Voting Equilibria Under Proportional Representation Online Appendix

Seok-ju Cho

Proof of Lemma 1

Let $v_{t}=i$. Take any $j \in L$ and consider profile $\left(j, v_{-t}\right)$. Since t is neither majority-pivotal nor median pivotal, $k\left(j, v_{-t}\right)=k(v)$, and, thus, $p_{h}\left(j, v_{-t}\right)=p_{h}(v)$ for every $h \in L$. Moreover, $k(v)$ is a majority party in $\left(j, v_{-t}\right)$ if and only if it is so in v.

Suppose v_{t} is not strategically sincere for t in v. There exists $j \in L \backslash\{i\}$ such that $u\left(p_{j}(v) ; t\right)>u\left(p_{i}(v) ; t\right)$. Take any $\epsilon \in(0,1)$. From the discussion in the previous paragraph, we conclude that

$$
U\left(j, v_{-t} ; t \mid \epsilon\right)-U\left(v_{t}, v_{-t} ; t \mid \epsilon\right) \geq \frac{\epsilon}{n}\left[u\left(p_{j}(v) ; t\right)-u\left(p_{i}(v) ; t\right)\right]>0
$$

which implies that v_{t} is not a robust best response to v_{-t}.
Suppose v_{t} is strategically sincere for t in v. Then, for every $j \in L, u\left(p_{i}(v) ; t\right) \geq$ $u\left(p_{j}(v) ; t\right)$. Thus,

$$
U\left(v_{t}, v_{-t} ; t \mid \epsilon\right)-U\left(j, v_{-t} ; t \mid \epsilon\right) \geq \frac{\epsilon}{n}\left[u\left(p_{i}(v) ; t\right)-u\left(p_{j}(v) ; t\right)\right] \geq 0
$$

for every $j \in L$ and every $\epsilon \in[0,1)$. Hence, v_{t} is a robust best response to v_{-t}.

Proof of Proposition 1

1. Suppose $\left|X_{m}\right|>M$. Define the voting profile v by the following:

$$
v_{t}= \begin{cases}m & \text { if } t \in X_{m} \tag{9}\\ \min \left(\arg \max \left\{u\left(\theta_{i} ; t\right) \mid i \in \arg \max \left\{u\left(s_{j}^{m} ; t\right) \mid j \in L\right\}\right\}\right) & \text { otherwise }\end{cases}
$$

Since $v_{t}=m$ for every $t \in X_{m}, b_{m}(v)>M$. Thus, $k(v)=m$, and no voter is majorityor median-pivotal. By construction, v is strategically sincere. Lemma 1 then implies that $v \in V(T, \theta, q)$.
2. Let $v \in V(T, \theta, q)$ and $b_{k(v)}(v)>M$. Since $b_{k(v)}(v)>M$, no voter is majority- or median-pivotal. By Lemma $1, v$ is strategically sincere. Suppose $k(v)<m$. Then $t_{M}>\bar{y}_{k}$ which implies $T_{k(v)}(v) \subseteq\left\{t_{1}, \ldots, t_{M-1}\right\}$, contradicting $b_{k(v)}(v)>M$. Suppose $k(v)>m$. Then $t_{M-1}<\underline{y}_{k(v)}$, which implies $T_{k(v)}(v) \subseteq\left\{t_{M}, \ldots, t_{\ell}\right\}$, contradicting $b_{k(v)}(v)>M$. Thus, $k(v)=m$. Since v is strategically sincere, $T_{m}(v) \subseteq X_{m}$. Hence, $\left|X_{m}\right|>M$.

Proof of Proposition 2

Suppose $\left|X_{m}\right|<M-1$ and $\left\{t_{M-1}, t_{M}, t_{M+1}\right\} \subseteq X_{m}$. Let v be as defined in (9). Note that, by definition of $X_{m}, m \in \arg \max \left\{u\left(s_{i}^{m} ; t\right) \mid i \in L\right\}$ if and only if $t \in X_{m}$. Thus, $T_{m}(v)=X_{m}$, implying $T_{m}(v)<M-1$. Also, for every t with $v_{t} \neq m$, either $t<\underline{y}_{m}$ or $t>\bar{y}_{m}$. If $t<\underline{y}_{m}$, then $t<\theta_{m}<s_{i}^{m}$ for every $i>m$. Thus, there is no $i \in L$ such that $i>m$ and $i \in \arg \max \left\{u\left(s_{j}^{m} ; t\right) \mid j \in L\right\}$. Therefore, $v_{t}<m$. Similarly, if $t>\bar{y}_{m}$, then $v_{t}>m$. Then since $\underline{y}_{m} \leq t_{M-1}<t_{M+1} \leq \bar{y}_{m}, \sum_{i=1}^{m-1} b_{i}(v)<M-1$ and $\sum_{i=m+1}^{\ell} b_{i}(v)<M-1$. This implies that $k(v)=m$ and no voter is majority- or median-pivotal. Then, by construction, v is strategically sincere, and, by Lemma $1, v \in V(T, \theta, q)$.

Proof of Proposition 3

1. Assume $\left|X_{m}\right|=M$. Define the voting profile v as in (9). By construction, $T_{m}(v)=X_{m}$ and $T^{*}(v)=T$. We just have to show that $v \in V(T, \theta, q)$. For any $t \in T \backslash X_{m}, t$ is neither majority-pivotal, nor median-pivotal. Thus, by Lemma $1, v_{t}$ is a robust best response. Take any $t \in X_{m}$ and take any $\epsilon \in[0,1]$. Since m is the majority party in v,

$$
\begin{equation*}
U(v ; t \mid \epsilon)=(1-\epsilon) u\left(\theta_{m} ; t\right)+\frac{\epsilon}{n}\left[M u\left(\theta_{m} ; t\right)+\sum_{i \in L \backslash\{m\}} b_{i}(v) u\left(s_{i}^{m} ; t\right)\right] . \tag{10}
\end{equation*}
$$

Consider voter t 's deviation by voting for some $j \neq m$ and let $v^{\prime}=\left(j, v_{-t}\right)$. Since $t_{M-1} \in X_{m}$, $\sum_{i=1}^{m-1} b_{i}(v)<M-1$. Since $t_{M+1} \in X_{m}, \sum_{i=m+1}^{\ell} b_{i}(v)<M-1$. Thus, $k\left(v^{\prime}\right)=m$, implying $p_{i}\left(v^{\prime}\right)=p_{i}(v)=s_{i}^{m}$ for every $i \in L$. Since m is not a majority party in v^{\prime},

$$
\begin{equation*}
U\left(v^{\prime} ; t \mid \epsilon\right)=\frac{1}{n}\left[(M-1) u\left(\theta_{m} ; t\right)+\sum_{i \in L \backslash\{m\}} b_{i}(v) u\left(s_{i}^{m} ; t\right)+u\left(s_{j}^{m} ; t\right)\right] \tag{11}
\end{equation*}
$$

Subtracting (11) from (10), we obtain

$$
\begin{aligned}
U(v ; t \mid \epsilon)-U\left(v^{\prime} ; t \mid \epsilon\right)= & \frac{1-\epsilon}{n}\left[(M-1) u\left(\theta_{m} ; t\right)-\sum_{i \in L \backslash\{m\}} b_{i}(v) u\left(s_{i}^{m} ; t\right)\right] \\
& +\frac{1}{n}\left[u\left(\theta_{m} ; t\right)-u\left(s_{j}^{m} ; t\right)\right] .
\end{aligned}
$$

Since $t \in X_{m}, u\left(\theta_{m} ; t\right) \geq u\left(s_{i}^{m} ; t\right)$ for every $i \in L$. Also, $\sum_{i \in L \backslash\{m\}} b_{i}(v)=M-1$. Hence, $U(v ; t \mid \epsilon) \geq U\left(v^{\prime} ; t \mid \epsilon\right)$. Therefore, v is a robust equilibrium.
2. Assume $\left|X_{m}\right|=M-1$. If $m=1$, then $t_{1} \in X_{m}$, implying $t_{M+1} \notin X_{m}$, a contradiction. If $m=\ell$, then $t_{n} \in X_{m}$, implying $t_{M-1} \notin X_{m}$, a contradiction. Thus, $2 \leq m \leq \ell-1$. Let
$r_{m}=\frac{n-1}{2 n}$. For each $i \in L \backslash\{m\}$, let

$$
r_{i}=\frac{1}{n}\left|\left\{t \in T \backslash X_{m} \mid i=\min \left(\arg \max \left\{u\left(\theta_{i} ; t\right) \mid i \in \arg \max \left\{u\left(s_{j}^{m} ; t\right) \mid j \in L\right\}\right\}\right)\right\}\right|
$$

Note that $\sum_{i \in L} r_{i}=1$. Either $\sum_{i \in L} r_{i} s_{i}^{m} \geq \theta_{m}$ or $\sum_{i \in L} r_{i} s_{i}^{m}<\theta_{m}$. If the former is true, then let $t^{*}=\max \left\{t \in T \mid t<\underline{y}_{m}\right\}$. If the latter is true, then let $t^{*}=\min \left\{t \in T \mid t>\bar{y}_{m}\right\}$. Note that $t^{*} \notin X_{m}$. Define the voting profile v by the following:

$$
v_{t}= \begin{cases}m & \text { if } t \in X_{m} \cup\left\{t^{*}\right\} \tag{12}\\ \min \left(\arg \max \left\{u\left(\theta_{i} ; t\right) \mid i \in \arg \max \left\{u\left(s_{j}^{m} ; t\right) \mid j \in L\right\}\right\}\right) & \text { otherwise. }\end{cases}
$$

Note that $T_{m}(v)=X_{m} \cup\left\{t^{*}\right\}$ and so $\left|T_{m}(v)\right|=M$. By construction, for every $t \in T \backslash\left\{t^{*}\right\}$, v_{t} is strategically sincere in v. For any $t \in T \backslash T_{m}(v), t$ is neither majority-pivotal, nor medianpivotal. So, v_{t} is a robust best response by Lemma 1 . For every $t \in X_{m}$, the argument in the proof of the first statement of Proposition 3 holds true. Lastly, consider voter t^{*} 's deviation by voting for some $j \neq m$, and let $v^{\prime}=\left(j, v_{-t^{*}}\right)$. Since $k\left(v^{\prime}\right)=m, p_{i}\left(v^{\prime}\right)=p_{i}(v)=s_{i}^{m}$ for every $i \in L$. Let

$$
i^{*}=\min \left(\arg \max \left\{u\left(\theta_{i} ; t^{*}\right) \mid i \in \arg \max \left\{u\left(s_{i}^{m} ; t^{*}\right) \mid i \in L\right\}\right\}\right) .
$$

