Voting Equilibria Under Proportional Representation Online Appendix

Seok-ju Cho

Proof of Lemma 1

Let $v_t = i$. Take any $j \in L$ and consider profile (j, v_{-t}) . Since t is neither majority-pivotal nor median pivotal, $k(j, v_{-t}) = k(v)$, and, thus, $p_h(j, v_{-t}) = p_h(v)$ for every $h \in L$. Moreover, k(v) is a majority party in (j, v_{-t}) if and only if it is so in v.

Suppose v_t is not strategically sincere for t in v. There exists $j \in L \setminus \{i\}$ such that $u(p_j(v);t) > u(p_i(v);t)$. Take any $\epsilon \in (0,1)$. From the discussion in the previous paragraph, we conclude that

$$U(j, v_{-t}; t|\epsilon) - U(v_t, v_{-t}; t|\epsilon) \ge \frac{\epsilon}{n} [u(p_j(v); t) - u(p_i(v); t)] > 0,$$

which implies that v_t is not a robust best response to v_{-t} .

Suppose v_t is strategically sincere for t in v. Then, for every $j \in L$, $u(p_i(v);t) \ge u(p_j(v);t)$. Thus,

$$U(v_t, v_{-t}; t|\epsilon) - U(j, v_{-t}; t|\epsilon) \ge \frac{\epsilon}{n} [u(p_i(v); t) - u(p_j(v); t)] \ge 0$$

for every $j \in L$ and every $\epsilon \in [0, 1)$. Hence, v_t is a robust best response to v_{-t} .

Proof of Proposition 1

1. Suppose $|X_m| > M$. Define the voting profile v by the following:

$$v_t = \begin{cases} m & \text{if } t \in X_m, \\ \min\left(\arg\max\left\{u(\theta_i; t) \middle| i \in \arg\max\{u(s_j^m; t) | j \in L\}\right\}\right) & \text{otherwise.} \end{cases}$$
(9)

Since $v_t = m$ for every $t \in X_m$, $b_m(v) > M$. Thus, k(v) = m, and no voter is majorityor median-pivotal. By construction, v is strategically sincere. Lemma 1 then implies that $v \in V(T, \theta, q)$.

2. Let $v \in V(T, \theta, q)$ and $b_{k(v)}(v) > M$. Since $b_{k(v)}(v) > M$, no voter is majority- or median-pivotal. By Lemma 1, v is strategically sincere. Suppose k(v) < m. Then $t_M > \overline{y}_k$ which implies $T_{k(v)}(v) \subseteq \{t_1, \ldots, t_{M-1}\}$, contradicting $b_{k(v)}(v) > M$. Suppose k(v) > m. Then $t_{M-1} < \underline{y}_{k(v)}$, which implies $T_{k(v)}(v) \subseteq \{t_M, \ldots, t_\ell\}$, contradicting $b_{k(v)}(v) > M$. Thus, k(v) = m. Since v is strategically sincere, $T_m(v) \subseteq X_m$. Hence, $|X_m| > M$.

Proof of Proposition 2

Suppose $|X_m| < M - 1$ and $\{t_{M-1}, t_M, t_{M+1}\} \subseteq X_m$. Let v be as defined in (9). Note that, by definition of X_m , $m \in \arg \max\{u(s_i^m; t) | i \in L\}$ if and only if $t \in X_m$. Thus, $T_m(v) = X_m$, implying $T_m(v) < M - 1$. Also, for every t with $v_t \neq m$, either $t < \underline{y}_m$ or $t > \overline{y}_m$. If $t < \underline{y}_m$, then $t < \theta_m < s_i^m$ for every i > m. Thus, there is no $i \in L$ such that i > m and $i \in \arg \max\{u(s_j^m; t) | j \in L\}$. Therefore, $v_t < m$. Similarly, if $t > \overline{y}_m$, then $v_t > m$. Then since $\underline{y}_m \leq t_{M-1} < t_{M+1} \leq \overline{y}_m$, $\sum_{i=1}^{m-1} b_i(v) < M - 1$ and $\sum_{i=m+1}^{\ell} b_i(v) < M - 1$. This implies that k(v) = m and no voter is majority- or median-pivotal. Then, by construction, v is strategically sincere, and, by Lemma 1, $v \in V(T, \theta, q)$.

Proof of Proposition 3

1. Assume $|X_m| = M$. Define the voting profile v as in (9). By construction, $T_m(v) = X_m$ and $T^*(v) = T$. We just have to show that $v \in V(T, \theta, q)$. For any $t \in T \setminus X_m$, t is neither majority-pivotal, nor median-pivotal. Thus, by Lemma 1, v_t is a robust best response. Take any $t \in X_m$ and take any $\epsilon \in [0, 1]$. Since m is the majority party in v,

$$U(v;t|\epsilon) = (1-\epsilon)u(\theta_m;t) + \frac{\epsilon}{n} \left[Mu(\theta_m;t) + \sum_{i \in L \setminus \{m\}} b_i(v)u(s_i^m;t) \right].$$
(10)

Consider voter t's deviation by voting for some $j \neq m$ and let $v' = (j, v_{-t})$. Since $t_{M-1} \in X_m$, $\sum_{i=1}^{m-1} b_i(v) < M - 1$. Since $t_{M+1} \in X_m$, $\sum_{i=m+1}^{\ell} b_i(v) < M - 1$. Thus, k(v') = m, implying $p_i(v') = p_i(v) = s_i^m$ for every $i \in L$. Since m is not a majority party in v',

$$U(v';t|\epsilon) = \frac{1}{n} \left[(M-1)u(\theta_m;t) + \sum_{i \in L \setminus \{m\}} b_i(v)u(s_i^m;t) + u(s_j^m;t) \right].$$
(11)

Subtracting (11) from (10), we obtain

$$U(v;t|\epsilon) - U(v';t|\epsilon) = \frac{1-\epsilon}{n} \left[(M-1)u(\theta_m;t) - \sum_{i \in L \setminus \{m\}} b_i(v)u(s_i^m;t) \right] + \frac{1}{n} [u(\theta_m;t) - u(s_j^m;t)].$$

Since $t \in X_m$, $u(\theta_m; t) \ge u(s_i^m; t)$ for every $i \in L$. Also, $\sum_{i \in L \setminus \{m\}} b_i(v) = M - 1$. Hence, $U(v; t|\epsilon) \ge U(v'; t|\epsilon)$. Therefore, v is a robust equilibrium.

2. Assume $|X_m| = M - 1$. If m = 1, then $t_1 \in X_m$, implying $t_{M+1} \notin X_m$, a contradiction. If $m = \ell$, then $t_n \in X_m$, implying $t_{M-1} \notin X_m$, a contradiction. Thus, $2 \le m \le \ell - 1$. Let

$$r_m = \frac{n-1}{2n}. \text{ For each } i \in L \setminus \{m\}, \text{ let}$$
$$r_i = \frac{1}{n} \left| \left\{ t \in T \setminus X_m \ \middle| \ i = \min\left(\arg\max\left\{ u(\theta_i; t) \ \middle| \ i \in \arg\max\{u(s_j^m; t) | j \in L\} \right\} \right) \right\} \right|.$$

Note that $\sum_{i \in L} r_i = 1$. Either $\sum_{i \in L} r_i s_i^m \ge \theta_m$ or $\sum_{i \in L} r_i s_i^m < \theta_m$. If the former is true, then let $t^* = \max\{t \in T | t < \underline{y}_m\}$. If the latter is true, then let $t^* = \min\{t \in T | t > \overline{y}_m\}$. Note that $t^* \notin X_m$. Define the voting profile v by the following:

$$v_{t} = \begin{cases} m & \text{if } t \in X_{m} \cup \{t^{*}\}, \\ \min\left(\arg\max\left\{u(\theta_{i};t) \mid i \in \arg\max\{u(s_{j}^{m};t) \mid j \in L\}\right\}\right) & \text{otherwise.} \end{cases}$$
(12)

Note that $T_m(v) = X_m \cup \{t^*\}$ and so $|T_m(v)| = M$. By construction, for every $t \in T \setminus \{t^*\}$, v_t is strategically sincere in v. For any $t \in T \setminus T_m(v)$, t is neither majority-pivotal, nor medianpivotal. So, v_t is a robust best response by Lemma 1. For every $t \in X_m$, the argument in the proof of the first statement of Proposition 3 holds true. Lastly, consider voter t^* 's deviation by voting for some $j \neq m$, and let $v' = (j, v_{-t^*})$. Since k(v') = m, $p_i(v') = p_i(v) = s_i^m$ for every $i \in L$. Let

$$i^* = \min\left(\arg\max\left\{u(\theta_i; t^*) \mid i \in \arg\max\{u(s_i^m; t^*) | i \in L\}\right\}\right).$$

Note that if $j = i^*$, then $T_i(v') = nr_i$ for every $i \in L$; and that if $j \neq i^*$, then $T_i(v') = nr_i$ for every $i \in L \setminus \{j, i^*\}$, $T_j(v') = nr_j + 1$, and $T_{i^*}(v) = nr_{i^*} - 1$. Take any $\epsilon \in [0, 1)$. Then,

$$\sum_{i \in L} r_i u(s_i^m; t^*) - U(v'; t^* | \epsilon) = \frac{1}{n} [u(s_i^m; t^*) - u(s_j^m; t^*)] \ge 0$$
(13)

since $u(s_{i^*}^m; t^*) = \max\{u(s_i^m; t^*) | i \in L\}$. Note that, by construction, either $t^* < \theta_m \leq \sum_{i \in L} r_i s_i^m$ or $\sum_{i \in L} r_i s_i^m < \theta_m < t^*$. Then, since f is strictly concave, $u(\theta_m; t^*) > \sum_{i \in L} r_i u(s_i^m; t^*)$.

