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This report describes the estimation procedure used to construct the geometric model

of individual value choices that is analyzed in the manuscript, “Is There a Culture War?

Heterogeneous Value Choices and American Public Opinion.” The input data consist of n

individuals’ rank-ordered preferences for k values. This information is contained in the n

by k matrix, X. Each row of X represents an individual and each column corresponds to a

value. The entry in cell xij gives the number of values that individual i believes to be less

important than value j. The entries within any row of X, say xi, usually range from zero

through k− 1. In this manner, the xij vector represents individual i’s full hierarchy of value

choices.1

The Geometric Model of Value Choices

The geometric model shows the values as k points and the individuals as n vectors within

a common m-dimensional space. The relative positions of the value points are determined

by the similarities and dissimilarities in the ranks that people assign to the respective val-

ues. For example, two values that tend to receive similar rank scores (i.e., individuals who

rank one of the values highly tend to rank the other value highly as well, while those who

assign one of the values a low rank also tend to assign a low rank to the other value) will

be represented by points that are located close to each other within the space. In contrast,

two values that tend to receive different rank scores (i.e., people who rank one of the values

highly usually assign a low rank to the other value and vice versa) are represented by points

1If individual i gives a complete ordering of the values, then the entries within xi will
be composed of the successive integers from zero to k − 1. But, there are situations where
an incomplete ranking can occur. For example, an individual may be unable or unwilling
to rank-order some subset of the values. Or, pairwise comparisons of certain values may
be intransitive, thereby precluding a full ranking. In such cases, tied, and possibly non-
integer, scores would occur within xi. If these problems arise either among the values a
person believes to be most important, or among those that he or she believes to be least
important, then the maximum and minimum cell entries in the vector will be less than
k − 1 or greater than zero, respectively. The dataset used in the present analysis is limited
to individuals who provided full rank-orders for the values. Nevertheless, the model and
estimation methodology explained here can handle the tied and incomplete value rankings
with no difficulties.



that are located far apart from each other within the space. The coordinates for the value

points are collected into the k by m matrix, Φ.

The n vectors are oriented within the space such that, to the greatest extent possible,

each person’s vector points toward those values that he or she believes to be most important,

and away from those values that he or she believes to be least important. Stated differently,

the rank-order of the perpendicular projections from the value points onto individual i’s

vector should correspond to the ranked importance scores that person assigns to the values

(i.e., more important values project onto the vector at a location closer to the tip of the

vector, while less important values project onto the vector further away from the tip).

The vectors emanate from the origin of the space. The direction of each vector is impor-

tant, because that determines the order in which the value points project onto that vector.

But, the specific length of each vector is arbitrary; for convenience, we will adjust the vectors

to be unit-length. The coordinates for the vector terminal points are collected into the n by

m matrix, Γ.

The geometric structure just described is sometimes called the MDPREF model, an

acronym for “multidimensional preference scaling” (e.g., Carroll 1972; Weller and Romney

1990). The analytic task is to use the information in X to estimate Φ and Γ. As we will see,

the ordinal nature of the information in X will require us to use a new n by k matrix, X∗.

Each row of X∗ contains a monotonic transformation of the corresponding row in X.2 The

nature of the transformation will be explained below. For now, it is important to emphasize

that X∗ provides exactly the same information as the original X regarding the individuals’

relative importance rankings of the respective values.

2Assume that xia and xib are two scalar elements of the vector, xi, while x∗ia and x∗ib are
the corresponding elements of x∗i . If x∗i is monotonically related to xi then, for all pairs of
elements, a and b, if xia < xib then it must be the case that x∗ia ≤ x∗ib. Thus, monotonicity
implies that the ordering of the elements in x∗i never contradicts the ordering of the elements
in xi.
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According to the model, the transformed individual importance rankings are linear func-

tions of the individual vectors, with the value points providing the coefficients:

X̂∗ = Γ Φ′ (1)

In equation (1), the X̂∗ on the left-hand side is a matrix of predicted importance values that

is generated from the estimated model parameters. That is, the entries in any row of X̂∗, say

x̂∗i, give the projections from the k value points onto i’s vector within the m-space. Each

element in x̂∗i, say x̂∗ij, is a scalar product between individual i’s vector and the point for

value j:

x̂∗ij = γi · φ′j (2)

Where γi is the ith row of the Γ matrix and φj is the jth row of the Φ matrix Of course,

Γ and Φ are constructed in a way that optimizes the correspondence between X̂∗ and the

original data matrix, X. So, the full model can be shown as follows:

X∗ = Γ Φ′ + E (3)

Where E is an n by k matrix of random errors, with Ē = 0 and the variance of the elements

in E as small as possible.

Estimation with Interval-Level Data

Let us assume for the moment that X contains interval-level data. In that case, Carroll

(1972) shows that the model can be estimated very easily, using a singular value decompo-

sition. Begin by standardizing the entries within each row to zero mean and unit variance,

producing Xstd. While not absolutely necessary, this preliminary step is useful because it

places the origin of the space at the centroid of the points and vector termini. Next, factor

Xstd using the Eckart-Young decomposition (Eckart and Young 1936):

Xstd = UDV′ (4)
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On the right-hand side of equation (3), U is the n by q matrix of left singular vectors, D is

the q-order diagonal matrix of singular values (arranged from largest to smallest), and V is

the k by q matrix of right singular vectors. Note that q is the rank of Xstd, which typically

will be k − 1 (assuming that k < n, as will generally be the case), since the scores add to a

constant within each row.