Note that if $j=i^{*}$, then $T_{i}\left(v^{\prime}\right)=n r_{i}$ for every $i \in L$; and that if $j \neq i^{*}$, then $T_{i}\left(v^{\prime}\right)=n r_{i}$ for every $i \in L \backslash\left\{j, i^{*}\right\}, T_{j}\left(v^{\prime}\right)=n r_{j}+1$, and $T_{i^{*}}(v)=n r_{i^{*}}-1$. Take any $\epsilon \in[0,1)$. Then,

$$
\begin{equation*}
\sum_{i \in L} r_{i} u\left(s_{i}^{m} ; t^{*}\right)-U\left(v^{\prime} ; t^{*} \mid \epsilon\right)=\frac{1}{n}\left[u\left(s_{i^{*}}^{m} ; t^{*}\right)-u\left(s_{j}^{m} ; t^{*}\right)\right] \geq 0 \tag{13}
\end{equation*}
$$

since $u\left(s_{i^{*}}^{m} ; t^{*}\right)=\max \left\{u\left(s_{i}^{m} ; t^{*}\right) \mid i \in L\right\}$. Note that, by construction, either $t^{*}<\theta_{m} \leq$ $\sum_{i \in L} r_{i} s_{i}^{m}$ or $\sum_{i \in L} r_{i} s_{i}^{m}<\theta_{m}<t^{*}$. Then, since f is strictly concave, $u\left(\theta_{m} ; t^{*}\right)>\sum_{i \in L} r_{i} u\left(s_{i}^{m} ; t^{*}\right)$.

Then, from (13), we conclude that $u\left(\theta_{m} ; t^{*}\right)>U\left(v^{\prime} ; t^{*} \mid \epsilon\right)$. Then, for sufficiently small ϵ,
$U\left(v ; t^{*} \mid \epsilon\right)-U\left(v^{\prime} ; t^{*} \mid \epsilon\right)=(1-\epsilon)\left[u\left(\theta_{m} ; t^{*}\right)-U\left(v^{\prime} ; t^{*} \mid \epsilon\right)\right]+\epsilon\left[\sum_{i \in L} \frac{b_{i}(v)}{n} u\left(s_{i}^{m} ; t^{*}\right)-U\left(v^{\prime} ; t^{*} \mid \epsilon\right)\right]>0$.
Thus, v is a robust equilibrium of $G(T, \theta, q, 0)$.

Proof of Proposition 4

Assume $\left\{t_{M-1}, t_{M}, t_{M+1}\right\} \nsubseteq X_{m}$. For each $t \in T$, let

$$
\alpha(t)=\min \left(\arg \max \left\{u\left(\theta_{i} ; t\right) \mid i \in \arg \max \left\{u\left(s_{j}^{m+1} ; t\right) \mid j \in \arg \max \left\{u\left(s_{h}^{m} ; t\right) \mid h \in L\right\}\right\}\right\}\right)
$$

and define voting profile \hat{v} by the following.

$$
\hat{v}_{t}= \begin{cases}m & \text { if } t \in\left[\underline{y}_{m}, t_{M}\right] \tag{14}\\ \alpha(t) & \text { otherwise }\end{cases}
$$

Recall that $\theta_{1}<t_{M}<\theta_{\ell}$ and $\theta_{m} \leq t_{M}$. This implies that $m \leq \ell-1$. For every $t>$ $\max \left\{t_{M}, \bar{y}_{m}\right\}, \hat{v}_{t}=\alpha(t) \geq m+1$. If $m=1$, then $\underline{y}_{m}=t_{1}$, so $\left\{t_{1}, \ldots, t_{M}\right\} \subseteq T_{m}(\hat{v})$. Otherwise, for every $t<\underline{y}_{m}, \hat{v}_{t}=\alpha(t) \leq m-1$. Thus, when $m=1$, party m is the majority party, and when $m>1$, party m is the median party. Then, for every $i \in L, p_{i}(\hat{v})=s_{i}^{m}$. For every $\epsilon \in[0,1]$ and every $t \in T$,

$$
\begin{equation*}
U(\hat{v} ; t \mid \epsilon)=(1-\epsilon) u\left(\theta_{1} ; t\right)+\frac{\epsilon}{n} \sum_{i \in L} b_{i}(\hat{v}) u\left(s_{i}^{m} ; t\right) \tag{15}
\end{equation*}
$$

if $m=1$; and

$$
\begin{equation*}
U(\hat{v} ; t \mid \epsilon)=\frac{1}{n} \sum_{i \in L} b_{i}(\hat{v}) u\left(s_{i}^{m} ; t\right) \tag{16}
\end{equation*}
$$

if $m>1$.

The proof will include a series of lemmas. The first lemma shows that, for voters who vote for the median party or any party to the right of the median in profile \hat{v}, a deviation by voting for any party to the left of the median is not profitable.

Lemma 3 Assume $m>1$. For every $t \geq \underline{y}_{m}$ and every $j \leq m-1$, there exists $\bar{\epsilon}>0$ such that $U(\hat{v} ; t \mid \epsilon) \geq U\left(j, \hat{v}_{-t} ; t \mid \epsilon\right)$ for every $\epsilon \in[0, \bar{\epsilon}]$.

Proof: Take any $t \geq \underline{y}_{m}$ and let $h=\hat{v}_{t}$. Note that $h \geq m$. Take any $j \leq m-1$. First, suppose $t_{M-1} \geq \underline{y}_{m}$. Then $\sum_{i=1}^{m-1} b_{i}(\hat{v})<M-1$, implying $k\left(j, \hat{v}_{-t}\right)=m$. Then, for every $\epsilon \in[0,1]$,

$$
\begin{equation*}
U(\hat{v} ; t \mid \epsilon)-U\left(j, \hat{v}_{-t} ; t \mid \epsilon\right)=\frac{1}{n}\left[u\left(s_{h}^{m} ; t\right)-u\left(s_{j}^{m} ; t\right)\right] . \tag{17}
\end{equation*}
$$

If $t \geq t_{M+1}$, then $h=\alpha(t) \in \arg \max \left\{u\left(s_{i}^{m} ; t\right) \mid i \in L\right\}$. So, $u\left(s_{h}^{m} ; t\right) \geq u\left(s_{j}^{m} ; t\right)$, implying (17) is nonnegative. If $t \in\left[\underline{y}_{m}, t_{M}\right]$, then $h=m$. Since $t \geq \underline{y}_{m}=\frac{s_{m-1}^{m}+s_{m}^{m}}{2}, u\left(s_{m}^{m} ; t\right) \geq u\left(s_{j}^{m} ; t\right)$. Thus, (17) is nonnegative.

Now suppose $t_{M-1}<\underline{y}_{m}$. Then, $\sum_{i=1}^{m-1} b_{i}(\hat{v})=M-1$. A1 implies that, for each $i=2, \ldots, \ell,\left(\frac{\theta_{i-1}+\theta_{i}}{2}, \theta_{i}\right) \cap T \neq \emptyset$. Since $t_{M} \geq \theta_{m}$, it must be that $t_{M-1}>\frac{\theta_{m-1}+\theta_{m}}{2}$. Since $\underline{y}_{m}>t_{M-1}, \underline{y}_{m}>\frac{\theta_{m-1}+\theta_{m}}{2}$, which implies $\underline{x}_{m}(q)>\theta_{m-1}$. Then, it must be that $q>\theta_{m-1}$. Since $t_{M-1} \in\left(\frac{\theta_{m-1}+\theta_{m}}{2}, \underline{y}_{m}\right), \alpha\left(t_{M-1}\right)=m-1$, so $b_{m-1}(\hat{v})>0$. This implies that $k\left(j, \hat{v}_{-t}\right)=m-1$, and, so, $p_{i}\left(j, \hat{v}_{-t}\right)=s_{i}^{m-1}$ for every $i \in L$. We consider two cases separately: $m>2$ and $m=2$.

First, suppose $m>2$. Since $t_{1}<\theta_{1}, \alpha\left(t_{1}\right)=1$. So, $b_{1}(\hat{v})>0$, implying $b_{m-1}\left(j, \hat{v}_{-t}\right)<M$. Then, for every $\epsilon \in[0,1]$,

$$
\begin{equation*}
U\left(j, \hat{v}_{-t} ; t \mid \epsilon\right)=\frac{1}{n}\left(\sum_{i \in L} b_{i}(\hat{v}) u\left(s_{i}^{m-1} ; t\right)+\left[u\left(s_{j}^{m-1} ; t\right)-u\left(s_{h}^{m-1} ; t\right)\right]\right) \tag{18}
\end{equation*}
$$

Suppose $q>\theta_{m}$, i.e., $\underline{x}_{m}(q)=2 \theta_{m}-q$. Then, $A\left(j, \hat{v}_{-t}\right)=\left[2 \theta_{m-1}-q, q\right]$. Since $\underline{x}_{m}(q) \in$ $\left(\theta_{m-1}, \theta_{m}\right)$, for every $i \geq m, s_{i}^{m}=s_{i}^{m-1}$. For every $i \leq m-1, s_{i}^{m}=2 \theta_{m}-q>s_{i}^{m-1}$. Since $t \geq t_{M}>2 \theta_{m}-q, u\left(2 \theta_{m}-q ; t\right)>u\left(s_{i}^{m-1} ; t\right)$ for every $i \leq m-1$. Also, since $t>\theta_{m}$,
$s_{j}^{m-1}<2 \theta_{m}-q$, and $s_{h}^{m-1} \in\left[\theta_{m}, q\right]$, it must be the case that $u\left(s_{h}^{m-1} ; t\right)>u\left(s_{j}^{m-1} ; t\right)$. Then,

$$
\begin{aligned}
U(\hat{v} ; t \mid \epsilon)-U\left(j, \hat{v}_{-t} ; t \mid \epsilon\right) & =\frac{1}{n}\left(\sum_{i=1}^{m-1} b_{i}(\hat{v})\left[u\left(2 \theta_{m}-q ; t\right)-u\left(s_{i}^{m-1} ; t\right)\right]+\left[u\left(s_{h}^{m-1} ; t\right)-u\left(s_{j}^{m-1} ; t\right)\right]\right) \\
& >0
\end{aligned}
$$

for every $\epsilon \in[0,1]$. Suppose $q \in\left(\theta_{m-1}, \theta_{m}\right)$. Then, for every $i \geq m, s_{i}^{m-1}=q$, and, for every $i \leq m-1, s_{i}^{m}=q$. Thus, for every $\epsilon \in[0,1]$,

$$
\begin{align*}
U(\hat{v} ; t \mid \epsilon)-U\left(j, \hat{v}_{-t} ; t \mid \epsilon\right)= & \frac{1}{n}\left(\sum_{i=1}^{m-1} b_{i}(\hat{v})\left[u(q ; t)-u\left(s_{i}^{m-1} ; t\right)\right]\right. \tag{19}\\
& \left.+\sum_{i=m}^{\ell} b_{i}(\hat{v})\left[u\left(s_{i}^{m} ; t\right)-u(q ; t)\right]+\left[u(q ; t)-u\left(s_{j}^{m-1} ; t\right)\right]\right)
\end{align*}
$$

Since $s_{i}^{m-1}<q<t, u(q ; t)>u\left(s_{i}^{m-1} ; t\right)$ for every $i \leq m-1$ (including j). Since $t>\theta_{m}$ and $s_{i}^{m} \in\left[\theta_{m}, 2 \theta_{m}-q\right], u\left(s_{i}^{m} ; t\right)>u(q ; t)$ for every $i \geq m$. Thus, (19) is positive.