Then, from (13), we conclude that $u(\theta_m; t^*) > U(v'; t^*|\epsilon)$. Then, for sufficiently small ϵ ,

$$U(v;t^*|\epsilon) - U(v';t^*|\epsilon) = (1-\epsilon)[u(\theta_m;t^*) - U(v';t^*|\epsilon)] + \epsilon \left[\sum_{i \in L} \frac{b_i(v)}{n} u(s_i^m;t^*) - U(v';t^*|\epsilon)\right] > 0.$$

Thus, v is a robust equilibrium of $G(T, \theta, q, 0)$.

Proof of Proposition 4

Assume $\{t_{M-1}, t_M, t_{M+1}\} \not\subseteq X_m$. For each $t \in T$, let

$$\alpha(t) = \min\left(\left.\arg\max\left\{u(\theta_i; t) \middle| i \in \arg\max\left\{u(s_j^{m+1}; t) \middle| j \in \arg\max\{u(s_h^m; t) | h \in L\}\right\}\right\}\right\}\right),$$

and define voting profile \hat{v} by the following.

$$\hat{v}_t = \begin{cases}
m & \text{if } t \in [\underline{y}_m, t_M], \\
\alpha(t) & \text{otherwise;}
\end{cases}$$
(14)

Recall that $\theta_1 < t_M < \theta_\ell$ and $\theta_m \leq t_M$. This implies that $m \leq \ell - 1$. For every $t > \max\{t_M, \overline{y}_m\}, \ \hat{v}_t = \alpha(t) \geq m + 1$. If m = 1, then $\underline{y}_m = t_1$, so $\{t_1, \ldots, t_M\} \subseteq T_m(\hat{v})$. Otherwise, for every $t < \underline{y}_m, \ \hat{v}_t = \alpha(t) \leq m - 1$. Thus, when m = 1, party m is the majority party, and when m > 1, party m is the median party. Then, for every $i \in L, \ p_i(\hat{v}) = s_i^m$. For every $\epsilon \in [0, 1]$ and every $t \in T$,

$$U(\hat{v};t|\epsilon) = (1-\epsilon)u(\theta_1;t) + \frac{\epsilon}{n}\sum_{i\in L}b_i(\hat{v})u(s_i^m;t)$$
(15)

if m = 1; and

$$U(\hat{v};t|\epsilon) = \frac{1}{n} \sum_{i \in L} b_i(\hat{v}) u(s_i^m;t)$$
(16)

if m > 1.

The proof will include a series of lemmas. The first lemma shows that, for voters who vote for the median party or any party to the right of the median in profile \hat{v} , a deviation by voting for any party to the left of the median is not profitable.

Lemma 3 Assume m > 1. For every $t \ge \underline{y}_m$ and every $j \le m - 1$, there exists $\overline{\epsilon} > 0$ such that $U(\hat{v}; t|\epsilon) \ge U(j, \hat{v}_{-t}; t|\epsilon)$ for every $\epsilon \in [0, \overline{\epsilon}]$.

Proof: Take any $t \ge \underline{y}_m$ and let $h = \hat{v}_t$. Note that $h \ge m$. Take any $j \le m - 1$. First, suppose $t_{M-1} \ge \underline{y}_m$. Then $\sum_{i=1}^{m-1} b_i(\hat{v}) < M - 1$, implying $k(j, \hat{v}_{-t}) = m$. Then, for every $\epsilon \in [0, 1]$,

$$U(\hat{v};t|\epsilon) - U(j,\hat{v}_{-t};t|\epsilon) = \frac{1}{n} [u(s_h^m;t) - u(s_j^m;t)].$$
(17)

If $t \ge t_{M+1}$, then $h = \alpha(t) \in \arg \max\{u(s_i^m; t) | i \in L\}$. So, $u(s_h^m; t) \ge u(s_j^m; t)$, implying (17) is nonnegative. If $t \in [\underline{y}_m, t_M]$, then h = m. Since $t \ge \underline{y}_m = \frac{s_{m-1}^m + s_m^m}{2}$, $u(s_m^m; t) \ge u(s_j^m; t)$. Thus, (17) is nonnegative.

Now suppose $t_{M-1} < \underline{y}_m$. Then, $\sum_{i=1}^{m-1} b_i(\hat{v}) = M - 1$. A1 implies that, for each $i = 2, \ldots, \ell$, $\left(\frac{\theta_{i-1}+\theta_i}{2}, \theta_i\right) \cap T \neq \emptyset$. Since $t_M \ge \theta_m$, it must be that $t_{M-1} > \frac{\theta_{m-1}+\theta_m}{2}$. Since $\underline{y}_m > t_{M-1}, \underline{y}_m > \frac{\theta_{m-1}+\theta_m}{2}$, which implies $\underline{x}_m(q) > \theta_{m-1}$. Then, it must be that $q > \theta_{m-1}$. Since $t_{M-1} \in \left(\frac{\theta_{m-1}+\theta_m}{2}, \underline{y}_m\right), \alpha(t_{M-1}) = m - 1$, so $b_{m-1}(\hat{v}) > 0$. This implies that $k(j, \hat{v}_{-t}) = m - 1$, and, so, $p_i(j, \hat{v}_{-t}) = s_i^{m-1}$ for every $i \in L$. We consider two cases separately: m > 2 and m = 2.

First, suppose m > 2. Since $t_1 < \theta_1$, $\alpha(t_1) = 1$. So, $b_1(\hat{v}) > 0$, implying $b_{m-1}(j, \hat{v}_{-t}) < M$. Then, for every $\epsilon \in [0, 1]$,

$$U(j, \hat{v}_{-t}; t | \epsilon) = \frac{1}{n} \bigg(\sum_{i \in L} b_i(\hat{v}) u(s_i^{m-1}; t) + [u(s_j^{m-1}; t) - u(s_h^{m-1}; t)] \bigg).$$
(18)

Suppose $q > \theta_m$, i.e., $\underline{x}_m(q) = 2\theta_m - q$. Then, $A(j, \hat{v}_{-t}) = [2\theta_{m-1} - q, q]$. Since $\underline{x}_m(q) \in (\theta_{m-1}, \theta_m)$, for every $i \ge m$, $s_i^m = s_i^{m-1}$. For every $i \le m-1$, $s_i^m = 2\theta_m - q > s_i^{m-1}$. Since $t \ge t_M > 2\theta_m - q$, $u(2\theta_m - q; t) > u(s_i^{m-1}; t)$ for every $i \le m-1$. Also, since $t > \theta_m$,

 $s_j^{m-1} < 2\theta_m - q$, and $s_h^{m-1} \in [\theta_m, q]$, it must be the case that $u(s_h^{m-1}; t) > u(s_j^{m-1}; t)$. Then,

$$U(\hat{v};t|\epsilon) - U(j,\hat{v}_{-t};t|\epsilon) = \frac{1}{n} \left(\sum_{i=1}^{m-1} b_i(\hat{v}) [u(2\theta_m - q;t) - u(s_i^{m-1};t)] + [u(s_h^{m-1};t) - u(s_j^{m-1};t)] \right) > 0$$

for every $\epsilon \in [0, 1]$. Suppose $q \in (\theta_{m-1}, \theta_m)$. Then, for every $i \ge m$, $s_i^{m-1} = q$, and, for every $i \le m-1$, $s_i^m = q$. Thus, for every $\epsilon \in [0, 1]$,

$$U(\hat{v};t|\epsilon) - U(j,\hat{v}_{-t};t|\epsilon) = \frac{1}{n} \left(\sum_{i=1}^{m-1} b_i(\hat{v}) [u(q;t) - u(s_i^{m-1};t)] + \sum_{i=m}^{\ell} b_i(\hat{v}) [u(s_i^m;t) - u(q;t)] + [u(q;t) - u(s_j^{m-1};t)] \right)$$
(19)

Since $s_i^{m-1} < q < t$, $u(q;t) > u(s_i^{m-1};t)$ for every $i \le m-1$ (including j). Since $t > \theta_m$ and $s_i^m \in [\theta_m, 2\theta_m - q]$, $u(s_i^m;t) > u(q;t)$ for every $i \ge m$. Thus, (19) is positive.

