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ABSTRACT 

Air route networks can no longer meet operational efficiency requirements because of 

the rapid growth of complex traffic flows. Machine learning is employed to investigate 

the evolutionary mechanism of congestion in such networks in view of their high 

complexity and high density, and a reasonable network optimization scheme is 

presented. First, deviations between nominal and actual routes are investigated with 

reference to radar track data, and a network reflecting actual route operations is 

constructed using adversarial neural networks. Second, flight time is used to 

characterize congestion in route networks. Actual network operations are considered, 

and congestion is defined from the perspective of road traffic engineering. The effects 

of the operational properties of traffic flows on flight times are analyzed to establish 

various congestion indicators. A gradient boosting model is used to select indicator 

characteristics and analyze patterns in the variations of indicator values for each flight 

segment in distinct periods. The indicator–time relationship is leveraged to explore the 

evolutionary mechanism of congestion in the route network. Third, on the basis of this 

mechanism, a multiobjective optimization model of congestion is formulated, and a 

particle swarm optimization algorithm is executed to adjust the route passage structure, 

thereby solving the optimization model. Finally, calculation validation is conducted 

using radar track data from the control sector of the Yunnan region. The average flight 

time in a route segment is 10% shorter in the optimized route network than in the 

nonoptimized route network, which confirms that the optimization solution is 

practicable. 



Keywords: congestion evolution mechanisms; multiobjective optimization; route 

networks; traffic flow 

 

1.0  INTRODUCTION 

To maximize the use of airspace resources, machine learning, deep learning, and big data 

analysis are employed to analyze the factors influencing route network congestion, study 

the evolutionary mechanism of such congestion, and construct a route network 

optimization scheme with reference to actual traffic flow and network operation 

characteristics.  

The literature on the mechanism of congestion propagation in air route networks, 

which concerns the field of civil aviation, is incipient. By contrast, in-depth studies on 

the evolutionary mechanism of congestion in road traffic are numerous. Dong et al. (1) 

cellularized traffic flows and roads and used the obtained cells to simulate traffic flow 

changes and demonstrate the evolutionary mechanism of traffic congestion by 

constructing a transportation model. Polson and Sokolov (2) estimated the traffic flow 

density state and Lighthill–Whitman–Richards parameters by using a particle filter 

learning algorithm. They also explored the mechanism of traffic state change by 

investigating the relationship between traffic flow and density. Omer (3) developed a 

mixed-integer linear model based on spatial discretization to ensure the true trajectory by 

considering the speed vector relative to time continuity and the restrictions of speed, 

acceleration and yaw rate; and confirmed that the model can solve complex situations 

within a few seconds without incurring more than a few kilograms of extra fuel 

consumption per aircraft. Li et al.(4) probed the effects of passenger flow changes on the 



traffic state and introduced the passenger flow load index as a congestion parameter for 

studying the dynamic evolution of traffic congestion. Jiang (5) examined the factors 

affecting the operational state of traffic flow in a terminal area; established indicators for 

evaluating the congestion state; and defined an evolutionary, spatiotemporal mechanism 

of congestion. On the basis of vehicle trajectory data recorded by the global positioning 

system, Yang (6) established an urban road network model to identify the number of traffic 

congestion zones in a city, analyze the spatiotemporal evolutionary characteristics of 

congestion at the micro and macro levels, and determine the spatiotemporal evolutionary 

pattern of traffic congestion. Chang (7) examined the causes of traffic congestion; studied 

the influences of road grades, the frequency of real-time information updates, and other 

factors on the diffusion of congestion; and established a mechanism of traffic congestion 

on the basis of changes in traffic information. Yu et al. (8) developed a congestion 

identification model based on the discriminatory criteria of free and congested states to 

analyze patterns in traffic state changes on the basis of traffic density trends and traffic 

speed upstream and downstream of a highway. Çeçen et al. (9) presented a mixed integer 

linear programming model (MILP) which can solve aircraft conflicts in 450 different 

traffic scenarios in less than a minute. Mohammad et al. (10) used vehicle speed as a basis 

for assessing traffic congestion and traffic density, determined the traffic congestion 

index at peak hours, and explored the evolutionary mechanism of congestion. Cecen et al. 

(11) proposed a two-step optimization method for solving aircraft conflicts within the 

tactical pre time window in general free route airspace which can resolve all conflicts in 

less than 4 minutes. Basturk et al. (12) proposed prediction of aircraft Estimated Time of 



Arrival (ETA) using machine learning algorithms which can accurate prediction of ETA 

was important for management of delay and air traffic flow etc. Wu et al. (13) proposed a 

depth generative model based on one-dimensional convolutional neural network 

(Conv1D-GAN), two-dimensional convolutional neural network and short-term memory 

neural network (LSTM-GAN) and demonstrated that Conv1D GAN was the most 

suitable generative adversarial approach for long-term aircraft trajectory prediction. 