Now suppose $m=2$. Then, $b_{1}(\hat{v})=M-1$ and $j=1$. Thus, party 1 is the majority party in $\left(j, \hat{v}_{-t}\right)$. Let $C(t)=\frac{1}{n} \sum_{i \in L} b_{i}(\hat{v}) u\left(s_{i}^{m} ; t\right)-u\left(\theta_{1} ; t\right)$ and let

$$
G(t)=\frac{1}{n}\left(\sum_{i \in L} b_{i}(\hat{v}) u\left(s_{i}^{m} ; t\right)-\sum_{i \in L} b_{i}\left(j, \hat{v}_{-t}\right) u\left(s_{i}^{m-1} ; t\right)\right) .
$$

Then, for every $\epsilon \in[0,1]$,

$$
\begin{equation*}
U(\hat{v} ; t \mid \epsilon)-U\left(j, \hat{v}_{-t} ; t \mid \epsilon\right)=(1-\epsilon) C(t)+\epsilon G(t) \tag{20}
\end{equation*}
$$

Note that $t>\theta_{m}, s_{i}^{m} \in\left[\underline{x}_{m}(q), \bar{x}_{m}(q)\right]$, and $\theta_{1}<\underline{x}_{m}(q)$. This implies that $u\left(s_{i}^{m} ; t\right)>u\left(\theta_{1} ; t\right)$ for every $i \in L$. Hence, $C(t)>0$. If $G(t) \geq 0$, then (20) is positive for every $\epsilon \in[0,1]$. If $G(t)<0$, then let $\bar{\epsilon}=\frac{C(t)}{C(t)-G(t)}$. Then, for every $\epsilon \in[0, \bar{\epsilon}], U(\hat{v} ; t \mid \epsilon) \geq U\left(j, \hat{v}_{-t} ; t \mid \epsilon\right)$, which completes the proof of the lemma.

We are ready to prove the first statement of the proposition. Suppose $t_{M+1} \in X_{m}$. Since $\theta_{m} \leq t_{M}<t_{M+1} \leq \bar{y}_{m}, t_{M} \in X_{m}$. Then, it must be the case that $t_{M-1}<\underline{y}_{m}$, implying $m>$ 1. Note that $\left[\underline{y}_{m}, t_{M}\right] \cap T=\left\{t_{M}\right\}$. Since $t_{M} \in X_{m}, \hat{v}_{t_{M}}=m \in \arg \max \left\{u\left(s_{i}^{m} ; t_{M}\right) \mid i \in L\right\}$. Also, by construction, $\hat{v}_{t}=\alpha(t) \in \arg \max \left\{u\left(s_{i}^{m} ; t\right) \mid i \in L\right\}$ for every $t \in T \backslash\left\{t_{M}\right\}$. Thus, \hat{v} is strategically sincere, i.e., $T^{*}(\hat{v})=T$.

I now will show that $\hat{v} \in V(T, \theta, q)$. Since $t_{M+1} \in X_{m}, \hat{v}_{t_{M+1}}=\alpha\left(t_{M+1}\right)=m$. This implies that $\sum_{i=m+1}^{\ell} b_{i}(\hat{v})<M-1$. Then, for every $t \leq t_{M-1}$, voter t is neither majoritypivotal nor median-pivotal. Thus, by Lemma $1, \hat{v}_{t}$ is a robust best response to \hat{v}_{-t} for every $t \leq t_{M-1}$. Take any $t \geq t_{M}$, and consider voter t 's deviation by voting for any $j \neq \hat{v}_{t}$. If $j \geq t_{M}$, the deviation would not change the median party, i.e., $k\left(j, \hat{v}_{-t}\right)=m$. Then, for every $i \in L, p_{i}\left(j, \hat{v}_{-t}\right)=s_{i}^{m}=p_{i}(\hat{v})$. Since $\hat{v}_{t} \in \arg \max \left\{u\left(s_{i}^{m} ; t\right) \mid i \in L\right\}, U(\hat{v} ; t \mid \epsilon) \geq U\left(j, \hat{v}_{-t} ; t \mid \epsilon\right)$ for every $\epsilon \in[0,1]$. Suppose $j \leq m-1$. By Lemma 3, there exists $\bar{\epsilon}>0$ such that $U(\hat{v} ; t \mid \epsilon) \geq U\left(j, \hat{v}_{-t} ; t \mid \epsilon\right)$ for every $\epsilon \in[0, \bar{\epsilon}]$. Thus, $\hat{v} \in V(T, \theta, q)$, which completes the proof of the first statement in Proposition 4.

To prove the second statement, assume $t_{M+1} \notin X_{m}$. Let

$$
\beta(t)=\min \left(\arg \max \left\{u\left(\theta_{i} ; t\right) \mid i \in \arg \max \left\{u\left(s_{j}^{m} ; t\right) \mid j \in \arg \max \left\{u\left(s_{h}^{m+1} ; t\right) \mid h \in L\right\}\right\}\right\}\right) .
$$

Define voting profile \tilde{v} by

$$
\tilde{v}_{t}= \begin{cases}m+1 & \text { if } t \in\left[t_{M}, \bar{y}_{m+1}\right] \tag{21}\\ \beta(t) & \text { otherwise }\end{cases}
$$

I will prove that either \hat{v} or \tilde{v} is a robust voting equilibrium of $G(T, \theta, q, 0)$. Define voting profiles \hat{v}^{\prime} and \tilde{v}^{\prime} by the following.

$$
\hat{v}_{t}^{\prime}= \begin{cases}m+1 & \text { if } t=t_{M} \tag{22}\\ \hat{v}_{t} & \text { otherwise }\end{cases}
$$

and

$$
\tilde{v}_{t}^{\prime}= \begin{cases}m & \text { if } t=t_{M} \tag{23}\\ \tilde{v}_{t} & \text { otherwise }\end{cases}
$$

That is, \hat{v}^{\prime} is the voting profile in which the median voter unilaterally deviates from \hat{v} by voting for $m+1$, and \tilde{v}^{\prime} is the voting profile in which the median voter unilaterally deviates from \tilde{v} by voting for m. For each $t \in T$ and each $\epsilon \in[0,1]$, let $\hat{\Delta}(t \mid \epsilon)=U(\hat{v} ; t \mid \epsilon)-U\left(\hat{v}^{\prime} ; t \mid \epsilon\right)$ and $\tilde{\Delta}(t \mid \epsilon)=U(\tilde{v} ; t \mid \epsilon)-U\left(\tilde{v}^{\prime} ; t \mid \epsilon\right)$.

Note that, for every $t \leq \underline{y}_{m}, \alpha(t) \leq m$. Also, since $t_{M+1} \geq \bar{y}_{m}$, for every $t \geq t_{M+1}$, $\alpha(t) \geq m+1$. Thus,

$$
\begin{equation*}
\sum_{i=1}^{m} b_{i}(\hat{v})=M \quad \text { and } \quad \sum_{i=1}^{m} b_{i}\left(\hat{v}^{\prime}\right)=M-1 . \tag{24}
\end{equation*}
$$

Since $t_{M-1}<\frac{\theta_{m}+\theta_{m+1}}{2} \leq \frac{s_{m}^{m+1}+s_{m+1}^{m+1}}{2}, \beta(t) \leq m$ for every $t \leq t_{M-1}$. Clearly, for every $t \geq \bar{y}_{m+1}$, $\beta(t) \geq m+1$. Hence,

$$
\begin{equation*}
\sum_{i=1}^{m} b_{i}(\tilde{v})=M-1 \quad \text { and } \quad \sum_{i=1}^{m} b_{i}\left(\tilde{v}^{\prime}\right)=M \tag{25}
\end{equation*}
$$

An implication of (24) and (25) is that $k(\hat{v})=k\left(\tilde{v}^{\prime}\right)=m$ and $k\left(\hat{v}^{\prime}\right)=k(\tilde{v})=m+1$. Thus, for every $i \in L, p_{i}(\hat{v})=p_{i}\left(\tilde{v}^{\prime}\right)=s_{i}^{m}$ and $p_{i}\left(\hat{v}^{\prime}\right)=p_{i}(\tilde{v})=s_{i}^{m+1}$. I now present a series of lemmas.

Lemma 4 For each given $\epsilon \in[0,1], \hat{\Delta}(t \mid \epsilon)$ is decreasing in t and $\tilde{\Delta}(t \mid \epsilon)$ is increasing in t.