Now suppose m = 2. Then, $b_1(\hat{v}) = M - 1$ and j = 1. Thus, party 1 is the majority party in (j, \hat{v}_{-t}) . Let $C(t) = \frac{1}{n} \sum_{i \in L} b_i(\hat{v}) u(s_i^m; t) - u(\theta_1; t)$ and let

$$G(t) = \frac{1}{n} \left(\sum_{i \in L} b_i(\hat{v}) u(s_i^m; t) - \sum_{i \in L} b_i(j, \hat{v}_{-t}) u(s_i^{m-1}; t) \right).$$

Then, for every $\epsilon \in [0, 1]$,

$$U(\hat{v};t|\epsilon) - U(j,\hat{v}_{-t};t|\epsilon) = (1-\epsilon)C(t) + \epsilon G(t).$$
⁽²⁰⁾

Note that $t > \theta_m$, $s_i^m \in [\underline{x}_m(q), \overline{x}_m(q)]$, and $\theta_1 < \underline{x}_m(q)$. This implies that $u(s_i^m; t) > u(\theta_1; t)$ for every $i \in L$. Hence, C(t) > 0. If $G(t) \ge 0$, then (20) is positive for every $\epsilon \in [0, 1]$. If G(t) < 0, then let $\overline{\epsilon} = \frac{C(t)}{C(t) - G(t)}$. Then, for every $\epsilon \in [0, \overline{\epsilon}]$, $U(\hat{v}; t|\epsilon) \ge U(j, \hat{v}_{-t}; t|\epsilon)$, which completes the proof of the lemma. We are ready to prove the first statement of the proposition. Suppose $t_{M+1} \in X_m$. Since $\theta_m \leq t_M < t_{M+1} \leq \overline{y}_m, t_M \in X_m$. Then, it must be the case that $t_{M-1} < \underline{y}_m$, implying m > 1. Note that $[\underline{y}_m, t_M] \cap T = \{t_M\}$. Since $t_M \in X_m, \hat{v}_{t_M} = m \in \arg \max\{u(s_i^m; t_M) | i \in L\}$. Also, by construction, $\hat{v}_t = \alpha(t) \in \arg \max\{u(s_i^m; t) | i \in L\}$ for every $t \in T \setminus \{t_M\}$. Thus, \hat{v} is strategically sincere, i.e., $T^*(\hat{v}) = T$.

I now will show that $\hat{v} \in V(T, \theta, q)$. Since $t_{M+1} \in X_m$, $\hat{v}_{t_{M+1}} = \alpha(t_{M+1}) = m$. This implies that $\sum_{i=m+1}^{\ell} b_i(\hat{v}) < M - 1$. Then, for every $t \leq t_{M-1}$, voter t is neither majoritypivotal nor median-pivotal. Thus, by Lemma 1, \hat{v}_t is a robust best response to \hat{v}_{-t} for every $t \leq t_{M-1}$. Take any $t \geq t_M$, and consider voter t's deviation by voting for any $j \neq \hat{v}_t$. If $j \geq t_M$, the deviation would not change the median party, i.e., $k(j, \hat{v}_{-t}) = m$. Then, for every $i \in L, p_i(j, \hat{v}_{-t}) = s_i^m = p_i(\hat{v})$. Since $\hat{v}_t \in \arg \max\{u(s_i^m; t) | i \in L\}, U(\hat{v}; t | \epsilon) \geq U(j, \hat{v}_{-t}; t | \epsilon)$ for every $\epsilon \in [0, 1]$. Suppose $j \leq m - 1$. By Lemma 3, there exists $\bar{\epsilon} > 0$ such that $U(\hat{v}; t | \epsilon) \geq U(j, \hat{v}_{-t}; t | \epsilon)$ for every $\epsilon \in [0, \bar{\epsilon}]$. Thus, $\hat{v} \in V(T, \theta, q)$, which completes the proof of the first statement in Proposition 4.

To prove the second statement, assume $t_{M+1} \notin X_m$. Let

$$\beta(t) = \min\left(\arg\max\left\{u(\theta_i; t) \middle| i \in \arg\max\left\{u(s_j^m; t) \middle| j \in \arg\max\{u(s_h^{m+1}; t) | h \in L\}\right\}\right\}\right).$$

Define voting profile \tilde{v} by

$$\tilde{v}_t = \begin{cases} m+1 & \text{if } t \in [t_M, \overline{y}_{m+1}], \\ \beta(t) & \text{otherwise.} \end{cases}$$
(21)

I will prove that either \hat{v} or \tilde{v} is a robust voting equilibrium of $G(T, \theta, q, 0)$. Define voting profiles \hat{v}' and \tilde{v}' by the following.

$$\hat{v}'_t = \begin{cases} m+1 & \text{if } t = t_M, \\ \hat{v}_t & \text{otherwise;} \end{cases}$$
(22)

and

$$\tilde{v}'_t = \begin{cases} m & \text{if } t = t_M, \\ \tilde{v}_t & \text{otherwise.} \end{cases}$$
(23)

That is, \hat{v}' is the voting profile in which the median voter unilaterally deviates from \hat{v} by voting for m + 1, and \tilde{v}' is the voting profile in which the median voter unilaterally deviates from \tilde{v} by voting for m. For each $t \in T$ and each $\epsilon \in [0, 1]$, let $\hat{\Delta}(t|\epsilon) = U(\hat{v}; t|\epsilon) - U(\hat{v}'; t|\epsilon)$ and $\tilde{\Delta}(t|\epsilon) = U(\tilde{v}; t|\epsilon) - U(\tilde{v}'; t|\epsilon)$.

Note that, for every $t \leq \underline{y}_m$, $\alpha(t) \leq m$. Also, since $t_{M+1} \geq \overline{y}_m$, for every $t \geq t_{M+1}$, $\alpha(t) \geq m+1$. Thus,

$$\sum_{i=1}^{m} b_i(\hat{v}) = M \quad \text{and} \quad \sum_{i=1}^{m} b_i(\hat{v}') = M - 1.$$
(24)

Since $t_{M-1} < \frac{\theta_m + \theta_{m+1}}{2} \le \frac{s_m^{m+1} + s_{m+1}^{m+1}}{2}$, $\beta(t) \le m$ for every $t \le t_{M-1}$. Clearly, for every $t \ge \overline{y}_{m+1}$, $\beta(t) \ge m+1$. Hence,

$$\sum_{i=1}^{m} b_i(\tilde{v}) = M - 1 \quad \text{and} \quad \sum_{i=1}^{m} b_i(\tilde{v}') = M.$$
(25)

An implication of (24) and (25) is that $k(\hat{v}) = k(\tilde{v}') = m$ and $k(\hat{v}') = k(\tilde{v}) = m + 1$. Thus, for every $i \in L$, $p_i(\hat{v}) = p_i(\tilde{v}') = s_i^m$ and $p_i(\hat{v}') = p_i(\tilde{v}) = s_i^{m+1}$. I now present a series of lemmas.

Lemma 4 For each given $\epsilon \in [0,1]$, $\hat{\Delta}(t|\epsilon)$ is decreasing in t and $\tilde{\Delta}(t|\epsilon)$ is increasing in t.