In the present study, radar track data are first preprocessed. Next, correlations of track 

features are analyzed, and an operational route network is generated using adversarial 

neural networks to extract nominal tracks from the radar track data. Subsequently, the 

definition of congestion in road traffic engineering is extended to the field of civil aviation, 

and flight time is employed as the basis for assessing congestion in air networks, selecting 

characteristics to obtain a set of critical congestion indicators, analyzing the distribution 

relationship between these indicators and time, and exploring the evolutionary 

mechanism of congestion as a function of time. Finally, the traffic structure of the route 

network is optimized on the basis of the evolutionary mechanism, thereby reducing 

congestion. 

2.0  GENERATING ROUTE NETWORKS FROM RADAR TRACK DATA 

2.1 Radar track data preprocessing 

The radar track data, which comprise discrete data points with a 4-s refresh rate, contain 

information such as time, aircraft position coordinates, altitude, heading, ground speed, 

and flight number. These high-volume, typically high-dimensional data must be 



preprocessed prior to analysis. Raw radar track data contain errors such as missed points 

and data jumps; thus, data cleaning and data extraction must be performed. 

 

2.1.1 Extraction of effective trajectories 

The limitations of data collection equipment and the unpredictability of weather 

conditions make it difficult to guarantee the validity of each piece of data. In this study, 

the radar track data are first filtered by height and selected for tracks above the altitude 

of the terminal area (6000 m). Next, the data are preprocessed to fill in missing values 

and remove outliers. 

The validity check of radar track data is performed on the basis of the following 

principles. First, a single track iP  contains more than 500 track points, and the time 

interval between any two adjacent points does not exceed 40 s. Second, all incorrect 

trajectories are screened out; no unreasonable jump in height is observed between any 

two adjacent points in a single trajectory iP . 

 

2.1.2 Flight path resampling 

The collection interval of the radar track data is short. Aircraft have a long cruise phase 

in actual flight, during which their characteristic information remains essentially 

unchanged (except the coordinate positions), which results in redundant trajectory data. 

A sequence of trajectories of equal length is required for generating an operational route 

network from actual flight trajectories, and the number of radar data points contained in 



different trajectories varies according to the extraction of valid trajectories from the radar 

data. Following this extraction process, the radar track data are processed to eliminate 

redundancy and ensure that data points are uniform in length while retaining flight 

characteristics. 

Padding with zeros is performed to equalize the length of the data points, thus 

preserving the original trajectory characteristics and ensuring data accuracy. 

 

2.2 Generating real-world operational route networks by using adversarial 

neural networks 

2.2.1 Neural network construction methods 

Since their introduction by Goodfellow et al. in 2014, Generative Adversarial Networks 

(GAN) have been extensively researched and applied in the field of deep generative 

models (14).  

When constructing an adversarial neural network, certain methods must be 

implemented to improve network performance, and relevant basic theories must be 

analyzed. 

a) Excitation function 

In a multilayer neural network, between the output value of the network node in the 

previous layer and the input value of the network node in the next layer, a nonlinear 

excitation function is essential for enhancing the representativeness of the network. 



We employ the Rectified linear unit (ReLU) function and a sigmoid function. The 

ReLU function can solve the gradient dispersion problem. In stochastic gradient descent, 

the calculation speed and convergence speed can be rapidly improved by the derivative 

of the ReLU function (1 or 0). The sigmoid function, which converts all values into a 

value between 0 and 1, outputs 0 for extremely small negative numbers and outputs 1 for 

extremely large positive numbers. 

b) Dropout 

Dropout, which was proposed by Hinton, is a technique for preventing the overfitting of 

a complex feedforward neural network (which occurs frequently when such a network is 

trained on a small dataset) by preventing feature detectors from acting together. This 

technique enhances the performance of a neural network (15). Dropout reduces 

interactions between neural nodes in the hidden layer, which makes the neural network 

more generalizable. The standard process of dropout in neural networks involves 

forward-propagating the data input x  and then backpropagating the errors to determine 

how to update the network learning parameters. Subsequently, the neural network runs 

as follows. 

Step 1: Half of the neurons in the hidden layer of the neural network are randomly 

deleted. The neurons in the input and output layers are untouched. 

Step 2: The data input x  is propagated forward, and the outcome of the resulting loss 

function is propagated backward. When the propagation of the selected batch of training 

data is complete, the corresponding parameters ( , )b  are updated on the remaining half 

of the neurons through stochastic gradient descent. 



Step 3: The deleted neurons are restored to their initial state, and the other half of the 

neurons are updated. 

Step 4: After 50% of the neurons from the hidden layer of the neural network are 

randomly selected for backup, they are removed. 

The aforementioned steps are repeated until training is complete. 

c) Loss function and cross-entropy function 

The loss function is used to calculate the error between the predicted and true values of 

the network. The smaller the value of the loss function, the more favorable is the 

performance of the network. A commonly used loss function is the cross-entropy function, 

which is expressed as follows: 

1 1
[ log (1 ) log(1 )]i i i i i

i i

L L y p y p
N N

= = − + − −    (1) 

where L  is the cross-entropy value; iy  denotes the label of sample i ; positive and 

negative classes are designated as 1 and 0, respectively; and ip  is the probability that 

sample i  is predicted to be positive. 