Proof: For each $t \in T$, let

$$
\begin{equation*}
\hat{D}(t)=\frac{1}{n}\left[\sum_{i \in L} b_{i}(\hat{v}) u\left(s_{i}^{m} ; t\right)-\sum_{i \in L} b_{i}\left(\hat{v}^{\prime}\right) u\left(s_{i}^{m+1} ; t\right)\right] \tag{26}
\end{equation*}
$$

and

$$
\begin{equation*}
\tilde{D}(t)=\frac{1}{n}\left[\sum_{i \in L} b_{i}(\tilde{v}) u\left(s_{i}^{m+1} ; t\right)-\sum_{i \in L} b_{i}\left(\tilde{v}^{\prime}\right) u\left(s_{i}^{m} ; t\right)\right] \tag{27}
\end{equation*}
$$

I first claim \hat{D} is decreasing and \tilde{D} is increasing in t. Since \hat{v} and \hat{v}^{\prime} differ only in that $\hat{v}_{t_{M}}=m$ and $\hat{v}_{t_{M}}^{\prime}=m+1$, we write

$$
\begin{align*}
\hat{D}(t) & =\frac{1}{n}\left(\sum_{i \in L} b_{i}(\hat{v})\left[u\left(s_{i}^{m} ; t\right)-u\left(s_{i}^{m+1} ; t\right)\right]+\left[u\left(s_{m}^{m+1} ; t\right)-u\left(s_{m+1}^{m+1} ; t\right)\right]\right) \\
& =\frac{1}{n}\left(\sum_{i \in L} b_{i}(\hat{v})\left[f\left(\left|s_{i}^{m}-t\right|\right)-f\left(\left|s_{i}^{m+1}-t\right|\right)\right]+\left[f\left(\left|s_{m}^{m+1}-t\right|\right)-f\left(\left|s_{m+1}^{m+1}-t\right|\right)\right]\right) \tag{28}
\end{align*}
$$

Note that, for each $i \in L, s_{i}^{m} \leq s_{i}^{m+1}$ and $s_{m}^{m+1} \leq s_{m+1}^{m+1}$. Then, since f is decreasing and concave, for each $i \in L, f\left(\left|s_{i}^{m}-t\right|\right)-f\left(\left|s_{i}^{m+1}-t\right|\right)$ is decreasing in t and $f\left(\left|s_{m}^{m+1}-t\right|\right)-$ $f\left(\left|s_{m+1}^{m+1}-t\right|\right)$ is decreasing in t. Hence \hat{D} is decreasing in t. A symmetric argument proves that \tilde{D} is increasing in t.

Let $\epsilon \in[0,1]$. First, suppose that $b_{m}(\hat{v})<M$ and $b_{m+1}\left(\hat{v}^{\prime}\right)<M$. Then, $\hat{\Delta}(t \mid \epsilon)=\hat{D}(t)$, implying $\hat{\Delta}(t \mid \epsilon)$ is decreasing in t. Second, suppose $b_{m}(\hat{v})=M$. Since $t_{1}<\theta_{1}, \hat{v}_{t_{1}}=1$. This, together with (24), implies that $m=1$. Since $t_{n} \geq \theta_{\ell}, \hat{v}_{t_{n}}=\ell$, implying $b_{m+1}\left(\hat{v}^{\prime}\right)<M$. Then,

$$
\hat{\Delta}(t \mid \epsilon)=(1-\epsilon)\left[u\left(\theta_{1} ; t\right)-\frac{1}{n} \sum_{i \in L} b_{i}\left(\hat{v}^{\prime}\right) u\left(s_{i}^{m+1} ; t\right)\right]+\epsilon \hat{D}(t) .
$$

But since $\theta_{1} \leq s_{i}^{m+1}$ for every $i \in L$, the expression in the square bracket is decreasing in t. Thus, $\hat{\Delta}(t \mid \epsilon)$ is decreasing in t. Lastly, suppose $b_{m+1}\left(\hat{v}^{\prime}\right)=M$. Again since $\hat{v}_{t_{n}}=\hat{v}_{t_{n}}^{\prime}=\ell$, it must be the case that $m+1=\ell$. Then since $\hat{v}_{t_{1}}=1, b_{m}(\hat{v})<M-1$. Then,

$$
\hat{\Delta}(t \mid \epsilon)=(1-\epsilon)\left[\frac{1}{n} \sum_{i \in L} b_{i}(\hat{v}) u\left(s_{i}^{m} ; t\right)-u\left(\theta_{\ell} ; t\right)\right]+\epsilon \hat{D}(t) .
$$

But since $s_{i}^{m} \leq \theta_{\ell}$ for every $i \in L$, the expression in the square bracket is decreasing in t. Thus, $\hat{\Delta}(t \mid \epsilon)$ is decreasing in t. A symmetric argument proves $\tilde{\Delta}(t \mid \epsilon)$ is increasing in t.

Lemma 5 The following is true.

1. If $\hat{\Delta}\left(t_{M} \mid 0\right)>0$, then \hat{v} is a robust equilibrium of $G(T, \theta, q, 0)$.
2. If $\tilde{\Delta}\left(t_{M} \mid 0\right)>0$, then \tilde{v} is a robust equilibrium of $G(T, \theta, q, 0)$.
3. If $\hat{\Delta}\left(t_{M} \mid 0\right)=\tilde{\Delta}\left(t_{M} \mid 0\right)=0$, then either \hat{v} or \tilde{v} is a robust equilibrium of $G(T, \theta, q, 0)$.

Proof: 1. Suppose $\hat{\Delta}\left(t_{M}\right)>0$. Take any $t \in T$, and let $h=\hat{v}_{t}$. Assume $t \geq t_{M+1}$ and notice that $\hat{v}_{t} \geq m+1$. Consider voter t 's deviation by voting for j. Suppose $j \geq m$. Then the deviation does not change the majority or the median status of party m. Since $h \in \arg \max \left\{u\left(s_{i}^{m} ; t\right) \mid i \in L\right\}, U(\hat{v} ; t \mid \epsilon) \geq U\left(j, \hat{v}_{-t} ; t \mid \epsilon\right)$ for every $\epsilon \in[0,1]$. Suppose $j \leq m-1$. Then, by Lemma $3, U(\hat{v} ; t \mid \epsilon) \geq U\left(j, \hat{v}_{-t} ; t \mid \epsilon\right)$ for sufficiently small ϵ. Thus, \hat{v}_{t} is a robust best response to \hat{v}_{-t}.

Assume $t \leq t_{M}$. Again, consider voter t 's deviation from \hat{v} by voting for any $j \neq h$, i.e., we consider the profile $\left(j, \hat{v}_{-t}\right)$. If $j \leq m$, then the deviation would not change the identity of the median or majority party. So, $k\left(j, \hat{v}_{-t}\right)=k(\hat{v})=m$, and, for every $i \in L, p_{i}\left(j, \hat{v}_{-t}\right)=$ $p_{i}(\hat{v})=s_{i}^{m}$ And since, by construction, $h \in \arg \max \left\{u\left(s_{i}^{m} ; t\right) \mid i \leq m\right\}, U\left(j, \hat{v}_{-t} ; t \mid \epsilon\right) \leq U(\hat{v} ; t \mid \epsilon)$ for every $\epsilon \in[0,1]$.

Now suppose $j \geq m+1$. Then $k\left(j, \hat{v}_{-t}\right)=m+1$ and $p_{i}\left(j, \hat{v}_{-t}\right)=s_{i}^{m+1}$ for every $i \in L$. Note that the only possible difference between \hat{v}^{\prime} and $\left(j, \hat{v}_{-t}\right)$ is that, in $\left(j, \hat{v}_{-t}\right)$, one vote for h in \hat{v} is transferred to j, and, in \hat{v}^{\prime}, one vote for m is transferred to $m+1$. I claim $U\left(\hat{v}^{\prime} ; t \mid \epsilon\right) \geq U\left(j, \hat{v}_{-t} ; t \mid \epsilon\right)$ for every $\epsilon \in[0,1]$. To see this, first, suppose $m<\ell-1$. Then, there is no majority party in \hat{v}^{\prime} or $\left(j, \hat{v}_{-t}\right)$. So, for every $\epsilon \in[0,1]$,

$$
U\left(\hat{v}^{\prime} ; t \mid \epsilon\right)-U\left(j, \hat{v}_{-t} ; t \mid \epsilon\right)=\frac{1}{n}\left(\left[u\left(s_{m+1}^{m+1} ; t\right)-u\left(s_{j}^{m+1} ; t\right)\right]+\left[u\left(s_{h}^{m+1} ; t\right)-u\left(s_{m}^{m+1} ; t\right)\right]\right) .
$$

Since $t \leq t_{M}$ and $m+1 \leq j$, we have $t<\theta_{m+1}=s_{m+1}^{m+1} \leq s_{j}^{m+1}$, implying $u\left(s_{m+1}^{m+1} ; t\right) \geq$ $u\left(s_{j}^{m+1} ; t\right)$. If $h=m$, then clearly $u\left(s_{h}^{m+1} ; t\right)=u\left(s_{m}^{m+1} ; t\right)$. Suppose $h<m$. Then, since
$h=\alpha(t), t \leq \frac{s_{h}^{m}+\theta_{m}}{2}$. But since $s_{h}^{m} \leq s_{h}^{m+1} \leq s_{m}^{m+1}$ and $\theta_{m} \leq s_{m}^{m+1}, \frac{s_{h}^{m}+\theta_{m}}{2} \leq \frac{s_{h}^{m+1}+s_{m}^{m+1}}{2}$, implying $u\left(s_{h}^{m+1} ; t\right) \geq u\left(s_{m}^{m+1} ; t\right)$. Therefore, $U\left(\hat{v}^{\prime} ; t \mid \epsilon\right) \geq U\left(j, \hat{v}_{-t} ; t \mid \epsilon\right)$. Second, suppose $m=\ell-1$. Then, $m+1$ is the majority party in \hat{v}^{\prime} and $\left(j, \hat{v}_{-t}\right)$, and $j=m+1=\ell$. Then,

$$
U\left(\hat{v}^{\prime} ; t \mid \epsilon\right)-U\left(j, \hat{v}_{-t} ; t \mid \epsilon\right)=\frac{\epsilon}{n}\left[u\left(s_{h}^{m+1} ; t\right)-u\left(s_{m}^{m+1} ; t\right)\right] \geq 0
$$

Hence, the claim is true. This implies that, if $U(\hat{v} ; t \mid \epsilon) \geq U\left(\hat{v}^{\prime} ; t \mid \epsilon\right)$ for sufficiently small ϵ, then \hat{v}_{t} is a robust best response to \hat{v}_{-t}. Thus, it suffices to show that $\hat{\Delta}(t \mid \epsilon) \geq 0$ for sufficiently small ϵ. But since $t \leq t_{M}$ and $\hat{\Delta}(t \mid \epsilon)$ is decreasing in t by Lemma 4 , it suffices to show $\hat{\Delta}\left(t_{M} \mid \epsilon\right) \geq 0$ for sufficiently small ϵ. Suppose $1<m<\ell-1$. Then, for every $\epsilon \in[0,1]$, $\hat{\Delta}\left(t_{M} \mid \epsilon\right)=\hat{\Delta}\left(t_{M} \mid 0\right)>0$. Suppose $m=1$ or $m=\ell-1$. Then,

$$
\begin{equation*}
\hat{\Delta}\left(t_{M} \mid \epsilon\right)=(1-\epsilon) \hat{\Delta}\left(t_{M} \mid 0\right)+\epsilon \hat{D}\left(t_{M}\right) \tag{29}
\end{equation*}
$$