The next step is to determine m, the dimensionality of the model space. This is specified

by the analyst, but the general objective is to choose m so that it is as small as possible,

while still producing a model that provides a sufficiently good fit to the empirical data.

Some guidance can be obtained from the fact that the squared singular values give the sums

of squares in Xstd that are “explained” by each pair of singular vectors. A goodness-of-fit

measure for the model in m dimensions can be defined as follows:

R2 = tr(D2
m)/tr(D2) (5)

Where tr is the matrix trace, or sum of the diagonal elements, and D2
m is the diagonal matrix

containing the squares of the first m singular values. As with a linear regression model, R2

is interpreted as the proportion of variance in Xstd that is explained by the m-dimensional

model. Alternatively, it is the squared correlation between the entries in Xstd and the entries

in the X̂ that is produced by the points and vectors in m-space.

After determining the appropriate value of m, it is a simple matter to obtain Φ and Γ.

Take the first m singular vectors and singular values and use them to define the following:

Φ = Vm (6)

Γ = UmDm (7)

These values for Φ and Γ comprise the “best” solution in the least-squares sense, because

they generate the largest R2 that is possible for an m-dimensional representation of the data.
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Typically, the rows of Γ are normalized to unit length by dividing the entries in each row by

the sum of squared entries in that row.

Estimation with Ordinal-Level Data

The preceding estimation procedure assumes that X contains interval-level data. This

implies that, for i = 1, 2, . . . , n, the projections from the k value points onto i’s vector, or

x̂i, are linearly related to the entries in the corresponding row of the data matrix, xi. But,

the entries within each row of X only give the rank-order of each individual’s importance

judgments about the values. It seems very unlikely either that the differences in importance

across successive ranks are always constant, or that these differences are identical from one

individual to the next. Therefore, it is more appropriate to specify a model in which the

projections from the value points onto the individual vectors are idiosyncratic and row-

specific monotonic functions of the importance ratings. This is equivalent to an assumption

that each row of X provides strictly ordinal and inter-personally incomparable information

about a person’s value preferences.

In order to address this issue, a strategy called “alternating least squares, optimal scal-

ing” or ALSOS (Young 1981; Jacoby 1999), is used to perform a nonmetric version of the

singular value decomposition. ALSOS does not carry out the analysis on the original data

matrix. Instead, the ALSOS routine uses a transformation of X, designated X∗, that con-

tains optimally-scaled versions of the original data values. This means that the entries within

any row of X∗, say x∗i , are a monotonic transformation of the entries in the corresponding

row of X, or xi. The specific monotonic transformation is allowed to vary across the n

rows of x∗i . The monotonic transformations are chosen so that they maximize the model’s

R2 in a given dimensionality, m. Thus, x∗i is an optimally-scaled version of the input data

in the sense that it is the vector of numeric values that is most highly-correlated with the

model-based predicted values (i.e., x̂i), subject to the constraint that it is also monotonic

with the original xi.
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The only real difference from the interval-level situation is that the model R2 is now

the squared correlation between the entries in X̂ and the entries in X∗ (rather than Xstd).

Briefly, the steps in an ALSOS version of multidimensional preference scaling are as follows:

1. At the outset, specify m, the dimensionality of the space, initialize R2 to zero, and

initialize X∗ by setting it equal to the original X matrix. Standardize within rows of

X∗ to obtain X∗std

2. Carry out the singular value decomposition on the current version of X∗std to obtain

Um, Dm, and Vm. Use these matrices to calculate current estimates of X̂ and R2.

3. If the current R2 is larger than the previous value, then continue. If R2 has not changed

from the previous iteration (i.e., its value has converged) then terminate the procedure

and go to step 6.

4. For i = 1, 2, . . . , n, use Kruskal’s monotonic regression (1964) to find a new estimate

of x̂∗i , containing values that are maximally correlated with the current model-based

predicted values (that is, the entries in the ith row of X̂, or x̂i) but always weakly

monotonic to the entries in the original xi.

5. Return to step 2 and carry out another iteration of the estimation procedure on the

new version of X∗ that was obtained in step 4.

6. When R2 converges, construct the Φ and Γ matrices from the singular vectors and

values, and use the final R2 as the goodness-of-fit.

Thus, the nonmetric approach simply estimates the MDPREF model on a transformed (i.e.,

optimally-scaled) version of the data matrix. Note that separate transformations are ob-

tained for each individual by performing Kruskal’s monotonic regression repeatedly, for each

row of X̂, relative to the corresponding row of Xstd, producing the same row in X∗. By

carrying out these row-specific transformations, the model explciitly takes into account the
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problem known either as “inter-personal incomparability” (Brady 1985) or “differential item

functioning” (King, Murray, Salomon, Tandor 2004).

In practice, the combined ALSOS-MDPREF procedure works very well. It usually con-

verges quickly and it optimizes the appropriate monotonic, rather than linear, correspon-

dence between the model elements and the original data values. The ALSOS model still

represents the original data, since the various x̂∗i are linear functions of the x∗i , while the

latter are monotonic functions of the xi. And, since the monotonic function can vary from

one row of X∗ to the next, the procedure explicitly recognizes that the entries in the orig-

inal data matrix, X, are not comparable across the rows. Hence the model provides the

best-fitting (in the least-squares sense) m-dimensional representation of the n individuals’

rank-ordered importance ratings of the k values.
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