 

2.2.2 Extraction of nominal trajectories 

On the basis of the theory of adversarial neural network construction, the ReLU function 

is employed as the excitation function in the intermediate layer, the sigmoid function is 

used as the excitation function in the discriminator output layer, the two dropout 

probabilities are set as 0.3, and the cross-entropy function is selected as the loss function. 

The trajectory data of a particular flight in a given year are selected as the sample data, 



and the adversarial neural network is developed to generate the nominal trajectory of the 

flight. The training data sample comprises the radar trajectory data of flights for 1 year; 

the padding method is used to obtain track data of equal length, and the number of training 

sessions is set as 1000. 

An adversarial neural network is constructed and trained on the 1-year radar track data 

for a flight. The loss function is calculated, and the iterative plot of the loss function 

values is displayed in Fig. 1. The loss function values drop rapidly until approximately 

50 training sessions have elapsed, after which they level off and stabilize at <0.1. 

Therefore, the constructed neural network can appropriately generate the nominal track 

on the basis of the radar track data and accurately reflect the actual operating route 

network. 

 

3 EVOLUTIONARY MECHANISM OF CONGESTION IN AIR ROUTE 

NETWORKS 

3.1 Theory of congestion in air route networks 

Air route network congestion has no established definition in the civil aviation sector. 

Traffic congestion is well defined in road traffic engineering. Shibata et al. (16) suggested 

that the traffic status of different road sections depends on the length of the arrival time. 

Zhang (17) defined congestion as a function of passing time. Specifically, congestion exists 

when the passing time exceeds the standard time corresponding to normal operations. 

Yan (18) stated that traffic congestion occurs when vehicles queues are lengthened. Du (19) 

defined traffic congestion according to the average travel time, taking the ratio of the 

average travel time to the driving time in a noncongested state as an index of traffic 



congestion. A larger ratio (i.e., a longer delay) indicates a greater degree of congestion. 

Overall, most definitions of congestion in road traffic engineering are based on trip time 

and trip speed. 

According to the definition of traffic congestion in road traffic engineering and the 

actual situation of aircraft operation on airways, we consider the description of the 

congestion state of the air network from the perspective of flight time and analyze its 

evolutionary mechanism. If the flight time of a route segment exceeds the average flight 

time of the segment during a certain period, congestion exists in the segment. 

 

3.2 Selection and analysis of congestion indicators 

3.2.1 Selection of segment congestion indicators 

On the basis of the definition of congestion in road traffic engineering and the actual 

operation of the air network, the air network congestion index is selected to characterize 

the state of congestion in the air network with regard to the flight time and its influencing 

factors. These factors are defined as follows. 

a) Number of flights in the segment 

Number of flights in the segment refers to the total number of aircraft 
jrn  passing 

through segment 
jr  in the sampling interval. 

b) Segment traffic flow 



Segment traffic flow refers to the number of flights that pass through the route per unit 

of time and is reflective of the operational load on the segment. This parameter is 

expressed as follows: 

j

j

r

r

n
Q

t
=   (2) 

where LiQ  is the flow of traffic in segment 
jr , 

jrn  is the number of aircraft in segment 

jr , and t  is the statistical time interval. 

c) Number of altitude adjustments 

Number of altitude adjustments refers to the number of altitude changes made by the 

aircraft in flight during the statistical time interval. If the first-order difference 

corresponding to aircraft altitude over a statistical time interval remains at a certain 

altitude level for 1 min, the altitude adjustment of the aircraft is complete. The relevant 

equations are presented as follows: 
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t
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where h  is the first-order difference corresponding to aircraft altitude, it  is the start 

time of the statistical time interval, 
jt  is the end time of the statistical time interval, t is 

the statistical time interval, and CN  is the number of altitude adjustments the flight 

segment. The standard altitude layer interval for cruising is 600 m. 

d) Rate of approaching traffic in a segment 



The proximity of all aircraft in a segment of the route network during a statistical time 

interval reflects the distribution density of aircraft within that segment (20). China’s civil 

aviation regulations state that in a radar-controlled environment, aircraft must meet a 

minimum horizontal separation of >10 km or a minimum vertical separation of 300 m. 