If $\hat{D}\left(t_{M}\right)$ is nonnegative, then $\hat{\Delta}\left(t_{M} \mid \epsilon\right) \geq 0$ for every $\epsilon \in[0,1]$. If $\hat{D}\left(t_{M}\right)<0$, then $\hat{\Delta}\left(t_{M} \mid \epsilon\right) \geq$ 0 for every $\epsilon \in\left[0, \frac{\hat{\Delta}\left(t_{M} \mid 0\right)}{\Delta\left(t_{M} \mid 0\right)-\hat{D}\left(t_{M}\right)}\right]$. Therefore, $\hat{v} \in V(T, \theta, q)$.
2. A symmetric argument proves the second statement.
3. Suppose $\hat{\Delta}\left(t_{M} \mid 0\right)=\tilde{\Delta}\left(t_{M} \mid 0\right)=0$. Again, note that, if $\hat{\Delta}\left(t_{M} \mid \epsilon\right) \geq 0$ for sufficiently small ϵ, then \hat{v} is a robust equilibrium, and that, if $\tilde{\Delta}\left(t_{M} \mid \epsilon\right) \geq 0$ for sufficiently small ϵ, then \tilde{v} is a robust equilibrium. If $1<m<\ell-1$, then $\hat{\Delta}\left(t_{M} \mid \epsilon\right)=\hat{\Delta}\left(t_{M} \mid 0\right)=0$ for every $\epsilon \in[0,1]$. Thus, \hat{v} is a robust equilibrium. Suppose $m=1$. Since $\hat{\Delta}\left(t_{M} \mid 0\right)=0$, we obtain from (29) that $\hat{\Delta}\left(t_{M} \mid \epsilon\right)=\epsilon \hat{D}\left(t_{M}\right)$. Similarly, because $\tilde{\Delta}\left(t_{M} \mid 0\right)=0, \tilde{\Delta}\left(t_{M} \mid \epsilon\right)=\epsilon \tilde{D}\left(t_{M}\right)$. So, it suffices to prove that either $\hat{D}\left(t_{M}\right) \geq 0$ or $\tilde{D}\left(t_{M}\right) \geq 0$.

Note that

$$
\begin{equation*}
\hat{\Delta}\left(t_{M} \mid 0\right)=u\left(\theta_{1} ; t_{M}\right)-\frac{1}{n} \sum_{i \in L} b_{i}\left(\hat{v}^{\prime}\right) u\left(s_{i}^{2} ; t_{M}\right) \tag{30}
\end{equation*}
$$

and

$$
\begin{equation*}
\tilde{\Delta}\left(t_{M} \mid 0\right)=\frac{1}{n} \sum_{i \in L} b_{i}(\tilde{v}) u\left(s_{i}^{2} ; t_{M}\right)-u\left(\theta_{1} ; t_{M}\right) . \tag{31}
\end{equation*}
$$

Since $\hat{\Delta}\left(t_{M} \mid 0\right)=\tilde{\Delta}\left(t_{M} \mid 0\right)=0$, we have

$$
\frac{1}{n} \sum_{i \in L} b_{i}\left(\hat{v}^{\prime}\right) u\left(s_{i}^{2} ; t_{M}\right)=\frac{1}{n} \sum_{i \in L} b_{i}(\tilde{v}) u\left(s_{i}^{2} ; t_{M}\right)=u\left(\theta_{1} ; t_{M}\right) .
$$

Then, from (26) and (27), we obtain that

$$
\begin{equation*}
\hat{D}\left(t_{M}\right)=\frac{1}{n} \sum_{i \in L} b_{i}(\hat{v}) u\left(s_{i}^{1} ; t_{M}\right)-u\left(\theta_{1} ; t_{M}\right) \tag{32}
\end{equation*}
$$

and

$$
\begin{equation*}
\tilde{D}\left(t_{M}\right)=u\left(\theta_{1} ; t_{M}\right)-\frac{1}{n} \sum_{i \in L} b_{i}\left(\tilde{v}^{\prime}\right) u\left(s_{i}^{1} ; t_{M}\right) . \tag{33}
\end{equation*}
$$

Since $t_{M} \leq \frac{\theta_{1}+\theta_{2}}{2}, u\left(\theta_{1} ; t_{M}\right) \geq u\left(s_{2}^{2} ; t_{M}\right)$ and, for every $i \geq 3, u\left(\theta_{1} ; t_{M}\right)>u\left(s_{i}^{2} ; t_{M}\right)$. Then since $\hat{\Delta}\left(t_{M} \mid 0\right)=0$, (30) implies $u\left(\theta_{1} ; t_{M}\right)<u\left(s_{1}^{2} ; t_{M}\right)$. Then, it must be that $s_{1}^{2}=$ $\underline{x}_{2}(q) \in\left(\theta_{1}, \theta_{2}\right)$. Suppose $\underline{x}_{2}(q)=q$. Then, for every $i \geq 2, s_{i}^{1}=q$. And since $u\left(q ; t_{M}\right)>$ $u\left(\theta_{1} ; t_{M}\right)$, we conclude $\hat{D}\left(t_{M}\right)>0$ from (32). This implies $\hat{\Delta}\left(t_{M} \mid \epsilon\right) \geq 0$ for every $\epsilon \in[0,1]$. Hence, $\hat{v} \in V(T, \theta, q)$. Now suppose $\underline{x}_{2}(q)=2 \theta_{2}-q$. This implies $q>\theta_{2}$. Comparing the definitions of \hat{v} and \tilde{v}^{\prime}, we first conclude that $T_{1}(\hat{v})=T_{1}\left(\tilde{v}^{\prime}\right)=\left\{t_{1}, \ldots, t_{M}\right\}$. Note that, since $q>\theta_{2}, \bar{x}_{1}(q)=\bar{x}_{2}(q)=q$, which implied that, for every $i \geq 2, s_{i}^{1}=s_{i}^{2}$. Consider a voter $t \in\left[t_{M+1}, \bar{y}_{2}\right]$. By the definition of $\tilde{v}^{\prime}, \tilde{v}_{t}^{\prime}=2$. Since $t \geq t_{M+1}>\bar{y}_{1}=\frac{\theta_{1}+\theta_{2}}{2}$, $u\left(s_{1}^{1} ; t\right)=u\left(\theta_{1} ; t\right)<u\left(\theta_{2} ; t\right)=u\left(s_{2}^{1} ; t\right)$. Since $t \leq \bar{y}_{2}, u\left(s_{2}^{1} ; t\right)=u\left(s_{2}^{2} ; t\right) \geq u\left(s_{3}^{2} ; t\right)=u\left(s_{3}^{1} ; t\right)$. Thus, $\hat{v}_{t}=\alpha(t)=2$ as well. Since $s_{i}^{1}=s_{i}^{2}$ for every $i \geq 3, \alpha(t)=\beta(t)$ for every $t>\bar{y}_{2}$. Thus, we conclude that $\hat{v}_{t}=\tilde{v}_{t}^{\prime}$ for every $t \in T$, which implies $b_{i}(\hat{v})=b_{i}\left(\tilde{v}^{\prime}\right)$ for every $i \in L$. Then, from (32) and (33), we conclude that either $\hat{D}\left(t_{M}\right) \geq 0$ or $\tilde{D}\left(t_{M}\right) \geq 0$. Thus, either \hat{v} or \tilde{v} is a robust equilibrium. A symmetric argument proves the statement for the case that $m=\ell-1$.

Lemma $6 \hat{\Delta}\left(t_{M} \mid 0\right)+\tilde{\Delta}\left(t_{M} \mid 0\right) \geq 0$.

Proof: We consider three mutually exclusive and jointly exhaustive cases.
CASE 1: Assume $m=1$.
Note that party 1 is the majority party in \hat{v} and \tilde{v}^{\prime}, and party 2 is the median party in \hat{v}^{\prime} and \tilde{v}. Then, by definition,

$$
\begin{equation*}
\hat{\Delta}\left(t_{M} \mid 0\right)=u\left(\theta_{1} ; t_{M}\right)-\frac{1}{n} \sum_{i \in L} b_{i}\left(\hat{v}^{\prime}\right) u\left(s_{i}^{2} ; t_{M}\right) \tag{34}
\end{equation*}
$$

and

$$
\begin{equation*}
\tilde{\Delta}\left(t_{M} \mid 0\right)=\frac{1}{n} \sum_{i \in L} b_{i}(\tilde{v}) u\left(s_{i}^{2} ; t_{M}\right)-u\left(\theta_{1} ; t_{M}\right) . \tag{35}
\end{equation*}
$$

By adding (34) and (35), we write

$$
\begin{equation*}
\hat{\Delta}\left(t_{M} \mid 0\right)+\tilde{\Delta}\left(t_{M} \mid 0\right)=\frac{1}{n} \sum_{i \in L}\left[b_{i}(\tilde{v})-b_{i}\left(\hat{v}^{\prime}\right)\right] u\left(s_{i}^{2} ; t_{M}\right) \tag{36}
\end{equation*}
$$

From (21), we write

$$
\tilde{v}_{t}= \begin{cases}2 & \text { if } t \in\left[t_{M}, \bar{y}_{2}\right] \tag{37}\\ \beta(t) & \text { otherwise }\end{cases}
$$

Also, from (14) and (22), we write

$$
\hat{v}_{t}^{\prime}= \begin{cases}1 & \text { if } t \leq t_{M-1} \tag{38}\\ 2 & \text { if } t=t_{M} \\ \alpha(t) & \text { otherwise }\end{cases}
$$

Since $t_{M-1}<\frac{\theta_{1}+\theta_{2}}{2}$ and $\theta_{1} \leq s_{1}^{2}<s_{2}^{2}=\theta_{2}$, for every $t \leq t_{M-1}$, $\arg \max \left\{u\left(s_{i}^{2} ; t\right) \mid i \in\right.$ $L\}=\{1\}$. Thus, for every $t \leq t_{M-1}, \tilde{v}_{t}=\beta(t)=1$. For any $t>\bar{y}_{2}$, clearly $\beta(t) \neq 1$. Thus, $T_{1}(\tilde{v})=\left\{t_{1}, \ldots, t_{M-1}\right\}$. Also, since $t_{M+1}>\bar{y}_{1}$, for any $t \geq t_{M+1}, \alpha(t) \neq 1$. So,
$T_{1}\left(\hat{v}^{\prime}\right)=\left\{t_{1}, \ldots, t_{M-1}\right\}$. Therefore, $b_{1}(\tilde{v})=b_{1}\left(\hat{v}^{\prime}\right)$. Then, (36) is reduced to

$$
\begin{equation*}
\Delta\left(t_{M} \mid 0\right)+\tilde{\Delta}\left(t_{M} \mid 0\right)=\frac{1}{n} \sum_{i=2}^{\ell}\left[b_{i}(\tilde{v})-b_{i}\left(\hat{v}^{\prime}\right)\right] u\left(s_{i}^{2} ; t_{M}\right) . \tag{39}
\end{equation*}
$$