Proof: For each $t \in T$, let

$$\hat{D}(t) = \frac{1}{n} \left[\sum_{i \in L} b_i(\hat{v}) u(s_i^m; t) - \sum_{i \in L} b_i(\hat{v}') u(s_i^{m+1}; t) \right]$$
(26)

and

$$\tilde{D}(t) = \frac{1}{n} \left[\sum_{i \in L} b_i(\tilde{v}) u(s_i^{m+1}; t) - \sum_{i \in L} b_i(\tilde{v}') u(s_i^m; t) \right]$$
(27)

I first claim \hat{D} is decreasing and \tilde{D} is increasing in t. Since \hat{v} and \hat{v}' differ only in that $\hat{v}_{t_M} = m$ and $\hat{v}'_{t_M} = m + 1$, we write

$$\hat{D}(t) = \frac{1}{n} \left(\sum_{i \in L} b_i(\hat{v}) [u(s_i^m; t) - u(s_i^{m+1}; t)] + [u(s_m^{m+1}; t) - u(s_{m+1}^{m+1}; t)] \right)$$

$$= \frac{1}{n} \left(\sum_{i \in L} b_i(\hat{v}) [f(|s_i^m - t|) - f(|s_i^{m+1} - t|)] + [f(|s_m^{m+1} - t|) - f(|s_{m+1}^{m+1} - t|)] \right) (28)$$

Note that, for each $i \in L$, $s_i^m \leq s_i^{m+1}$ and $s_m^{m+1} \leq s_{m+1}^{m+1}$. Then, since f is decreasing and concave, for each $i \in L$, $f(|s_i^m - t|) - f(|s_i^{m+1} - t|)$ is decreasing in t and $f(|s_m^{m+1} - t|) - f(|s_{m+1}^{m+1} - t|)$ is decreasing in t. Hence \hat{D} is decreasing in t. A symmetric argument proves that \tilde{D} is increasing in t.

Let $\epsilon \in [0, 1]$. First, suppose that $b_m(\hat{v}) < M$ and $b_{m+1}(\hat{v}') < M$. Then, $\hat{\Delta}(t|\epsilon) = \hat{D}(t)$, implying $\hat{\Delta}(t|\epsilon)$ is decreasing in t. Second, suppose $b_m(\hat{v}) = M$. Since $t_1 < \theta_1$, $\hat{v}_{t_1} = 1$. This, together with (24), implies that m = 1. Since $t_n \ge \theta_\ell$, $\hat{v}_{t_n} = \ell$, implying $b_{m+1}(\hat{v}') < M$. Then,

$$\hat{\Delta}(t|\epsilon) = (1-\epsilon) \left[u(\theta_1;t) - \frac{1}{n} \sum_{i \in L} b_i(\hat{v}') u(s_i^{m+1};t) \right] + \epsilon \hat{D}(t).$$

But since $\theta_1 \leq s_i^{m+1}$ for every $i \in L$, the expression in the square bracket is decreasing in t. Thus, $\hat{\Delta}(t|\epsilon)$ is decreasing in t. Lastly, suppose $b_{m+1}(\hat{v}') = M$. Again since $\hat{v}_{t_n} = \hat{v}'_{t_n} = \ell$, it must be the case that $m + 1 = \ell$. Then since $\hat{v}_{t_1} = 1$, $b_m(\hat{v}) < M - 1$. Then,

$$\hat{\Delta}(t|\epsilon) = (1-\epsilon) \left[\frac{1}{n} \sum_{i \in L} b_i(\hat{v}) u(s_i^m; t) - u(\theta_\ell; t) \right] + \epsilon \hat{D}(t).$$

But since $s_i^m \leq \theta_\ell$ for every $i \in L$, the expression in the square bracket is decreasing in t. Thus, $\hat{\Delta}(t|\epsilon)$ is decreasing in t. A symmetric argument proves $\tilde{\Delta}(t|\epsilon)$ is increasing in t. Lemma 5 The following is true.

- 1. If $\hat{\Delta}(t_M|0) > 0$, then \hat{v} is a robust equilibrium of $G(T, \theta, q, 0)$.
- 2. If $\tilde{\Delta}(t_M|0) > 0$, then \tilde{v} is a robust equilibrium of $G(T, \theta, q, 0)$.
- 3. If $\hat{\Delta}(t_M|0) = \tilde{\Delta}(t_M|0) = 0$, then either \hat{v} or \tilde{v} is a robust equilibrium of $G(T, \theta, q, 0)$.

Proof: 1. Suppose $\hat{\Delta}(t_M) > 0$. Take any $t \in T$, and let $h = \hat{v}_t$. Assume $t \ge t_{M+1}$ and notice that $\hat{v}_t \ge m + 1$. Consider voter t's deviation by voting for j. Suppose $j \ge m$. Then the deviation does not change the majority or the median status of party m. Since $h \in \arg \max\{u(s_i^m; t) | i \in L\}, U(\hat{v}; t | \epsilon) \ge U(j, \hat{v}_{-t}; t | \epsilon)$ for every $\epsilon \in [0, 1]$. Suppose $j \le m - 1$. Then, by Lemma 3, $U(\hat{v}; t | \epsilon) \ge U(j, \hat{v}_{-t}; t | \epsilon)$ for sufficiently small ϵ . Thus, \hat{v}_t is a robust best response to \hat{v}_{-t} .

Assume $t \leq t_M$. Again, consider voter t's deviation from \hat{v} by voting for any $j \neq h$, i.e., we consider the profile (j, \hat{v}_{-t}) . If $j \leq m$, then the deviation would not change the identity of the median or majority party. So, $k(j, \hat{v}_{-t}) = k(\hat{v}) = m$, and, for every $i \in L$, $p_i(j, \hat{v}_{-t}) =$ $p_i(\hat{v}) = s_i^m$ And since, by construction, $h \in \arg \max\{u(s_i^m; t) | i \leq m\}, U(j, \hat{v}_{-t}; t | \epsilon) \leq U(\hat{v}; t | \epsilon)$ for every $\epsilon \in [0, 1]$.

Now suppose $j \ge m + 1$. Then $k(j, \hat{v}_{-t}) = m + 1$ and $p_i(j, \hat{v}_{-t}) = s_i^{m+1}$ for every $i \in L$. Note that the only possible difference between \hat{v}' and (j, \hat{v}_{-t}) is that, in (j, \hat{v}_{-t}) , one vote for h in \hat{v} is transferred to j, and, in \hat{v}' , one vote for m is transferred to m + 1. I claim $U(\hat{v}'; t|\epsilon) \ge U(j, \hat{v}_{-t}; t|\epsilon)$ for every $\epsilon \in [0, 1]$. To see this, first, suppose $m < \ell - 1$. Then, there is no majority party in \hat{v}' or (j, \hat{v}_{-t}) . So, for every $\epsilon \in [0, 1]$,

$$U(\hat{v}';t|\epsilon) - U(j,\hat{v}_{-t};t|\epsilon) = \frac{1}{n} \bigg([u(s_{m+1}^{m+1};t) - u(s_j^{m+1};t)] + [u(s_h^{m+1};t) - u(s_m^{m+1};t)] \bigg).$$

Since $t \leq t_M$ and $m+1 \leq j$, we have $t < \theta_{m+1} = s_{m+1}^{m+1} \leq s_j^{m+1}$, implying $u(s_{m+1}^{m+1};t) \geq u(s_j^{m+1};t)$. If h = m, then clearly $u(s_h^{m+1};t) = u(s_m^{m+1};t)$. Suppose h < m. Then, since

 $h = \alpha(t), t \leq \frac{s_h^m + \theta_m}{2}$. But since $s_h^m \leq s_h^{m+1} \leq s_m^{m+1}$ and $\theta_m \leq s_m^{m+1}, \frac{s_h^m + \theta_m}{2} \leq \frac{s_h^{m+1} + s_m^{m+1}}{2}$, implying $u(s_h^{m+1}; t) \geq u(s_m^{m+1}; t)$. Therefore, $U(\hat{v}'; t|\epsilon) \geq U(j, \hat{v}_{-t}; t|\epsilon)$. Second, suppose $m = \ell - 1$. Then, m + 1 is the majority party in \hat{v}' and (j, \hat{v}_{-t}) , and $j = m + 1 = \ell$. Then,

$$U(\hat{v}';t|\epsilon) - U(j,\hat{v}_{-t};t|\epsilon) = \frac{\epsilon}{n} [u(s_h^{m+1};t) - u(s_m^{m+1};t)] \ge 0.$$

Hence, the claim is true. This implies that, if $U(\hat{v};t|\epsilon) \geq U(\hat{v}';t|\epsilon)$ for sufficiently small ϵ , then \hat{v}_t is a robust best response to \hat{v}_{-t} . Thus, it suffices to show that $\hat{\Delta}(t|\epsilon) \geq 0$ for sufficiently small ϵ . But since $t \leq t_M$ and $\hat{\Delta}(t|\epsilon)$ is decreasing in t by Lemma 4, it suffices to show $\hat{\Delta}(t_M|\epsilon) \geq 0$ for sufficiently small ϵ . Suppose $1 < m < \ell - 1$. Then, for every $\epsilon \in [0, 1]$, $\hat{\Delta}(t_M|\epsilon) = \hat{\Delta}(t_M|0) > 0$. Suppose m = 1 or $m = \ell - 1$. Then,

$$\hat{\Delta}(t_M|\epsilon) = (1-\epsilon)\hat{\Delta}(t_M|0) + \epsilon\hat{D}(t_M).$$
⁽²⁹⁾

If $\hat{D}(t_M)$ is nonnegative, then $\hat{\Delta}(t_M|\epsilon) \ge 0$ for every $\epsilon \in [0, 1]$. If $\hat{D}(t_M) < 0$, then $\hat{\Delta}(t_M|\epsilon) \ge 0$ for every $\epsilon \in [0, \frac{\hat{\Delta}(t_M|0)}{\hat{\Delta}(t_M|0) - \hat{D}(t_M)}]$. Therefore, $\hat{v} \in V(T, \theta, q)$.