Because the Earth is ellipsoidal, the Euclidean distance cannot simply be used to calculate 

the proximity of one aircraft from another. Therefore, the relative ellipsoidal distance 

between two aircraft is calculated, and the rate of approaching traffic in a segment is 

determined. The relevant equations are presented as follows: 

2 2 2
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L
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where 
ijd  is the relative distance in space between aircraft i  and aircraft j ; ip  and 

jp  are the position vectors of aircraft i  and aircraft j , respectively; hsi  and vsi  are 

the horizontal minimum safe interval and vertical minimum safe interval of the segment, 

respectively ( 10 kmhsi = ， 300 mvsi = ); 

( , )i jx x  and ( , )i jy y  and ( , )i jh h  are the coordinate positions and altitude positions of 

aircraft i  and aircraft j ; Lpr  is the rate of approaching traffic in the segment; and n  

is the number of aircraft in the segment. 

e) Number of altitude layers passed by the aircraft 

The number of altitude layers passed by all aircraft in leg L during the statistical time 

interval is expressed as follows: 



i j

m m

t tL

fl

m std

h h
N

h

−
=   (7) 

where L

flN  is the number of altitude layers above and below the aircraft in segment r, 

i

m

th  is the altitude of aircraft m  at the beginning of the statistical time interval, 
j

m

th  is 

the altitude of aircraft m  at the end of the statistical time interval, and stdh  is the 

specified altitude layer interval for cruising (i.e., 600 m). 

f) Segment traffic altitude adjustment rate 

Segment traffic altitude adjustment rate refers to the ratio between the altitude adjustment 

and the initial altitude of all aircraft in segment r during the statistical time interval. This 

parameter reflects the magnitude of the range of altitude adjustments made by aircraft in 

a segment and is expressed as follows: 

i j

i
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t t
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m tr
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h
N
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−

=


  (8) 

where r

hrN  is the segment traffic height adjustment ratio, 
i

m

th  is the altitude of aircraft 

m  at the beginning of the statistical time interval, 
j

m

th  is the altitude of aircraft m  at 

the end of the statistical time interval, and n  is the total number of aircraft operating in 

segment r  during the statistical time interval. 

g) Segment traffic density 

Segment traffic density refers to the instantaneous aircraft count per unit length of a 

segment r  in a route network. This parameter reflects the intensity of flight in a 

segment and is expressed as follows: 
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where 
iLk  is the density of traffic in segment 

jr , 
jrn  is the number of aircraft operating 

in segment 
jr  at a given instant during the sampling interval, and 

jrl  is the length of 

segment 
jr . 

 

3.2.2 Correlation analysis of congestion indicators 

The kernel density estimation of nonparametric estimation is used for correlation analysis 

of congestion indicators (21). Let 1 2, ,..., nx x x  denote the n  sample points of an 

independent identical distribution F  with the probability density function f . Density 

estimation is conducted using a two-dimensional Gaussian kernel, where 7n = .The 

expression 1 2 3 4 5 6 7{ , , , , , , }N x x x x x x x= , represents the seven congestion indicators. 
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Where 
( )1

x  is index 1; 
( )2

x  is index 2; and   is the bandwidth, where 0  . 

By estimating the Gaussian kernel density between the indicators and analyzing the 

distribution between the indicators, congestion in the route network can be scientifically 

examined. In total, 26 routes (comprising 55 flight segments) are selected, and the time-

series data of 10-day traffic flow are averaged and sorted into 1-day-average data (in 1-h 

intervals) for each flight segment. The number of aircraft, the number of upper and lower 

altitude levels, and the Gaussian kernel density estimation results for the two indicators 

and flight time are displayed in Figs. 2–4, respectively. Furthermore, linear regression is 



performed to determine whether the congestion indicators and flight time are linearly 

related (Figs. 5 and 6). 

Fig. 2 presents the joint density distribution of the number of flights in a flight segment 

and the flight time. The concentrated dark areas correspond to 1–10 flights and flight 

times of 0 to 0.1 h. The distribution in Fig. 2 is convex, which indicates that a strong 

correlation exists between the number of flights and the flight time. 

Fig. 3 shows the joint density distribution of the number of altitude adjustments and flight 

time for a flight segment. The concentrated dark areas correspond to 1–50 altitude layers 

and flight times of 0 to 0.1h. The distribution in Fig. 3 is convex, which indicates that the 

joint density is normal distribution. 

Fig. 4 displays the joint density distribution of the number of altitude adjustments and the 

number of flights. The concentrated dark areas correspond to 1–50 altitude adjustments 

and 1–10 flights. The joint density distribution displayed in Fig. 4 is convex, which 

indicates that this distribution is regular. In practice, the higher the number of in-segment 

flights, the higher is the number of altitude adjustments within the segment. This 

phenomenon is observed possibly because the number of height adjustments made by 

individual aircraft remains constant but the number of aircraft increases, which increases 

the overall number of altitude adjustments. An alternative explanation is that to ensure 

flight safety when the number of aircraft within a segment increases, the number of 

aircraft making altitude adjustments also increases, which increases the overall number 

of altitude adjustments within the segment. 

Fig. 5 presents a linear regression plot of the number of flights against the flight time in 



a segment. These two variables have a linear relationship. In practice, the higher the 

number of flights in a segment, the higher is the congestion within the segment and thus 

the longer is the flight time. 

Fig. 6 displays a linear regression plot of the number of altitude adjustments against the 

flight time. These two variables are also linearly related. In practice, the more times an 

aircraft adjusts its altitude within a segment, the higher is the likelihood of congestion 

within the segment and thus the longer is the flight time. 