First, suppose $q<\theta_{1}$. Let $L^{-}=\left\{i \in L \mid \theta_{i}<2 \theta_{1}-q\right\}$. Suppose $L^{-}=L$. Then, $s_{i}^{1}=s_{i}^{2}=\theta_{i}$ for every $i \in L$. Then, $\alpha(t)=2$ if and only if $t \in\left(\frac{\theta_{1}+\theta_{2}}{2}, \frac{\theta_{2}+\theta_{3}}{2}\right]=\left(\bar{y}_{1}, \bar{y}_{2}\right]$. Since $t_{M+1}>\bar{y}_{1}, T_{2}(\tilde{v})=T_{2}\left(\hat{v}^{\prime}\right)$. Also, since $s_{i}^{1}=s_{i}^{2}=\theta_{i}$ for every $i \in L, \alpha(t)=\beta(t)$ for every $t \in L$. Hence, $b_{i}(\tilde{v})=b_{i}\left(\hat{v}^{\prime}\right)$ for every $i=2, \ldots, \ell$. Therefore, $\hat{\Delta}\left(t_{M} \mid 0\right)+\tilde{\Delta}\left(t_{M} \mid 0\right)=0$. Suppose $L^{-} \neq L$. Let $\underline{j}=\max L^{-}$.

Suppose $\underline{j} \geq 2$. For every $t \leq \frac{\theta_{\dot{j}}+2 \theta_{1}-q}{2}$,

$$
\alpha(t)=\beta(t)=\min \left(\arg \max \left\{u\left(\theta_{i} ; t\right) \mid i=1, \ldots, \underline{j}\right\}\right) .
$$

For every $t>\frac{\theta_{j}+s_{j+1}^{2}}{2}$,

$$
\alpha(t)=\beta(t)=\min \left(\arg \max \left\{u\left(\theta_{i} ; t\right) \mid i \in \arg \max \left\{u\left(s_{j}^{2} ; t\right) \mid j=\underline{j}+1, \ldots, \ell\right\}\right\}\right)
$$

Let $\tilde{T}=\left\{t \in T \left\lvert\, \frac{\underline{\theta_{j}}+2 \theta_{1}-q}{2}<t \leq \frac{\theta_{\underline{j}}+s_{\underline{j}+1}^{2}}{2}\right.\right\}$. For every $t \in \tilde{T}, \hat{v}_{t}^{\prime}=\underline{j}+1$ and $\tilde{v}_{t}=\underline{j}$. Hence,

$$
\hat{\Delta}\left(t_{M} \mid 0\right)+\tilde{\Delta}\left(t_{M} \mid 0\right)=\frac{|\tilde{T}|}{n}\left[u\left(\theta_{\underline{j}} ; t_{M}\right)-u\left(s_{\underline{j}+1}^{2} ; t_{M}\right)\right] \geq 0
$$

because $t_{M}<\theta_{\underline{j}}<s_{\underline{j}+1}^{2}$.
Suppose $\underline{j}=1$. Then, for every $t>t_{M}$,

$$
\begin{equation*}
\alpha(t)=\beta(t)=\min \left(\arg \max \left\{u\left(\theta_{i} ; t\right) \mid i \in \arg \max \left\{u\left(s_{j}^{2} ; t\right) \mid j=2, \ldots, \ell\right\}\right\}\right) . \tag{40}
\end{equation*}
$$

This implies that $T_{2}\left(\hat{v}^{\prime}\right)=\left\{t \in T \mid t \in\left[t_{M}, \bar{y}_{2}\right]\right\}$, and so $b_{2}(\tilde{v})=b_{2}\left(\hat{v}^{\prime}\right)$. Also, for every
$i=3, \ldots, \ell, b_{i}\left(\hat{v}^{\prime}\right)=b_{i}(\tilde{v})$. Thus, $\hat{\Delta}\left(t_{M} \mid 0\right)+\tilde{\Delta}\left(t_{M} \mid 0\right)=0$.
Suppose $\theta_{1}<q<\theta_{2}$. Then, for every $i=2, \ldots, \ell, s_{i}^{1}=q$, which implies that, for every $t>t_{M}$, (40) is true. Then, $b_{2}(\tilde{v})=b_{2}(\hat{v})+1$, and, for every $i=3, \ldots, \ell, b_{i}(\hat{v})=b_{i}(\tilde{v})$. Thus, $\Delta\left(t_{M} \mid 0\right)+\tilde{\Delta}\left(t_{M} \mid 0\right)=0$.

Lastly, suppose $q>\theta_{2}$. Then, for every $i=2, \ldots, \ell, s_{i}^{1}=s_{i}^{2}$. Then, again, for every $t>t_{M}$, (40) is true, implying $\hat{\Delta}\left(t_{M} \mid 0\right)+\tilde{\Delta}\left(t_{M} \mid 0\right)=0$.

CASE 2: Assume $m=\ell-1$. A symmetric argument can prove the statement for this case.

CASE 3: Assume $1<m<\ell-1$.
Party m is the median party in \hat{v} and \tilde{v}^{\prime}, and party $m+1$ is the median party in \hat{v}^{\prime} and \tilde{v}. Then,

$$
\begin{equation*}
\hat{\Delta}\left(t_{M} \mid 0\right)=\frac{1}{n}\left(\sum_{i \in L} b_{i}(\hat{v})\left[u\left(s_{i}^{m} ; t_{M}\right)-u\left(s_{i}^{m+1} ; t_{M}\right)\right]+u\left(s_{m}^{m+1} ; t_{M}\right)-u\left(s_{m+1}^{m+1} ; t_{M}\right)\right) \tag{41}
\end{equation*}
$$

and

$$
\begin{equation*}
\tilde{\Delta}\left(t_{M} \mid 0\right)=\frac{1}{n}\left(\sum_{i \in L} b_{i}(\tilde{v})\left[u\left(s_{i}^{m+1} ; t_{M}\right)-u\left(s_{i}^{m} ; t_{M}\right)\right]+u\left(s_{m+1}^{m} ; t_{M}\right)-u\left(s_{m}^{m} ; t_{M}\right)\right) . \tag{42}
\end{equation*}
$$

By adding (41) and (42), we obtain

$$
\begin{align*}
\hat{\Delta}\left(t_{M} \mid 0\right)+\tilde{\Delta}\left(t_{M} \mid 0\right)= & \frac{1}{n}\left(\sum_{i \in L}\left[b_{i}(\hat{v})-b_{i}(\tilde{v})\right]\left[u\left(s_{i}^{m} ; t_{M}\right)-u\left(s_{i}^{m+1} ; t_{M}\right)\right]\right. \tag{43}\\
& \left.+u\left(s_{m}^{m+1} ; t_{M}\right)-u\left(s_{m+1}^{m+1} ; t_{M}\right)+u\left(s_{m+1}^{m} ; t_{M}\right)-u\left(s_{m}^{m} ; t_{M}\right)\right) .
\end{align*}
$$

First, assume $q<\theta_{m}$. Let $L^{-}=\left\{i \in L \mid \theta_{i}<2 \theta_{m}-q\right\}$. Note that, for every $i \in L^{-}$, $s_{i}^{m}=s_{i}^{m+1}$. In particular, $m \in L^{-}$. Also, if $i \notin L^{-}$, then $s_{i}^{m}=2 \theta_{m}-q$. Then, (43) is reduced
to

$$
\begin{align*}
\hat{\Delta}\left(t_{M} \mid 0\right)+\tilde{\Delta}\left(t_{M} \mid 0\right)= & \frac{1}{n}\left(\sum_{i \in L \backslash L^{-}}\left[b_{i}(\hat{v})-b_{i}(\tilde{v})\right]\left[u\left(2 \theta_{m}-q ; t_{M}\right)-u\left(s_{i}^{m+1} ; t_{M}\right)\right]\right. \tag{44}\\
& \left.+u\left(s_{m+1}^{m} ; t_{M}\right)-u\left(\theta_{m+1} ; t_{M}\right) .\right)
\end{align*}
$$

Suppose $L^{-}=L$. Then, $s_{m+1}^{m}=\theta_{m+1}$, so $\hat{\Delta}\left(t_{M} \mid 0\right)+\tilde{\Delta}\left(t_{M} \mid 0\right)=0$. Suppose $L^{-} \neq L$. Let $\underline{j}=\max L^{-}$. Suppose $\underline{j} \geq m+1$. If $t \leq \frac{\theta_{\underline{j}}+2 \theta_{m}-q}{2}$, then $\hat{v}_{t} \in L^{-}$and $\tilde{v}_{t} \in L^{-}$. If $t>\frac{\theta_{\underline{j}}+s_{j+1}^{m+1}}{2}$, then

$$
\alpha(t)=\beta(t)=\min \left(\arg \max \left\{u\left(\theta_{i} ; t\right) \mid i \in \arg \max \left\{u\left(s_{j}^{m+1} ; t\right) \mid j=\underline{j}+1, \ldots, \ell\right\}\right\}\right)
$$

so $\hat{v}_{t}=\tilde{v}_{t}$. Let $\tilde{T}=\left\{t \in T \left\lvert\, \frac{\underline{\theta_{j}+2 \theta_{m}-q}}{2}<t \leq \frac{\theta_{\underline{j}}+s_{j+1}^{m+1}}{2}\right.\right\}$. For every $t \in \tilde{T}, \hat{v}_{t}=\underline{j}+1$ and $\tilde{v}_{t}=\underline{j}$. This implies that for every $i>\underline{j}+1, b_{i}(\hat{v})=b_{i}(\tilde{v})$, and $b_{\underline{j+1}}(\hat{v})-b_{\underline{j}+1}(\tilde{v})=|\tilde{T}|$. Then, from (44), we have

$$
\hat{\Delta}\left(t_{M} \mid 0\right)+\tilde{\Delta}\left(t_{M} \mid 0\right)=\frac{|\tilde{T}|}{n}\left[u\left(2 \theta_{m}-q ; t_{M}\right)-u\left(s_{\underline{j}+1}^{m+1} ; t_{M}\right)\right] \geq 0
$$

because $t_{M}<2 \theta_{m}-q<s_{\underline{j}+1}^{m+1}$. Now suppose $\underline{j}=m$. For every $t \leq \frac{\theta_{m+1}+s_{m+2}^{m+1}}{2}, \alpha(t) \leq m+1$ and $\beta(t) \leq m+1$. For every $t>\frac{\theta_{m+1}+s_{m+2}^{m+1}}{2}$,

$$
\alpha(t)=\beta(t)=\min \left(\arg \max \left\{u\left(\theta_{i} ; t\right) \mid i \in \arg \max \left\{u\left(s_{j}^{m+1} ; t\right) \mid j=m+2, \ldots, \ell\right\}\right\}\right),
$$

so $\hat{v}_{t}=\tilde{v}_{t}$. This implies that for every $t>m+1, T_{i}(\hat{v})=T_{i}(\tilde{v})$, so $b_{i}(\hat{v})=b_{i}(\tilde{v})$. Also, from the strategies, $T_{m+1}(\hat{v})=\{t \in T \mid \alpha(t)=m+1\}=\left\{t \in T \mid t_{M+1} \leq t \leq \bar{y}_{m+1}\right\}$, and $T_{m+1}(\tilde{v})=\left\{t \in T \mid t_{M} \leq t \leq \bar{y}_{m+1}\right\}$, implying $b_{m+1}(\hat{v})-b_{m+1}(\tilde{v})=-1$. Then, from (44), we conclude that $\hat{\Delta}\left(t_{M} \mid 0\right)+\tilde{\Delta}\left(t_{M} \mid 0\right)=0$.

