2
b1 = .99, �2

d1 = 0.01,

making clue 2 strongly doubly decisive.

In the text we provide summary statistics of the posterior distributions un-

der these di↵erent assumptions of the informativeness of the clues. Figure 7

presents information on these posteriors graphically for each set of assumptions.
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Figure 7: Joint distribution of posterior beliefs on the average e↵ect of natural re-
sources on conflict (i.e., �

b

� �
a

) and the beliefs regarding di↵erential assignment
probabilities, given clues of varying probative value. Plots also show the marginal
posterior on the average causal e↵ect.

H Notes on Simulations

Here we provide statistical details and some further interpretation for the pa-

per’s simulations assessing the benefits of di↵erent designs conditional on dif-

ferent priors on: the probative value of clues, the heterogeneity of causal e↵ects,

uncertainty regarding assignment probabilities, and uncertainty regarding the

probative value of clues. Table 11 provides details on all parameters used in

simulations; Table 12 provides detail on the number of runs, iterations, and

related information used in the estimation.

H.1 Probative values

For these simulations we simultaneously vary the probative value for tests for

all X, Y combinations. Specifically, we vary the di↵erences between �
b0 and �c0

(for X = Y = 0 cases), between �
a0 and �d0 (for X = 0, Y = 1 cases); between

�
a1 and �c1 (for X = 1, Y = 0 cases); and between �

b1 and �d1 (for X = Y = 1
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cases). For each X, Y combination, we compare the relevant � pairs across

values of (.5, .5) (no probative value), (.25, .75) (middling probative value) and

(0.01, 0.99) (strong probative value). Using the definition of probative value

(PV) (see footnote 5), these correspond to cases with probative value of 0, .5,

and close to 1 respectively.

H.2 E↵ect heterogeneity

We note that heterogeneity makes going “wide” relatively more beneficial for

two reasons. First, when all cases are a↵ected either positively or negatively,

all of the information needed to identify types is provided by information on

X and Y . If X = Y , then a case was (or could have been) positively a↵ected;

if X 6= Y then a case was (or could have been) negatively a↵ected. In this

extreme case of maximal heterogeneity, causal process information provides no

additional inferential gains. Where there is high homogeneity, on the other

hand, the core di�culty is distinguishing a and b types, from c and d types.

Then, the information contained in clues may provide greater benefits (see

Table 2). Second, the more heterogeneous e↵ects are across cases, the less we

learn about population-level causal e↵ects by getting an individual case right.

Thus, again, we would expect greater relative gains to more extensive analysis

as heterogeneity increases.

H.3 Uncertainty about assignment processes

Note that in our binary setup, infinite bias cannot arise, and the harm done

by uncertainty over selection processes can be more moderate. In this set of

simulations, the expected value of ⇡
j

is fixed at 0.5 and we vary the variance

in ⇡
j

between 0 and a maximum of 0.289.

H.4 Uncertainty regarding the probative value of clues

In this experiment, the expected probability that a clue will be observed is

set to 0.85 if one hypothesis is right, and 0.15 if the alternative hypothesis is
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correct. The simulations vary from a situation in which those probabilities are

known with certainty (uncertainty low) to a situation in which the researcher

admits the possibility of many possible values of �. Uncertainty is simultane-

ously varied for all pairs of � values (see §H.1). The displayed results suggest

that uncertainty about the probative value of clues plays a muted role in the

assessment of optimal strategies.

H.5 Details on simulation experiments
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j steps k sims
Experiment per exp. per step Comments
1: Varying N or m 29 5,200 The 5,200 k simulations for each ✓j were split into

26 runs of 200 k sims, and then compiled through
averaging.
Datapoints at N=3 and N=4 were added using
14,200 k simulations.

2: Probative Value 30 5,200 The 5,200 k simulations for each ✓j were split into
26 batches of 200 k sims, and then compiled through
averaging.