 

3.3 Feature selection of congestion indicators 

Feature selection is an effective dimension reduction method to solve the problem of 

high-dimensional data and over fitting in the process of machine learning. In this paper, 

the random forest algorithm and the gradient boosting tree algorithm are used to select 

the route congestion indicator characteristics respectively. And show the advantages and 

disadvantages of the two algorithms. 

3.3.1 Route congestion indicator feature selection 

The application of gradient boosted regression trees to feature importance 

assessment involves evaluating the importance of feature ix  on each tree and then 

averaging its importance on all trees. 
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where 2

ixI  is the squared importance of feature ix , M  is the number of decision 

trees in the gradient boosted tree, mT  is a decision tree, j  is the branch node, m  is the 

number of iterations, and 
jd  denotes the extent to which the independent variable ix  is 

boosted as the squared error of the jth branch node. The relative importance of all 

independent variables adds up to 1. 

Random forest is a classification integration algorithm, which generates multiple 

decision trees in the process of feature selection. By training the sample data, the 

importance of each feature is calculated and sorted, and the features with greater 

contribution are selected(22). 

 

3.3.2 Assessment of the importance of congestion indicator characteristics 

According to the above theory, gradient boosting trees and random forest algorithms are 

used for the selected congestion indicator characteristics respectively. Because of the 

different dimensions of the indicator values, standard deviation standardization (z-score) 

must be performed for the indicator values. Next, 180 000 randomly sampled items from 

the congestion indicator dataset are used to calculate the feature importance. 

As presented in Tables1 and 2, regardless of whether a route is congested or 

noncongested, the number of altitude adjustments, the number of flights, and the rate of 

approaching traffic account for 95% of the importance of all the indicators. Thus, these 

three indicators are integral to the examination of congestion. A regression model can be 

constructed to analyze the relationship between these three indicators and flight time, 

thereby facilitating the examination of the evolutionary mechanism of congestion. 



The random forest algorithm is employed to assess the significance of traffic 

congestion indicator attributes for each segment during congested routes. Furthermore, a 

random forest model with a decision number of 7 is constructed to determine the 

importance of traffic congestion indicators for each segment under congested and smooth 

conditions within the route network. The contribution of each feature is presented in 

Tables 1 and 2: 

To ensure the stability of the two models, a 10-fold cross-validation is conducted. 

Cross-validation is a vital technique in statistical analysis to assess the generalizability of 

models on independent data sets (23) .In this study, the gradient boosting regression tree 

model and the random forest model are separately cross-validated in ten folds for 

congested and noncongested routes. Fig 7 displays the outcomes of the ten-fold cross-

validation. 

The consistent feature selection results depicted above indicate that the gradient 

boosted regression tree model outperforms the random forest algorithm. Therefore, the 

gradient boosting regression tree algorithm is ultimately selected for feature screening 

 

3.4 Analysis of the evolutionary mechanism of congestion 

Due to the complex relationship between important congestion indicators and flight time, 

in order to ensure the accuracy of the model, gradient lifting regression tree model is used 

for analysis to explore the distribution relationship between important congestion 

indicators and flight time. 

 



3.4.1 Gradient boosted regression tree 

The negative gradient value of the loss function indicates that the GBRT model fits the 

residual approximation of the regression problem boost tree. The optimal gradient 

descent step m  is added to update the model and thereby obtain the final regression tree 

model. 

To initialize 0 ( )f x , the loss function L  is employed as follows: 

0

1

( ) arg min ( , )
N

i

i

f x L y



=

=    (12) 

The aforementioned function is a squared error loss function that is commonly used in 

gradient boosted regression models. 
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The negative gradient direction zim  is calculated, where 1,2,...,m M=  and 1,2,...,i N= . 
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By using the training set data, the regression tree model is trained on the basis of the 

negative gradient imz , and the size of the optimal step m  for gradient descent is 

calculated as follows: 
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where
1,  if 

{ }
0,otherwise

jm

jm

x R
I x R


 = 


, 

jmR  is the region into which the feature space is 

divided, and 
jmb  is the variable branch point. 

The gradient boosted regression tree model can be used to analyze and visualize how a 

dependent variable varies with an independent variable (i.e., the nonlinear effect of the 

independent variable on the dependent variable). 

The test of the gradient boosted regression tree model must be based on the predictive 

effect of the model to ensure that the overall prediction error is maintained within a certain 

range. The common explained variance, mean absolute error, mean squared error, and R2 

are selected as evaluation metrics for testing the goodness-of-fit of the model. 

In the cross-validation of the present gradient boosted regression tree model, the example 

of a congested air network is considered. The obtained scores are presented in Fig. 8. 

The first and second scores are low. The remaining scores are clustered around 0.9, 

which is high. The average of the ten scores is 0.89, which indicates that the constructed 

model is stable, has favorable generalizability, and can be well applied to new datasets. 

 

3.4.2 Analysis of the evolutionary mechanism of congestion 

A gradient boosted regression model is employed to analyze the distribution 

relationship between a set of congestion indicators and flight time as well as the changes 

in congestion with variations in flight time. 