Second, assume $\theta_{m}<q<\theta_{m+1}$. Then, for every $i=1, \ldots, m, s_{i}^{m+1}=q$, and, for every
$i=m+1, \ldots, \ell, s_{i}^{m}=q$. Then from (43) we have

$$
\begin{align*}
\hat{\Delta}\left(t_{M} \mid 0\right)+\tilde{\Delta}\left(t_{M} \mid 0\right)= & \frac{1}{n}\left(\sum_{i=1}^{m}\left[b_{i}(\hat{v})-b_{i}(\tilde{v})\right]\left[u_{i}\left(s_{i}^{m} ; t_{M}\right)-u_{i}\left(q ; t_{M}\right)\right]\right. \\
& +\sum_{i=m+1}^{\ell}\left[b_{i}(\hat{v})-b_{i}(\tilde{v})\right]\left[u_{i}\left(q ; t_{M}\right)-u_{i}\left(s_{i}^{m+1} ; t_{M}\right)\right] \tag{45}\\
& \left.+2 u\left(q ; t_{M}\right)-u\left(\theta_{m} ; t_{M}\right)-u\left(\theta_{m+1} ; t_{M}\right)\right)
\end{align*}
$$

For every $t<\underline{y}_{m}$,

$$
\alpha(t)=\beta(t)=\min \left(\arg \max \left\{u\left(\theta_{i} ; t\right) \mid i \in \arg \max \left\{u\left(s_{j}^{m} ; t\right) \mid j=1, \ldots, m-1\right\}\right\}\right)
$$

For every $t>\bar{y}_{m+1}$,

$$
\alpha(t)=\beta(t)=\min \left(\arg \max \left\{u\left(\theta_{i} ; t\right) \mid i \in \arg \max \left\{u\left(s_{j}^{m+1} ; t\right) \mid j=m+2, \ldots, \ell\right\}\right\}\right) .
$$

Also, for every $t \in\left[\underline{y}_{m}, \bar{y}_{m+1}\right]$, $\left\{\hat{v}_{t}, \tilde{v}_{t}\right\}=\{m, m+1\}$. Therefore, for every $i \in L \backslash\{m, m+1\}$, $T_{i}(\hat{v})=T_{i}(\tilde{v})$, implying $b_{i}(\hat{v})=b_{i}(\tilde{v})$. Note that $t_{M+1}>\bar{y}_{m}$. So, $T_{m}(\hat{v})=\{t \in T \mid t \in$ $\left.\left[\underline{y}_{m}, t_{M}\right]\right\}$ and $T_{m}(\tilde{v})=\left\{t \in T \mid t \in\left[\underline{y}_{m}, t_{M-1}\right]\right\}$. This implies $b_{m}(\hat{v})-b_{m}(\tilde{v})=1$. Also, $T_{m+1}(\hat{v})=\left\{t \in T \mid t \in\left[t_{m+1}, \bar{y}_{m+1}\right]\right\}$ and $T_{m+1}(\tilde{v})=\left\{t \in T \mid t \in\left[t_{M}, \bar{y}_{m+1}\right]\right\}$, implying $b_{m+1}(\hat{v})=b_{m+1}(\tilde{v})=-1$. Then, from (45), we conclude that $\hat{\Delta}\left(t_{M} \mid 0\right)+\tilde{\Delta}\left(t_{M} \mid 0\right)=0$.

Lastly, assume $q>\theta_{m+1}$. Let $L^{+}=\left\{i \in L \mid \theta_{i}>2 \theta_{m+1}-q\right\}$. Then, for every $i \in L^{+}$, $s_{i}^{m}=s_{i}^{m+1}$, and in particular $m+1 \in L^{+}$. For every $i \notin L^{+}, s_{i}^{m+1}=2 \theta_{m+1}-q$. Then, we have

$$
\begin{align*}
\hat{\Delta}\left(t_{M} \mid 0\right)+\tilde{\Delta}\left(t_{M} \mid 0\right)= & \frac{1}{n}\left(\sum_{i \in L \backslash L^{+}}\left[b_{i}(\hat{v})-b_{i}(\tilde{v})\right]\left[u\left(s_{i}^{m} ; t_{M}\right)-u\left(2 \theta_{m+1}-q ; t_{M}\right)\right]\right. \tag{46}\\
& \left.+u\left(s_{m}^{m+1} ; t_{M}\right)-u\left(\theta_{m} ; t_{M}\right)\right)
\end{align*}
$$

First, if $L^{+}=L$, then clearly $\hat{\Delta}\left(t_{M} \mid 0\right)+\tilde{\Delta}\left(t_{M} \mid 0\right)=0$. Suppose $L^{+} \neq L$. Let $\underline{j}=\min L^{+}$. Suppose $\underline{j} \leq m$. Then, if $t \leq \frac{\theta_{j}+s_{j-1}^{m}}{2}$, then $\alpha(t)=\beta(t) \leq \underline{j}-1$. Let $\tilde{T}=\left\{t \in T \left\lvert\, \frac{\theta_{\underline{j}}+s_{j-1}^{m}}{2}<t \leq\right.\right.$ $\left.\frac{\theta_{j}+2 \theta_{m+1}-q}{2}\right\}$. If $t \in \tilde{T}$, then $\hat{v}_{t}=\alpha(t)=\underline{j}$ and $\tilde{v}_{t}=\beta(t)=\underline{j}-1$. Then, for every $i<\underline{j}-1$, $b_{i}(\hat{v})-b_{i}(\tilde{v})=0$, and $b_{\underline{j}-1}(\hat{v})-b_{\underline{j}-1}(\tilde{v})=-|\tilde{T}|$. Then, from (46), we have

$$
\hat{\Delta}\left(t_{M} \mid 0\right)+\tilde{\Delta}\left(t_{M} \mid 0\right)=-\frac{|\tilde{T}|}{n}\left[u\left(s_{\underline{j-1}}^{m} ; t_{M}\right)-u\left(2 \theta_{m+1}-q ; t_{M}\right)\right] \geq 0
$$

because $s_{\underline{j}-1}^{m}>2 \theta_{m+1}-q>\theta_{m}>t_{M}$. Suppose $\underline{j}=m+1$. If $t<\underline{y}_{m}$, then $\alpha(t)=\beta(t)$. Thus, for every $i<m, b_{i}(\hat{v})-b_{i}(\tilde{v})=0$. From the strategies, $T_{m}(\hat{v})=\left\{t \in T \mid t \in\left[\underline{y}_{m}, t_{M}\right]\right\}$ and $T_{m}(\tilde{v})=\left\{t \in T \mid t \in\left[\underline{y}_{m}, t_{M+1}\right]\right\}$. So, $b_{m}(\hat{v})-b_{m}(\tilde{v})=1$. Then, clearly from (46) $\hat{\Delta}\left(t_{M} \mid 0\right)+\tilde{\Delta}\left(t_{M} \mid 0\right)=0$.

Lemma 6 implies that either $\hat{\Delta}\left(t_{M} \mid 0\right)>0$, or $\tilde{\Delta}\left(t_{M} \mid 0\right)>0$, or $\hat{\Delta}\left(t_{M} \mid 0\right)=\tilde{\Delta}\left(t_{M} \mid 0\right)=0$. Then, by Lemma 5, either \hat{v} or \tilde{v} is a robust equilibrium of $G(T, \theta, q, 0)$.

Suppose $\hat{v} \in V(T, \theta, q)$. By construction, for every $t \notin\left[\underline{y}_{m}, t_{M}\right], \hat{v}_{t}=\alpha(t)$, so \hat{v}_{t} is strategically sincere in \hat{v}. For any $t \in\left[\underline{y}_{m}, t_{M}\right], \hat{v}_{t}=m$, and $m \notin \arg \max \left\{u\left(s_{i}^{m} ; t\right) \mid i \in L\right\}$ if and only if $t>\bar{y}_{m}$. Therefore, $T \backslash T^{*}(\hat{v})=\left\{t \in T \mid \bar{y}_{m}<t \leq t_{M}\right\}$. Suppose \tilde{v} is a robust equilibrium. By construction, for every $t \notin\left[t_{M}, \bar{y}_{m+1}\right], \tilde{v}_{t}=\beta(t)$, so \tilde{v}_{t} is strategically sincere in \tilde{v}. For any $t \in\left[t_{M}, \bar{y}_{m+1}\right], \tilde{v}_{t}=m+1$, and $m+1 \notin \arg \max \left\{u\left(s_{i}^{m+1} ; t\right) \mid i \in L\right\}$ if and only if $t<\underline{y}_{m+1}$. Therefore, $T \backslash T^{*}(\tilde{v})=\left\{t \in T \mid t_{M} \leq t<\underline{y}_{m+1}\right\}$.