3: E↵ect Heterogeneity 30 5,200 The 5,200 k simulations for each ✓j were split into
26 batches of 200 k sims, and then compiled through
averaging.

4: Assignment Uncertainty 30 5,200 The 5,200 k simulations for each ✓j were split into
26 batches of 200 k sims, and then compiled through
averaging.

5: Clue Uncertainty 30 10,200 The 10,200 k simulations for each ✓j were split into
26 batches of 200 k sims and 10 batches of 500, then
compiled through averaging.

Table 12: Note: Each experiment takes j steps through di↵erent values of ✓. At each ✓j , the data
is simulated k times. For each simulation, a call is made to the Stan model and HMC (Hamiltonian
Monte Carlo) sampling is used to approximate the posterior distribution. In each such call to Stan,
we run 4 chains with 6000 iterations, and 1000 warmup draws.
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I Learning from non-discriminating clues

We noted in the text that when priors over clue probabilities do not discriminate

between causal types, then learning clue values does not a↵ect learning over

other parameters when n = 1. However, learning is possible for n > 1 even

when priors over clue probabilities do not discriminate between causal types.

To see why, divide ✓ into two parts, ✓��

and ✓
�

, where ✓��

denotes the vector

of parameters excluding {�
jx

}

j2{a,b,c,d},x2{0,1}, and ✓� the complement.

We represent non-discriminating priors over the clues probabilities as follows.

Assume that the prior distribution over ✓ is given by p(✓��

)
Q

j2{a,b,c,d},x2{0,1} f(�jx

)

— thus the marginal prior distribution over each �
jx

, j 2 {a, b, c, d}, x 2 {0, 1}

is given identically by some distribution f . Thus for this claim the key feature

is not that f is flat, but simply that it is the same for di↵erent causal types.

We consider a situation in which we observe X = Y = K = 1 for a case and

show that the posterior distribution over ✓��

is the same as it would be if we

observed X, Y , data only. The same analysis can be conducted for any other

combination of X, Y data.

With X = Y = K = 1 the posterior marginal distribution is:

p(✓��

|X = Y = K = 1) =

R R
((�

b

⇡
b

�
b1 + �

d

⇡
d

�
d1) p(✓��

)f(�
b1)f(�d1)) d�b1d�d1R R R

(�
b

⇡
b

�
b1 + �

d

⇡
d

�
d1)p(✓��

) f(�
b1)f(�d1)d✓��

d�
b1d�d1

=

�
�
b

⇡
b

R
�
b1f(�b1)d�b1 + �

d

⇡
d

R
�
d1f(�d1)d�d1

�
p(✓��

)R �
�
b

⇡
b

R
�
b1f(�b1)d�b1 + �

d

⇡
d

R
�
d1f(�d1)d�d1

�
p(✓��

)d✓��

Since
R
�
b1f(�b1)d�b1 =

R
�
d1f(�d1)d�d1 , this simplifies to the posterior that

obtains when information on K is disregarded entirely:

(�
b

⇡
b

+ �
d

⇡
d

) p(✓��

)R
(�

b

⇡
b

+ �
d

⇡
d

) p(✓��

)d✓��
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A critical step in this simple proof is our ability to move the integrals given

the fact that the � terms enter the likelihood in an additive way.

This is not the case for n > 1. For example say there were two cases, each with

X = Y = K = 1 we would then have:

p(✓��

|X = Y = K = (1, 1)) =

R R �
(�

b

⇡
b

�
b1 + �

d

⇡
d

�
d1)

2 p(✓��

)f(�
b1)f(�d1)

�
d�

b1d�d1R R R
(�

b

⇡
b

�
b1 + �

d

⇡
d

�
d1)2p(✓��

) f(�
b1)f(�d1)d✓��

d�
b1d�d1

which does not admit the same simplification. For a counterexample, suppose

that the only parameters over which there is uncertainty are �
b

, �
b1 and �

d1.