Fig. 9 displays the predicted flight time and actual flight time as functions of the number 

of altitude adjustments, the number of flights, and the rate of approaching traffic. The 



orange lines represent the flight time obtained from the gradient boosted regression tree 

model, and the blue lines denote the actual flight time. The orange lines cover the blue 

lines well, which indicates that the gradient boosted regression tree model accurately fits 

the flight time to the three congestion indicators. 

The values of the evaluation indicators in the gradient boosted regression tree model 

are presented in Table3. 

4.0 MULTIOBJECTIVE OPTIMIZATION OF ROUTE NETWORK 

CONGESTION 

4.1 Network congestion optimization model 

According to the evolutionary mechanism of congestion, the structure and distribution of 

traffic flow in the route network are optimized and adjusted from a systematic perspective 

such that congestion can be mitigated. The optimization model can be more widely 

applied through the global optimization and control of this congestion. 

 

4.1.1 Model assumptions 

Due to the complexity of the route network structure and actual operation, in order to 

restore the display problem more accurately, the relevant assumptions of the established 

mathematical model are as follows. First, the aircraft is considered as a mass point along 

the centerline of the route at a fixed cruising speed, regardless of individual differences 

such as aircraft type. Second, the connection relationship between waypoints (i.e., the 

connection order of all segments and nodes of any route) remains unchanged under 



optimization. For example, the connection order of waypoints along route H before and 

after route network optimization is DAL-P333-YJ-JHG. Third, three zones, namely the 

forbidden area, restricted area, and dangerous area, cannot be crossed. Fourth, congestion 

in the control area is not considered. 

 

4.1.2 Model constraints 

In view of the actual operation of the air network, the constraints described in the 

following sections must be established for developing a congestion optimization scheme. 

a) Constraint on the upper limit of the route operation 

The number of flights operating within a fixed period in the route should be less than the 

control limit . In general, , as presented in (17). 

, ( ) , [1, ], [1, ], [1, ]i jx k M k K i n j m     (17) 

b) Nonnegative constraints on variables 

The number of flights in any given route must be a positive integer. 

*

, ( ) , [1, ], [1, ], [1, ]i jx k N k K i n j m     (18) 

 

4.1.3 Network optimization modeling 

To ensure the optimal operation of the route network at all times, the optimization model 

takes 1 h as the optimization period and analyzes the dynamic operation of the traffic 

flow to minimize the operating and optimization costs, the number of altitude adjustments 

M 50M =



and the rate of approaching traffic, the number of head-to-head flights diverted is 

maximized. Network optimization model is expressed as follows. 

a) The objective of the established optimization model is to minimize the operating and 

optimization cost of the air network. The aforementioned objective function is expressed 

as follows: 

1, , ,

1 1 1 1 1

min  = + ( )
n m n K m

P d i j p i j i j

i j i k j

C C C C x k L
= = = = =

= +    (19) 

1 Add a new segment next to segment 
=

0 otherwise

j

j

r






，

，
  (20) 

b) The number of flights in a segment per unit of time should be minimized. The 

number of flights and the number of altitude adjustments in a segment are linearly related. 

The number of flights is set as x , and CN , which represents the number of altitude 

adjustments obtained through regression fitting, is expressed in (21). The fitting results 

reveal an R2 value of 0.866. Because the number of altitude adjustments is an integer, the 

calculation result obtained using (21) is rounded up. 

20.3 5.417 1.702CN x x= + −   (21) 

The correlation analysis of the rate of approaching traffic and the number of flights in 

a segment reveal that these two indicators are not linearly related. The rate of approaching 

traffic, which is obtained from the relative distance between two aircraft, is affected by 

changes in the number of flights and the number of altitude adjustments. The relationship 

between these two indicators and the rate of approaching traffic is determined by 

considering the number of flights and the number of altitude adjustments concurrently. 



Through regression fitting, the relationships among the rate of approaching traffic, the 

number of flights, and the number of altitude adjustments are established. 

2 2(0.116 0.79 9.12 0.639 5.83 ) 10pr x y xy x −= + − + −    (22) 

where  is equal to CN , that is, the number of altitude adjustments made in the segment. 

Thus, the objective function of the optimization model can be expressed as follows: 

2

, , ,

1 1 1 1 1 1

1
( ( )) 0.3 ( ) 5.417 ( ) 1.702

n K m n K m

C i j i j i j

i k j i k j

N k x k x k
m= = = = = =

= + −    (23) 

,

1 1 1

1
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n K m

i j

i k j

pr k
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  (24) 

, ,

1 1 1

1
min (  ( ( ) ( ( )) ))

n K m

i j C i j

i k j

pr k N k
m = = =

+   (25) 

Given that the independent variables in the objective functions of running cost, altitude 

adjustments, and proximity rate are frame times, the objectives functions expressed in 

(23) and (25) can be combined into one objective function (objective function 1). 