2. A symmetric argument proves the second statement.

3. Suppose $\hat{\Delta}(t_M|0) = \tilde{\Delta}(t_M|0) = 0$. Again, note that, if $\hat{\Delta}(t_M|\epsilon) \ge 0$ for sufficiently small ϵ , then \hat{v} is a robust equilibrium, and that, if $\tilde{\Delta}(t_M|\epsilon) \ge 0$ for sufficiently small ϵ , then \tilde{v} is a robust equilibrium. If $1 < m < \ell - 1$, then $\hat{\Delta}(t_M|\epsilon) = \hat{\Delta}(t_M|0) = 0$ for every $\epsilon \in [0, 1]$. Thus, \hat{v} is a robust equilibrium. Suppose m = 1. Since $\hat{\Delta}(t_M|0) = 0$, we obtain from (29) that $\hat{\Delta}(t_M|\epsilon) = \epsilon \hat{D}(t_M)$. Similarly, because $\tilde{\Delta}(t_M|0) = 0$, $\tilde{\Delta}(t_M|\epsilon) = \epsilon \tilde{D}(t_M)$. So, it suffices to prove that either $\hat{D}(t_M) \ge 0$ or $\tilde{D}(t_M) \ge 0$.

Note that

$$\hat{\Delta}(t_M|0) = u(\theta_1; t_M) - \frac{1}{n} \sum_{i \in L} b_i(\hat{v}') u(s_i^2; t_M)$$
(30)

and

$$\tilde{\Delta}(t_M|0) = \frac{1}{n} \sum_{i \in L} b_i(\tilde{v}) u(s_i^2; t_M) - u(\theta_1; t_M).$$
(31)

Since $\hat{\Delta}(t_M|0) = \tilde{\Delta}(t_M|0) = 0$, we have

$$\frac{1}{n}\sum_{i\in L}b_i(\hat{v}')u(s_i^2;t_M) = \frac{1}{n}\sum_{i\in L}b_i(\tilde{v})u(s_i^2;t_M) = u(\theta_1;t_M).$$

Then, from (26) and (27), we obtain that

$$\hat{D}(t_M) = \frac{1}{n} \sum_{i \in L} b_i(\hat{v}) u(s_i^1; t_M) - u(\theta_1; t_M)$$
(32)

and

$$\tilde{D}(t_M) = u(\theta_1; t_M) - \frac{1}{n} \sum_{i \in L} b_i(\tilde{v}') u(s_i^1; t_M).$$
(33)

Since $t_M \leq \frac{\theta_1 + \theta_2}{2}$, $u(\theta_1; t_M) \geq u(s_2^2; t_M)$ and, for every $i \geq 3$, $u(\theta_1; t_M) > u(s_i^2; t_M)$. Then since $\hat{\Delta}(t_M|0) = 0$, (30) implies $u(\theta_1; t_M) < u(s_1^2; t_M)$. Then, it must be that $s_1^2 = \underline{x}_2(q) \in (\theta_1, \theta_2)$. Suppose $\underline{x}_2(q) = q$. Then, for every $i \geq 2$, $s_i^1 = q$. And since $u(q; t_M) > u(\theta_1; t_M)$, we conclude $\hat{D}(t_M) > 0$ from (32). This implies $\hat{\Delta}(t_M|\epsilon) \geq 0$ for every $\epsilon \in [0, 1]$. Hence, $\hat{v} \in V(T, \theta, q)$. Now suppose $\underline{x}_2(q) = 2\theta_2 - q$. This implies $q > \theta_2$. Comparing the definitions of \hat{v} and \tilde{v}' , we first conclude that $T_1(\hat{v}) = T_1(\tilde{v}') = \{t_1, \ldots, t_M\}$. Note that, since $q > \theta_2$, $\overline{x}_1(q) = \overline{x}_2(q) = q$, which implied that, for every $i \geq 2$, $s_i^1 = s_i^2$. Consider a voter $t \in [t_{M+1}, \overline{y}_2]$. By the definition of \tilde{v}' , $\tilde{v}'_t = 2$. Since $t \geq t_{M+1} > \overline{y}_1 = \frac{\theta_1 + \theta_2}{2}$, $u(s_1^1; t) = u(\theta_1; t) < u(\theta_2; t) = u(s_2^1; t)$. Since $t \leq \overline{y}_2$, $u(s_2^1; t) = u(s_2^2; t) \geq u(s_3^2; t) = u(s_3^1; t)$. Thus, $\hat{v}_t = \alpha(t) = 2$ as well. Since $s_i^1 = s_i^2$ for every $i \geq 3$, $\alpha(t) = \beta(t)$ for every $i \in L$. Then, from (32) and (33), we conclude that either $\hat{D}(t_M) \geq 0$ or $\tilde{D}(t_M) \geq 0$. Thus, either \hat{v} or \tilde{v} is a robust equilibrium. A symmetric argument proves the statement for the case that $m = \ell - 1$. Lemma 6 $\hat{\Delta}(t_M|0) + \tilde{\Delta}(t_M|0) \ge 0.$

Proof: We consider three mutually exclusive and jointly exhaustive cases.

CASE 1: Assume m = 1.

Note that party 1 is the majority party in \hat{v} and \tilde{v}' , and party 2 is the median party in \hat{v}' and \tilde{v} . Then, by definition,

$$\hat{\Delta}(t_M|0) = u(\theta_1; t_M) - \frac{1}{n} \sum_{i \in L} b_i(\hat{v}') u(s_i^2; t_M)$$
(34)

and

$$\tilde{\Delta}(t_M|0) = \frac{1}{n} \sum_{i \in L} b_i(\tilde{v}) u(s_i^2; t_M) - u(\theta_1; t_M).$$
(35)

By adding (34) and (35), we write

$$\hat{\Delta}(t_M|0) + \tilde{\Delta}(t_M|0) = \frac{1}{n} \sum_{i \in L} [b_i(\tilde{v}) - b_i(\hat{v}')] u(s_i^2; t_M).$$
(36)

From (21), we write

$$\tilde{v}_t = \begin{cases} 2 & \text{if } t \in [t_M, \overline{y}_2], \\ \beta(t) & \text{otherwise.} \end{cases}$$
(37)

Also, from (14) and (22), we write

$$\hat{v}'_t = \begin{cases} 1 & \text{if } t \le t_{M-1} \\ 2 & \text{if } t = t_M \\ \alpha(t) & \text{otherwise.} \end{cases}$$
(38)

Since $t_{M-1} < \frac{\theta_1 + \theta_2}{2}$ and $\theta_1 \leq s_1^2 < s_2^2 = \theta_2$, for every $t \leq t_{M-1}$, $\arg \max\{u(s_i^2; t) | i \in L\} = \{1\}$. Thus, for every $t \leq t_{M-1}$, $\tilde{v}_t = \beta(t) = 1$. For any $t > \overline{y}_2$, clearly $\beta(t) \neq 1$. Thus, $T_1(\tilde{v}) = \{t_1, \ldots, t_{M-1}\}$. Also, since $t_{M+1} > \overline{y}_1$, for any $t \geq t_{M+1}$, $\alpha(t) \neq 1$. So, $T_1(\hat{v}') = \{t_1, \dots, t_{M-1}\}$. Therefore, $b_1(\tilde{v}) = b_1(\hat{v}')$. Then, (36) is reduced to

$$\Delta(t_M|0) + \tilde{\Delta}(t_M|0) = \frac{1}{n} \sum_{i=2}^{\ell} [b_i(\tilde{v}) - b_i(\hat{v}')] u(s_i^2; t_M).$$
(39)

First, suppose $q < \theta_1$. Let $L^- = \{i \in L | \theta_i < 2\theta_1 - q\}$. Suppose $L^- = L$. Then, $s_i^1 = s_i^2 = \theta_i$ for every $i \in L$. Then, $\alpha(t) = 2$ if and only if $t \in (\frac{\theta_1 + \theta_2}{2}, \frac{\theta_2 + \theta_3}{2}] = (\overline{y}_1, \overline{y}_2]$. Since $t_{M+1} > \overline{y}_1$, $T_2(\tilde{v}) = T_2(\hat{v}')$. Also, since $s_i^1 = s_i^2 = \theta_i$ for every $i \in L$, $\alpha(t) = \beta(t)$ for every $t \in L$. Hence, $b_i(\tilde{v}) = b_i(\hat{v}')$ for every $i = 2, \ldots, \ell$. Therefore, $\hat{\Delta}(t_M|0) + \tilde{\Delta}(t_M|0) = 0$. Suppose $L^- \neq L$. Let $\underline{j} = \max L^-$.