Proof of Proposition 5

Assume that v and v^{\prime} are strategically sincere robust equilibria of $G(T, \theta, q)$. By Proposition $6, k(v)=k\left(v^{\prime}\right)=m$. Then, since v and v^{\prime} are strategically sincere and A2 holds, $b_{m}(v)=$ $b_{m}\left(v^{\prime}\right)=\left|X_{m}\right|$. If $\left|X_{m}\right| \geq M$, then $\lambda^{v}=\lambda^{v^{\prime}}$ as both of them are the degenerate lottery on
θ_{m}. Suppose $\left|X_{m}\right|<M$. Then, for each $x \in \mathbb{R}$,

$$
\lambda^{v}(x)=\frac{1}{n} \sum_{\left\{i \in L \mid s_{i}^{m}=x\right\}} b_{i}(v) \text { and } \lambda^{v^{\prime}}(x)=\frac{1}{n} \sum_{\left\{i \in L \mid s_{i}^{m}=x\right\}} b_{i}\left(v^{\prime}\right) .
$$

Since A2 holds, and v and v^{\prime} are strategically sincere, for every x with $\left\{i \in L \mid s_{i}^{m}=x\right\} \neq \emptyset$,

$$
\frac{1}{n} \sum_{\left\{i \in L \mid s_{i}^{m}=x\right\}} b_{i}(v)=\frac{1}{n} \sum_{\left\{i \in L \mid s_{i}^{m}=x\right\}} b_{i}\left(v^{\prime}\right)=\left|\left\{t \in T \mid u(x ; t)=\max \left\{u\left(s_{j}^{m} ; t\right) \mid j \in L\right\}\right\}\right|,
$$

which completes the proof.

Proof of Lemma 2

Let $v \in V(T, \theta, q)$ and let $t \in T \backslash T^{*}(v)$. Let $k=k(v)$ and $i=v_{t}$. Then, $i \notin \arg \max \left\{u\left(s_{h}^{k} ; t\right) \mid h \in\right.$ $L\}$. Suppose $i \neq k$. Since L is finite, $\arg \max \left\{u\left(s_{h}^{k} ; t\right) \mid h \in L\right\} \neq \emptyset$. Let $j \in \arg \max \left\{u\left(s_{h}^{k} ; t\right) \mid h \in\right.$ $L\}$ and let $v^{\prime}=\left(j, v_{-t}\right)$. First, suppose $k\left(v^{\prime}\right)=k$. Then, $p_{h}\left(v^{\prime}\right)=s_{h}^{k}$ for every $h \in L$. If k is not the majority party in both v and v^{\prime}, then, for every $\epsilon \in[0,1]$

$$
U(v ; t \mid \epsilon)-U\left(v^{\prime} ; t \mid \epsilon\right)=\frac{1}{n}\left[u\left(s_{i}^{k} ; t\right)-u\left(s_{j}^{k} ; t\right)\right]<0,
$$

contradicting that v is a robust equilibrium. If k is the majority party in both v and v^{\prime}, then, for every $\epsilon \in(0,1]$,

$$
U(v ; t \mid \epsilon)-U\left(v^{\prime} ; t \mid \epsilon\right)=\frac{\epsilon}{n}\left[u\left(s_{i}^{k} ; t\right)-u\left(s_{j}^{k} ; t\right)\right]<0
$$

a contradiction. If k is not the majority party in v, but it is in v^{\prime}, then it must be the case that $b_{k}(v)=M-1$ and $j=k$. Then, for every $\epsilon \in[0,1]$,

$$
U(v ; t \mid \epsilon)-U\left(v^{\prime} ; t \mid \epsilon\right)=(1-\epsilon)\left[\sum_{h \in L} \frac{b_{h}(v)}{n} u\left(s_{h}^{k} ; t\right)-u\left(s_{j}^{k} ; t\right)\right]+\frac{\epsilon}{n}\left[u\left(s_{i}^{k} ; t\right)-u\left(s_{j}^{k} ; t\right)\right]<0,
$$

a contradiction.
Secondly, suppose $k\left(v^{\prime}\right) \neq k$. Suppose $i<k$. Then, it must be the case that $\sum_{h=1}^{k} b_{h}(v)=$ M and $j>k$. Since $j>k, t \geq \bar{y}_{k}$. Then, since $s_{i}^{k}<s_{k}^{k}=\theta_{k}<t$, we have $u\left(s_{i}^{k} ; t\right)<u\left(s_{k}^{k} ; t\right)$. I also claim that $b_{k}(v)<M-1$. To see this, suppose $b_{k}(v)=M-1$. Note that $b_{i}(v)+b_{k}(v)=$ M and $t \neq t_{1}$. This implies $v_{t_{1}} \geq k>1$. But since $t_{1}<\theta_{1}, u\left(s_{1}^{k} ; t_{1}\right)>u\left(s_{v_{t_{1}}} ; t_{1}\right)$. Also, party k would remain as the median party even after voter t_{1} 's deviation by voting for party 1 . Then, for every $\epsilon \in[0,1), U\left(v ; t_{1} \mid \epsilon\right)<U\left(1, v_{-t_{1}} ; t_{1} \mid \epsilon\right)$, a contradiction that implies that the claim is true. Then, for every $\epsilon \in[0,1)$,

$$
U(v ; t \mid \epsilon)-U\left(k, v_{-t} ; t \mid \epsilon\right)=\frac{1}{n}\left[u\left(s_{i}^{k} ; t\right)-u\left(s_{k}^{k} ; t\right)\right]<0,
$$

a contradiction. A symmetric argument will lead to a contradiction when $i>k$.

Proof of Proposition 6

Let v be a strategically sincere robust equilibrium. Let $k=k(v)$. Since v is strategically sincere, for every $t<\underline{y}_{k}, v_{t}<k$; and for every $t>\bar{y}_{k}, v_{t}>k$. Then, for k to be decisive, it must be that $t_{M} \in X_{k}$. Since $t_{M} \in\left[\theta_{m}, \frac{\theta_{m}+\theta_{m+1}}{2}\right]$, either $k=m$ or $k=m+1$. Suppose $k=m+1$. Then, $t_{M}=\frac{\theta_{m}+\theta_{m+1}}{2}$ and $\underline{x}_{m+1}(q)=\theta_{m}$. Since $s_{m}^{m+1}=\theta_{m}$ and $s_{m+1}^{m+1}=\theta_{m+1}$, we have $\max \left\{u\left(s_{i}^{m+1} ; t_{M}\right) \mid i \in L\right\}=u\left(s_{m}^{m+1} ; t_{M}\right)=u\left(s_{m+1}^{m+1} ; t\right)$, contradicting A2. Thus, $k(v)=m$.

Proof of Proposition 7

Let $v \in V(T, \theta, q)$. Suppose v is strategically sincere and satisfies C1. Suppose v_{t} is strategic. Let $j=v_{t}$ and $k=k(v)$. Suppose $t \in\left(\underline{y}_{k}, \bar{y}_{k}\right)$, then $j=k$ since v is strategically sincere. By definition, $\frac{\theta_{k-1}+\theta_{k}}{2} \leq \underline{y}_{k}$ and $\bar{y}_{k} \leq \frac{\theta_{k}+\theta_{k+1}}{2}$. Then, $\arg \max \left\{u\left(\theta_{h} ; t\right) \mid h \in L\right\}=\{k\}$, contradicting that v_{t} is strategic. Thus, either $t \leq \underline{y}_{k}$ or $t \geq \bar{y}_{k}$.

Suppose $t \leq \underline{y}_{k}$. Since v is strategically sincere, $j \leq k-1$. I claim that $p_{j}(v)=\underline{x}_{k}(q)$. Suppose not. Then $p_{j}(v)=\theta_{j}>\underline{x}_{k}(q)$. Suppose $t \geq \theta_{j}$. Since $j<k, p_{j+1}(v)=\theta_{j+1}$. Since v is strategically sincere, $t \in\left[\theta_{j}, \frac{\theta_{j}+\theta_{j+1}}{2}\right]$, implying v_{t} is sincere, a contradiction. suppose $t<\theta_{j}$. If $j=1$, clearly $\arg \max \left\{u\left(\theta_{h} ; t\right) \mid h \in L\right\}=\{1\}$. So, v_{t} is sincere, a contradiction. So, $j>1$. Since v is strategically sincere, $t \in\left[\frac{p_{j-1}(v)+\theta_{j}}{2}, \theta_{j}\right)$. But $p_{j-1}(v)=\max \left\{\theta_{j-1}, \underline{x}_{k}(q)\right\} \geq \theta_{j-1}$, which implies $t \in\left[\frac{\theta_{j-1}+\theta_{j}}{2}, \theta_{j}\right)$. Thus, v_{t} is sincere, a contradiction.

Thus, the claim is true, $p_{j}(v)=\underline{x}_{k}(q)$, which implies $\theta_{j} \leq \underline{x}_{k}(q)$. I now claim that $\theta_{j+1}>\underline{x}_{k}(q)$. Suppose not. Then, $p_{j}(v)=p_{j+1}(v)=\underline{x}_{k}(q)$. By C1, $t \leq \frac{\theta_{j}+\theta_{j+1}}{2}$. If $j=1$, then v_{t} is sincere, a contradiction. If $j \geq 2$, then $p_{j-1}(v)=\underline{x}_{k}(q)$. Then, C 1 implies that $t \geq \frac{\theta_{j-1}+\theta_{j}}{2}$. Thus, v_{t} is sincere, a contradiction. Hence, the claim is true.

Since v is strategically sincere, $t \leq \frac{x_{k}(q)+\theta_{j+1}}{2}$. If $t \leq \frac{\theta_{j}+\theta_{j+1}}{2}$, then v_{t} is sincere. Thus, $\frac{\theta_{j}+\theta_{j+1}}{2}<t \leq \frac{x_{k}(q)+\theta_{j+1}}{2}<\theta_{j+1}$. Then, $\arg \max \left\{u\left(\theta_{h} ; t\right) \mid h \in L\right\}=\{j+1\}$. Thus, $i(t)=j+1$, and we have $\theta_{j}<t<\theta_{i(t)} \leq \theta_{k}$.

I now prove that $k \geq m$. Suppose $k \leq m-1$. Since v is strategically sincere, $\bigcup_{h=1}^{k} T_{h}(v) \subseteq$ $\left[t_{1}, \bar{y}_{k}\right]$. But since $\theta_{m} \leq t_{M}$ and $k \leq m-1, t_{M}>\bar{y}_{k}$. Then $\sum_{h=1}^{k} b_{h}(v)<M$, contradicting $k=k(v)$. Thus, $k \geq m$. Therefore, $\theta_{j}<t<\theta_{i(t)} \leq \theta_{m}$. A symmetric argument will prove that when $t \geq \bar{y}_{k}$, then $\theta_{m} \leq \theta_{i}(t)<t<\theta_{j}$.