Objective function 1 is expressed as follows: 

, ,

1 1 1

1
min (  ( ( ) ( ( )) ))

n K m

i j C i j

i k j

pr k N k C
m = = =

+ +    (26) 

c) Moreover, the number of head-to-head flights diverted is maximized, that is, the ratio 

of the number of head-to-head flights diverted to the total number of head-to-head flights 

diverted u  should be as large as possible. The objective function 2 is expressed as 

follows: 

max  =
v

u
   (27) 

y



where C  is the total cost; 
1PC  is the cost of a new segment; and 

d
C  is the operating 

cost, which includes the operating cost of the original segment and the cost of adding a 

detour to the new segment. The parameters 
,i jL and

, ( )i jx k  represent the length of 

segment j  of route i  and the number of flights in this segment at moment k, 

respectively. The parameter 
, ,( )i j i jx k L  is used to calculate the operating cost of segment 

j of route i  at moment k. The parameter CN  represents the number of altitude 

adjustments the segment, 
,( ( ))C i jN k denotes the number of altitude adjustments segment 

j  of route i  at moment k, pr  is the rate of approaching traffic in the segment, and 

, ( )i jpr k  is the rate of approaching traffic in segment j  of route i  at moment k. 

 

4.2 Multiobjective particle swarm optimization–based model solution for air 

networks 

We employ the particle swarm optimization (PSO) algorithm with global optimization 

characteristics to solve the multiobjective optimization model of the route network. The 

particle swarm optimization algorithm, which was first developed by Kennedy and 

Eberhart (24). Mathematical descriptions of the PSO algorithm is as follow: 

In particle swarm optimization algorithms, a particle refers to an individual with 

unique properties, and an assemblage of numerous particles is called a population. In an 

-dimensional particle swarm optimization problem, the number of populations is , 

and each particle position in the iterative process can be regarded as the implicit optimum 

in the global optimization process, where the current position of the first particle is i

n m



1 2( , ,..., )T

i i i inx x x x= , and its velocity is 
1 2( , ,..., )T

i i i inv v v v= . The personal best position of 

particle i  in the iterative process is 
1 2( , ,..., )T

i i i inp p p p= , which is also denoted as
bestP , 

and the best position experienced by all particle groups is 
1 2( , ,..., )T

g g g gnp p p p= , which 

is also designated as the global best (
bestG ). After the sum of 

bestP  and 
bestG  is 

calculated, the iterative process by which the velocity and position of the first particle 

move in the first j  dimensions of the search space can be determined as follows: 

1 1 2 2(( ) ) (( ) )k k k k k k

il il best il il best l ilv wv C rand P x C rand G x= + − + −  (28) 

1 1k k k

il il ilx x v+ += +  (29) 

Where k

ilv  and 1k

ilx + are the velocity of particle i  and the position components in 

dimension l , respectively. The parameter w  represents the inertia weight, which is a 

critical parameter affecting the search performance of the algorithm. The parameters 1C

and 2C  represent two acceleration constants. Specifically, 1C  is the self-learning factor 

of the particle, whereas 2C  is the global learning factor of the particle. Two stochastic 

constants 1rand and 2rand  are located in the interval (0, 1), ( )k

best ilP  is the individual 

extremum and the first -dimensional component of particle i  in the kth iteration, and 

( )k

best lG  is the first -dimensional component of the global extremum of the population 

in the kth iteration. 

In multiobjective optimization, objectives are incompatible; the optimal solution 

under one objective may be the least favorable solution under another objective. A 

solution that reduces at least one other objective function while improving one objective 

is called a Pareto optimal solution, the set of optimal solutions of an objective function is 

called the Pareto set, and the boundary defined by the set of all point mapped from the 

i

l

l



Pareto optimal set is called the Pareto-optimal front. A multiobjective particle swarm 

optimization algorithm uses as few computational resources as possible to obtain a 

noninferior set of solutions close to the true Pareto front. These solutions must cover and 

be uniformly distributed throughout the entire search space. The flowchart of the 

multiobjective particle swarm optimization algorithm is displayed in Fig. 10. 

To enhance the credibility of the optimization results, this paper incorporates the 

simulated annealing algorithm to solve the established multi-objective optimization 

model of the route network (25). The algorithm begins by setting an initial solution and 

generating another solution randomly within a defined range. The Metropolis sampling 

acceptance criterion is then utilized, enabling the objective function to fluctuate within a 

limited range. This process continues until a locally optimal solution is obtained. The 

determination of the locally optimal solution relies on the control parameter 't', which 

resembles the temperature 'T' in a physical process. The specific procedure of the 

simulated annealing algorithm is illustrated in Fig 11. 

 

5.0 EXAMPLE ANALYSIS 

5.1 Nominal track generation 

Radar track data for 1 year from the control sector of the Yunnan region are selected for 

preprocessing. Next, an adversarial neural network is constructed to train the data, the 

nominal trajectory is extracted, and the operational route network is generated. The 



parameters and excitation functions set by the adversarial neural network are described 

in the following text. 