Suppose $\underline{j} \ge 2$. For every $t \le \frac{\theta_j + 2\theta_1 - q}{2}$,

$$\alpha(t) = \beta(t) = \min\left(\arg\max\{u(\theta_i; t) | i = 1, \dots, \underline{j}\}\right).$$

For every $t > \frac{\theta_{\underline{j}} + s_{\underline{j}+1}^2}{2}$,

$$\alpha(t) = \beta(t) = \min\left(\arg\max\left\{u(\theta_i; t) | i \in \arg\max\{u(s_j^2; t) | j = \underline{j} + 1, \dots, \ell\}\right\}\right).$$

Let $\tilde{T} = \{t \in T | \frac{\theta_{\underline{j}} + 2\theta_1 - q}{2} < t \le \frac{\theta_{\underline{j}} + s_{\underline{j}+1}^2}{2} \}$. For every $t \in \tilde{T}$, $\hat{v}'_t = \underline{j} + 1$ and $\tilde{v}_t = \underline{j}$. Hence,

$$\hat{\Delta}(t_M|0) + \tilde{\Delta}(t_M|0) = \frac{|\dot{T}|}{n} [u(\theta_{\underline{j}}; t_M) - u(s_{\underline{j}+1}^2; t_M)] \ge 0$$

because $t_M < \theta_{\underline{j}} < s_{\underline{j}+1}^2$.

Suppose $\underline{j} = 1$. Then, for every $t > t_M$,

$$\alpha(t) = \beta(t) = \min\left(\arg\max\left\{u(\theta_i; t) | i \in \arg\max\{u(s_j^2; t) | j = 2, \dots, \ell\}\right\}\right).$$
(40)

This implies that $T_2(\hat{v}') = \{t \in T | t \in [t_M, \overline{y}_2]\}$, and so $b_2(\tilde{v}) = b_2(\hat{v}')$. Also, for every

 $i = 3, \dots, \ell, \ b_i(\hat{v}') = b_i(\tilde{v}).$ Thus, $\hat{\Delta}(t_M|0) + \tilde{\Delta}(t_M|0) = 0.$

Suppose $\theta_1 < q < \theta_2$. Then, for every $i = 2, ..., \ell$, $s_i^1 = q$, which implies that, for every $t > t_M$, (40) is true. Then, $b_2(\tilde{v}) = b_2(\hat{v}) + 1$, and, for every $i = 3, ..., \ell$, $b_i(\hat{v}) = b_i(\tilde{v})$. Thus, $\Delta(t_M|0) + \tilde{\Delta}(t_M|0) = 0$.

Lastly, suppose $q > \theta_2$. Then, for every $i = 2, ..., \ell$, $s_i^1 = s_i^2$. Then, again, for every $t > t_M$, (40) is true, implying $\hat{\Delta}(t_M|0) + \tilde{\Delta}(t_M|0) = 0$.

CASE 2: Assume $m = \ell - 1$. A symmetric argument can prove the statement for this case.

CASE 3: Assume $1 < m < \ell - 1$.

Party m is the median party in \hat{v} and \tilde{v}' , and party m + 1 is the median party in \hat{v}' and \tilde{v} . Then,

$$\hat{\Delta}(t_M|0) = \frac{1}{n} \left(\sum_{i \in L} b_i(\hat{v}) [u(s_i^m; t_M) - u(s_i^{m+1}; t_M)] + u(s_m^{m+1}; t_M) - u(s_{m+1}^{m+1}; t_M) \right)$$
(41)

and

$$\tilde{\Delta}(t_M|0) = \frac{1}{n} \bigg(\sum_{i \in L} b_i(\tilde{v}) [u(s_i^{m+1}; t_M) - u(s_i^m; t_M)] + u(s_{m+1}^m; t_M) - u(s_m^m; t_M) \bigg).$$
(42)

By adding (41) and (42), we obtain

$$\hat{\Delta}(t_M|0) + \tilde{\Delta}(t_M|0) = \frac{1}{n} \bigg(\sum_{i \in L} [b_i(\hat{v}) - b_i(\tilde{v})] [u(s_i^m; t_M) - u(s_i^{m+1}; t_M)] + u(s_m^{m+1}; t_M) - u(s_m^{m+1}; t_M) - u(s_{m+1}^m; t_M) - u(s_m^m; t_M) \bigg).$$
(43)

First, assume $q < \theta_m$. Let $L^- = \{i \in L | \theta_i < 2\theta_m - q\}$. Note that, for every $i \in L^-$, $s_i^m = s_i^{m+1}$. In particular, $m \in L^-$. Also, if $i \notin L^-$, then $s_i^m = 2\theta_m - q$. Then, (43) is reduced

$$\hat{\Delta}(t_M|0) + \tilde{\Delta}(t_M|0) = \frac{1}{n} \bigg(\sum_{i \in L \setminus L^-} [b_i(\hat{v}) - b_i(\tilde{v})] [u(2\theta_m - q; t_M) - u(s_i^{m+1}; t_M)] + u(s_{m+1}^m; t_M) - u(\theta_{m+1}; t_M). \bigg)$$
(44)

Suppose $L^- = L$. Then, $s_{m+1}^m = \theta_{m+1}$, so $\hat{\Delta}(t_M|0) + \tilde{\Delta}(t_M|0) = 0$. Suppose $L^- \neq L$. Let $\underline{j} = \max L^-$. Suppose $\underline{j} \ge m+1$. If $t \le \frac{\theta_{\underline{j}} + 2\theta_m - q}{2}$, then $\hat{v}_t \in L^-$ and $\tilde{v}_t \in L^-$. If $t > \frac{\theta_{\underline{j}} + s_{\underline{j}+1}^{m+1}}{2}$, then

$$\alpha(t) = \beta(t) = \min\left(\arg\max\left\{u(\theta_i; t) | i \in \arg\max\{u(s_j^{m+1}; t) | j = \underline{j} + 1, \dots, \ell\}\right\}\right),\$$

so $\hat{v}_t = \tilde{v}_t$. Let $\tilde{T} = \{t \in T | \frac{\theta_j + 2\theta_m - q}{2} < t \le \frac{\theta_j + s_{j+1}^{m+1}}{2} \}$. For every $t \in \tilde{T}$, $\hat{v}_t = \underline{j} + 1$ and $\tilde{v}_t = \underline{j}$. This implies that for every $i > \underline{j} + 1$, $b_i(\hat{v}) = b_i(\tilde{v})$, and $b_{\underline{j}+1}(\hat{v}) - b_{\underline{j}+1}(\tilde{v}) = |\tilde{T}|$. Then, from (44), we have

$$\hat{\Delta}(t_M|0) + \tilde{\Delta}(t_M|0) = \frac{|\tilde{T}|}{n} \left[u(2\theta_m - q; t_M) - u(s_{\underline{j}+1}^{m+1}; t_M) \right] \ge 0,$$

because $t_M < 2\theta_m - q < s_{\underline{j}+1}^{m+1}$. Now suppose $\underline{j} = m$. For every $t \leq \frac{\theta_{m+1} + s_{m+2}^{m+1}}{2}$, $\alpha(t) \leq m+1$ and $\beta(t) \leq m+1$. For every $t > \frac{\theta_{m+1} + s_{m+2}^{m+1}}{2}$,

$$\alpha(t) = \beta(t) = \min\left(\arg\max\left\{u(\theta_i; t) | i \in \arg\max\{u(s_j^{m+1}; t) | j = m+2, \dots, \ell\}\right\}\right),\$$

so $\hat{v}_t = \tilde{v}_t$. This implies that for every t > m + 1, $T_i(\hat{v}) = T_i(\tilde{v})$, so $b_i(\hat{v}) = b_i(\tilde{v})$. Also, from the strategies, $T_{m+1}(\hat{v}) = \{t \in T | \alpha(t) = m + 1\} = \{t \in T | t_{M+1} \le t \le \overline{y}_{m+1}\}$, and $T_{m+1}(\tilde{v}) = \{t \in T | t_M \le t \le \overline{y}_{m+1}\}$, implying $b_{m+1}(\hat{v}) - b_{m+1}(\tilde{v}) = -1$. Then, from (44), we conclude that $\hat{\Delta}(t_M|0) + \tilde{\Delta}(t_M|0) = 0$.