Assume that f() is uniform, that priors over �
b

are also given by a uniform

distribution over [0, 1], that �
d

= 1 � �
b

, and that ⇡
b

= ⇡
d

. Note that in this

simple world, observing two instances of X = Y = 1 does not provide informa-

tion on whether b types are more or less common than d types since conditional

on X = 1 both types produce Y = 1 (equivalently, both types produce data

like this with probability ⇡
b

, ⇡
d

). The question is whether information on K

can shift beliefs even though there is no prior information to lead one to expect

K to be observed with greater probability for a b or a d type. The posterior

marginal distribution over �
b

is now:

p(�
b

|X = Y = K = (1, 1)) =

R R
(�

b

�
b1 + (1� �

b

)�
d1)

2 d�
b1d�d1R R R

(�
b

�
b1 + (1� �

b

)�
d1)2d�bd�b1d�d1

Solving out yields:

p(�
b

|X = Y = K = (1, 1)) =
6(2 + �2

b

� �b)

11

This symmetric U-shaped posterior distribution suggests that observingK does

not shift the expected share of b and d types in this situation. It does, however,

result in greater weight placed on extreme values of �
b

— that is, after seeing

the data, we now believe that it is more likely that there are either very many
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or very few b types. Intuitively, the discrimination arises because, given the

independent priors on �
b

and �
d

, it is more likely that clue probabilities are

high for one type than that they are high for two types.

J Maximum Likelihood Integration

Although we favor a Bayesian approach to integrating inferences from qualita-

tive and quantitative data, we note that a similar approach can be implemented

within a maximum likelihood framework. The key point is that information on

the probative value on clues places a structure on the likelihood which a↵ects

inferences under both a Bayesian and a maximum likelihood analysis.

We illustrate here with an example that imposes considerable structure on the

likelihood.

Suppose that it is known for certain that there are only b and d types in a

population and that a clue K is observed with probability q if the unit is a b

type in treatment, and with probability zero otherwise (we use q rather than

� to highlight the fact that in this example probative value is given and is not

a parameter to be estimated). Say, moreover, that all types are assigned to

treatment with probability .5.

In that case data can be summarized by a vector (n00, n01, n110, n111) and the

likelihood of the data is given by:

L =
n!

n00!n01!n110!n111!
(.5�

b

)n00(.5(1��
b

))n01(.5�
b

(1�q)+.5(1��
b

))n110(.5�
b

q)n111

and so:

L / �n00+n111
b

(1� �
b

)n01(1� q�
b

)n110

The maximum likelihood estimate (MLE) is the maximum of the log likelihood:

max ((n00+n111) ln(�b) + n01 ln(1� �
b

) + n110 ln(1� q�
b

))
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First-order conditions are:

n00 + n111

�
b

�

n01

1� �
b

�

qn110

1� q�
b

= 0

The second-order condition is satisfied since:

�

n00 + n111

�2
b

�

n01

(1� �
b

)2
� q2

n110

(1� q�
b

)2
< 0

We note that if there is only one case or one sort of case (e.g., only X = Y =

K = 1 cases), then the first-order condition cannot be satisfied: the maximum

is at the boundary. An implication of this is that, for single-case analysis, the

MLE estimate can be insensitive to the probative value of clues.

For illustrative purposes, suppose n01 = n00 = n110 = n110 > 0. Then the first

order condition is satisfied uniquely23 by:

�⇤
b

=
3(q + 1)�

p
9(q + 1)2 � 32q

8q

This solution falls from �
b

= 2
3 to �

b

= 1
2 as q varies from 0 to 1. These

di↵erences reflect the fact that in this example the n111 X = Y = K = 1 cases

and the n00 X = Y = 0 cases are known to be b types; and the n01 cases with

X = 0, Y = 1 are known to be d types. The only uncertainty arises for the

n110 cases with X = Y = 1 and K = 0. If b types have a low probability of

exhibiting the clue when X = 1, then many of these cases are likely to be b

types.

23A second solution exists but exceeds 1 for admissible values of q.
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