Second, assume $\theta_m < q < \theta_{m+1}$. Then, for every $i = 1, \ldots, m, s_i^{m+1} = q$, and, for every

to

 $i = m + 1, \dots, \ell, \, s_i^m = q$. Then from (43) we have

$$\hat{\Delta}(t_{M}|0) + \tilde{\Delta}(t_{M}|0) = \frac{1}{n} \bigg(\sum_{i=1}^{m} [b_{i}(\hat{v}) - b_{i}(\tilde{v})] [u_{i}(s_{i}^{m};t_{M}) - u_{i}(q;t_{M})] \\ + \sum_{i=m+1}^{\ell} [b_{i}(\hat{v}) - b_{i}(\tilde{v})] [u_{i}(q;t_{M}) - u_{i}(s_{i}^{m+1};t_{M})] \\ + 2u(q;t_{M}) - u(\theta_{m};t_{M}) - u(\theta_{m+1};t_{M}) \bigg).$$

$$(45)$$

For every $t < \underline{y}_m$,

$$\alpha(t) = \beta(t) = \min\left(\arg\max\left\{u(\theta_i; t) | i \in \arg\max\{u(s_j^m; t) | j = 1, \dots, m-1\}\right\}\right).$$

For every $t > \overline{y}_{m+1}$,

$$\alpha(t) = \beta(t) = \min\left(\arg\max\left\{u(\theta_i; t) | i \in \arg\max\{u(s_j^{m+1}; t) | j = m+2, \dots, \ell\}\right\}\right).$$

Also, for every $t \in [\underline{y}_m, \overline{y}_{m+1}]$, $\{\hat{v}_t, \tilde{v}_t\} = \{m, m+1\}$. Therefore, for every $i \in L \setminus \{m, m+1\}$, $T_i(\hat{v}) = T_i(\tilde{v})$, implying $b_i(\hat{v}) = b_i(\tilde{v})$. Note that $t_{M+1} > \overline{y}_m$. So, $T_m(\hat{v}) = \{t \in T | t \in [\underline{y}_m, t_{M-1}]\}$ and $T_m(\tilde{v}) = \{t \in T | t \in [\underline{y}_m, t_{M-1}]\}$. This implies $b_m(\hat{v}) - b_m(\tilde{v}) = 1$. Also, $T_{m+1}(\hat{v}) = \{t \in T | t \in [t_{m+1}, \overline{y}_{m+1}]\}$ and $T_{m+1}(\tilde{v}) = \{t \in T | t \in [t_M, \overline{y}_{m+1}]\}$, implying $b_{m+1}(\hat{v}) = b_{m+1}(\tilde{v}) = -1$. Then, from (45), we conclude that $\hat{\Delta}(t_M|0) + \tilde{\Delta}(t_M|0) = 0$.

Lastly, assume $q > \theta_{m+1}$. Let $L^+ = \{i \in L | \theta_i > 2\theta_{m+1} - q\}$. Then, for every $i \in L^+$, $s_i^m = s_i^{m+1}$, and in particular $m + 1 \in L^+$. For every $i \notin L^+$, $s_i^{m+1} = 2\theta_{m+1} - q$. Then, we have

$$\hat{\Delta}(t_M|0) + \tilde{\Delta}(t_M|0) = \frac{1}{n} \bigg(\sum_{i \in L \setminus L^+} [b_i(\hat{v}) - b_i(\tilde{v})] [u(s_i^m; t_M) - u(2\theta_{m+1} - q; t_M)] + u(s_m^{m+1}; t_M) - u(\theta_m; t_M) \bigg).$$
(46)

First, if $L^+ = L$, then clearly $\hat{\Delta}(t_M|0) + \tilde{\Delta}(t_M|0) = 0$. Suppose $L^+ \neq L$. Let $\underline{j} = \min L^+$. Suppose $\underline{j} \leq m$. Then, if $t \leq \frac{\theta_{\underline{j}} + s_{\underline{j}-1}^m}{2}$, then $\alpha(t) = \beta(t) \leq \underline{j} - 1$. Let $\tilde{T} = \{t \in T | \frac{\theta_{\underline{j}} + s_{\underline{j}-1}^m}{2} < t \leq \frac{\theta_{\underline{j}} + 2\theta_{m+1} - q}{2}\}$. If $t \in \tilde{T}$, then $\hat{v}_t = \alpha(t) = \underline{j}$ and $\tilde{v}_t = \beta(t) = \underline{j} - 1$. Then, for every $i < \underline{j} - 1$, $b_i(\hat{v}) - b_i(\tilde{v}) = 0$, and $b_{\underline{j}-1}(\hat{v}) - b_{\underline{j}-1}(\tilde{v}) = -|\tilde{T}|$. Then, from (46), we have

$$\hat{\Delta}(t_M|0) + \tilde{\Delta}(t_M|0) = -\frac{|\tilde{T}|}{n} \left[u(s_{\underline{j}-1}^m; t_M) - u(2\theta_{m+1} - q; t_M) \right] \ge 0$$

because $s_{\underline{j}-1}^m > 2\theta_{m+1} - q > \theta_m > t_M$. Suppose $\underline{j} = m + 1$. If $t < \underline{y}_m$, then $\alpha(t) = \beta(t)$. Thus, for every i < m, $b_i(\hat{v}) - b_i(\tilde{v}) = 0$. From the strategies, $T_m(\hat{v}) = \{t \in T | t \in [\underline{y}_m, t_M]\}$ and $T_m(\tilde{v}) = \{t \in T | t \in [\underline{y}_m, t_{M+1}]\}$. So, $b_m(\hat{v}) - b_m(\tilde{v}) = 1$. Then, clearly from (46) $\hat{\Delta}(t_M|0) + \tilde{\Delta}(t_M|0) = 0$.

Lemma 6 implies that either $\hat{\Delta}(t_M|0) > 0$, or $\tilde{\Delta}(t_M|0) > 0$, or $\hat{\Delta}(t_M|0) = \tilde{\Delta}(t_M|0) = 0$. Then, by Lemma 5, either \hat{v} or \tilde{v} is a robust equilibrium of $G(T, \theta, q, 0)$.

Suppose $\hat{v} \in V(T, \theta, q)$. By construction, for every $t \notin [\underline{y}_m, t_M]$, $\hat{v}_t = \alpha(t)$, so \hat{v}_t is strategically sincere in \hat{v} . For any $t \in [\underline{y}_m, t_M]$, $\hat{v}_t = m$, and $m \notin \arg \max\{u(s_i^m; t) | i \in L\}$ if and only if $t > \overline{y}_m$. Therefore, $T \setminus T^*(\hat{v}) = \{t \in T | \overline{y}_m < t \leq t_M\}$. Suppose \tilde{v} is a robust equilibrium. By construction, for every $t \notin [t_M, \overline{y}_{m+1}]$, $\tilde{v}_t = \beta(t)$, so \tilde{v}_t is strategically sincere in \tilde{v} . For any $t \in [t_M, \overline{y}_{m+1}]$, $\tilde{v}_t = m+1$, and $m+1 \notin \arg \max\{u(s_i^{m+1}; t) | i \in L\}$ if and only if $t < \underline{y}_{m+1}$. Therefore, $T \setminus T^*(\tilde{v}) = \{t \in T | t_M \leq t < \underline{y}_{m+1}\}$.

Proof of Proposition 5

Assume that v and v' are strategically sincere robust equilibria of $G(T, \theta, q)$. By Proposition 6, k(v) = k(v') = m. Then, since v and v' are strategically sincere and A2 holds, $b_m(v) = b_m(v') = |X_m|$. If $|X_m| \ge M$, then $\lambda^v = \lambda^{v'}$ as both of them are the degenerate lottery on θ_m . Suppose $|X_m| < M$. Then, for each $x \in \mathbb{R}$,

$$\lambda^{v}(x) = \frac{1}{n} \sum_{\{i \in L \mid s_{i}^{m} = x\}} b_{i}(v) \text{ and } \lambda^{v'}(x) = \frac{1}{n} \sum_{\{i \in L \mid s_{i}^{m} = x\}} b_{i}(v').$$

Since A2 holds, and v and v' are strategically since re, for every x with $\{i \in L | s_i^m = x\} \neq \emptyset$,

$$\frac{1}{n} \sum_{\{i \in L \mid s_i^m = x\}} b_i(v) = \frac{1}{n} \sum_{\{i \in L \mid s_i^m = x\}} b_i(v') = \left| \left\{ t \in T \mid u(x;t) = \max\{u(s_j^m;t) \mid j \in L\} \right\} \right|,$$

which completes the proof.

Proof of Lemma 2

Let $v \in V(T, \theta, q)$ and let $t \in T \setminus T^*(v)$. Let k = k(v) and $i = v_t$. Then, $i \notin \arg \max\{u(s_h^k; t) | h \in L\}$. L. Suppose $i \neq k$. Since L is finite, $\arg \max\{u(s_h^k; t) | h \in L\} \neq \emptyset$. Let $j \in \arg \max\{u(s_h^k; t) | h \in L\}$ and let $v' = (j, v_{-t})$. First, suppose k(v') = k. Then, $p_h(v') = s_h^k$ for every $h \in L$. If k is not the majority party in both v and v', then, for every $\epsilon \in [0, 1]$

$$U(v;t|\epsilon) - U(v';t|\epsilon) = \frac{1}{n} [u(s_i^k;t) - u(s_j^k;t)] < 0,$$

contradicting that v is a robust equilibrium. If k is the majority party in both v and v', then, for every $\epsilon \in (0, 1]$,

$$U(v;t|\epsilon) - U(v';t|\epsilon) = \frac{\epsilon}{n} [u(s_i^k;t) - u(s_j^k;t)] < 0,$$

a contradiction. If k is not the majority party in v, but it is in v', then it must be the case that $b_k(v) = M - 1$ and j = k. Then, for every $\epsilon \in [0, 1]$,

$$U(v;t|\epsilon) - U(v';t|\epsilon) = (1-\epsilon) \left[\sum_{h \in L} \frac{b_h(v)}{n} u(s_h^k;t) - u(s_j^k;t) \right] + \frac{\epsilon}{n} [u(s_i^k;t) - u(s_j^k;t)] < 0,$$

a contradiction.

Secondly, suppose $k(v') \neq k$. Suppose i < k. Then, it must be the case that $\sum_{h=1}^{k} b_h(v) = M$ and j > k. Since j > k, $t \geq \overline{y}_k$. Then, since $s_i^k < s_k^k = \theta_k < t$, we have $u(s_i^k; t) < u(s_k^k; t)$. I also claim that $b_k(v) < M - 1$. To see this, suppose $b_k(v) = M - 1$. Note that $b_i(v) + b_k(v) = M$ and $t \neq t_1$. This implies $v_{t_1} \geq k > 1$. But since $t_1 < \theta_1$, $u(s_1^k; t_1) > u(s_{v_{t_1}}; t_1)$. Also, party k would remain as the median party even after voter t_1 's deviation by voting for party 1. Then, for every $\epsilon \in [0, 1)$, $U(v; t_1 | \epsilon) < U(1, v_{-t_1}; t_1 | \epsilon)$, a contradiction that implies that the claim is true. Then, for every $\epsilon \in [0, 1)$,

$$U(v;t|\epsilon) - U(k,v_{-t};t|\epsilon) = \frac{1}{n} [u(s_i^k;t) - u(s_k^k;t)] < 0,$$

a contradiction. A symmetric argument will lead to a contradiction when i > k.

Proof of Proposition 6

Let v be a strategically sincere robust equilibrium. Let k = k(v). Since v is strategically sincere, for every $t < \underline{y}_k$, $v_t < k$; and for every $t > \overline{y}_k$, $v_t > k$. Then, for k to be decisive, it must be that $t_M \in X_k$. Since $t_M \in [\theta_m, \frac{\theta_m + \theta_{m+1}}{2}]$, either k = m or k = m + 1. Suppose k = m + 1. Then, $t_M = \frac{\theta_m + \theta_{m+1}}{2}$ and $\underline{x}_{m+1}(q) = \theta_m$. Since $s_m^{m+1} = \theta_m$ and $s_{m+1}^{m+1} = \theta_{m+1}$, we have $\max\{u(s_i^{m+1}; t_M) | i \in L\} = u(s_m^{m+1}; t_M) = u(s_{m+1}^{m+1}; t)$, contradicting A2. Thus, k(v) = m.

Proof of Proposition 7

Let $v \in V(T, \theta, q)$. Suppose v is strategically sincere and satisfies C1. Suppose v_t is strategic. Let $j = v_t$ and k = k(v). Suppose $t \in (\underline{y}_k, \overline{y}_k)$, then j = k since v is strategically sincere. By definition, $\frac{\theta_{k-1}+\theta_k}{2} \leq \underline{y}_k$ and $\overline{y}_k \leq \frac{\theta_k+\theta_{k+1}}{2}$. Then, $\arg \max\{u(\theta_h; t)|h \in L\} = \{k\}$, contradicting that v_t is strategic. Thus, either $t \leq \underline{y}_k$ or $t \geq \overline{y}_k$. Suppose $t \leq \underline{y}_k$. Since v is strategically sincere, $j \leq k - 1$. I claim that $p_j(v) = \underline{x}_k(q)$. Suppose not. Then $p_j(v) = \theta_j > \underline{x}_k(q)$. Suppose $t \geq \theta_j$. Since j < k, $p_{j+1}(v) = \theta_{j+1}$. Since v is strategically sincere, $t \in [\theta_j, \frac{\theta_j + \theta_{j+1}}{2}]$, implying v_t is sincere, a contradiction. suppose $t < \theta_j$. If j = 1, clearly arg max $\{u(\theta_h; t) | h \in L\} = \{1\}$. So, v_t is sincere, a contradiction. So, j > 1. Since v is strategically sincere, $t \in [\frac{p_{j-1}(v) + \theta_j}{2}, \theta_j)$. But $p_{j-1}(v) = \max\{\theta_{j-1}, \underline{x}_k(q)\} \geq \theta_{j-1}$, which implies $t \in [\frac{\theta_{j-1} + \theta_j}{2}, \theta_j)$. Thus, v_t is sincere, a contradiction.

Thus, the claim is true, $p_j(v) = \underline{x}_k(q)$, which implies $\theta_j \leq \underline{x}_k(q)$. I now claim that $\theta_{j+1} > \underline{x}_k(q)$. Suppose not. Then, $p_j(v) = p_{j+1}(v) = \underline{x}_k(q)$. By C1, $t \leq \frac{\theta_j + \theta_{j+1}}{2}$. If j = 1, then v_t is sincere, a contradiction. If $j \geq 2$, then $p_{j-1}(v) = \underline{x}_k(q)$. Then, C1 implies that $t \geq \frac{\theta_{j-1} + \theta_j}{2}$. Thus, v_t is sincere, a contradiction. Hence, the claim is true.

Since v is strategically sincere, $t \leq \frac{x_k(q)+\theta_{j+1}}{2}$. If $t \leq \frac{\theta_j+\theta_{j+1}}{2}$, then v_t is sincere. Thus, $\frac{\theta_j+\theta_{j+1}}{2} < t \leq \frac{x_k(q)+\theta_{j+1}}{2} < \theta_{j+1}$. Then, $\arg \max\{u(\theta_h;t)|h \in L\} = \{j+1\}$. Thus, i(t) = j+1, and we have $\theta_j < t < \theta_{i(t)} \leq \theta_k$.

I now prove that $k \ge m$. Suppose $k \le m-1$. Since v is strategically sincere, $\bigcup_{h=1}^{k} T_h(v) \subseteq [t_1, \overline{y}_k]$. But since $\theta_m \le t_M$ and $k \le m-1$, $t_M > \overline{y}_k$. Then $\sum_{h=1}^{k} b_h(v) < M$, contradicting k = k(v). Thus, $k \ge m$. Therefore, $\theta_j < t < \theta_{i(t)} \le \theta_m$. A symmetric argument will prove that when $t \ge \overline{y}_k$, then $\theta_m \le \theta_i(t) < t < \theta_j$.