Padding is conducted on the radar trajectory data, with each trajectory containing 1231 

trajectory points. Information on six features is available for each of these points: latitude, 

longitude, height, heading, velocity, and climb speed. After performing padding, the 

embedding layer is added to the adversarial neural network, and the six-dimensional 

trajectory data are tiled into one-dimensional data and input into the adversarial neural 

network generator for training. The first hidden layer is set as a fully connected layer with 

1000 neurons, and the dropout probability is set as 0.3 to prevent the overfitting that 

occurs when large quantities of data are involved. The second hidden layer is set as a 

fully connected layer with 2000 neurons, the excitation functions are ReLU functions, 

and the dropout probability is set as 0.6. 

The generator output is employed as the input data of the discriminator, and the 

ReLU function is selected as the excitation function. The neural network in the 

discriminator sets a fully connected layer with 2000 neurons as a hidden layer. The ReLU 

function is selected as the excitation function, and the dropout probability is set as 0.6. 

The sigmoid function is used to judge the trained data. If the input is true, the output is 1; 

otherwise, the output is 0. The cross-entropy function is employed as the loss function. 

The nominal trajectory generated from the 1-year radar track data is relatively 

complex. Mapping this trajectory on a 1-day scale enables the clear visualization of the 

direction of route operation. Fig. 12 is the flight trajectory operation diagram of the 

aircraft obtained by plotting points based on the radar trajectory data. Fig. 14 presents the 



nominal trajectory map generated using the adversarial neural network. The purple circles 

in the figure are crucial nodes along the route, including airports, entry or exit points, and 

route intersection points. The red areas around the points are thermal values. A higher 

intensity of red indicates more traffic between two points in the segment. A comparison 

of Figs. 12 and 13 reveals that the nominal trajectory generated using the adversarial 

neural network more closely reflects the actual flight direction of aircraft and the traffic 

on the flight path than does the nominal trajectory generated using the radar track data. 

As shown in Fig. 14, the planned and actual route networks differ considerably. As 

presented in Table 4, regarding waypoints and route connections in Kunming control 

sector 2, A581, H121, W143, and H24 are routes in the planned route network, with 

W143 and H121 being cross routes. However, in the actual route network, no cross flights 

are observable along routes A581 and H24. Routes W143 and A581 pass through 

waypoint LPS, and routes H121 and H24 pass through waypoint P249. In the actual route 

network, routes W143 and A581 are merged, and routes H121 and H24 are merged. 

 

5.2 Evolutionary mechanism of congestion 

On the basis of the gradient boosted regression tree model, a regression model is fitted 

to the three integral congestion indicators of a randomly selected segment for 5 days by 

using data from the Yunnan control sector. The effects of the number of altitude 

adjustments, the number of flights, and the rate of approaching traffic on the congestion 

status of a segment are determined. 



We first analyze the evolutionary pattern of the number of altitude adjustments a 

segment and the state of congestion state in the segment (Fig. 15). The red and blue lines 

in Fig. 15 denote the states of congestion and noncongestion, respectively. The previous 

value of the traffic corresponding to the red line exceeds the previous value of the traffic 

corresponding to the blue line, which indicates that the more times aircraft appear in a 

segment, the higher is the probability of congestion in the segment. However, in one 

scenario, the segment is noncongested when the number of altitude adjustments the 

segment is high. In another scenario, the segment is congested when the number of 

altitude adjustments the segment is low. In Fig. 15a, the number of altitude adjustments 

at 9:00 and 10:00 is 174 and 151, respectively. At 11:00, this number is 145 but the 

segment is congested. The number of altitude adjustments at 20:00 is 130, and no 

congestion is noted.  The number of altitude adjustments at 21:00 is 118, the segment is 

congested. The differences between the congestion index values at the aforementioned 

time points are not extremely large. Considering that the segment is sometimes congested 

when the number of altitude adjustments is relatively low but is sometimes noncongested 

when the number of altitude adjustments is relatively high, the combined effect of the 

number of altitude adjustments and the other two crucial indicators (i.e., the number of 

flights and the rate of approaching traffic) has an indirect influence on the state of 

congestion. Analysis of the altitude adjustments times corresponding to the state of 

congestion in the segment on different days reveals the following information. When the 

difference between the number of flights going up and down the segment is large, no 

congestion is observed. Conversely, when this difference is small, congestion is observed. 



In Fig. 16a, the number of altitude adjustments at 9:00 is 174, and the segment is 

noncongested. However, in Fig. 13b, the number of altitude adjustments at 11:00, 17:00, 

and 19:00 is 44, 46, and 46, respectively, and the segment is congested at all three times. 

Thus, on different days, the number of flights in a given segment cannot be used as an 

indicator of the state of congestion in the segment. In summary, the number of altitude 

adjustmentst exerts a strong influence on the evolution of congestion in the segment. The 

higher the congestion index value, the higher is the possibility of congestion in a segment. 

The congestion in a segment is also related to the number of flights and the rate of 

approaching traffic in the segment. 

We first analyze the evolutionary pattern of the number of altitude adjustments a 

segment and the state of congestion state in the segment (Fig. 15). The red and blue 

lines in Fig. 15 denote the states of congestion and noncongestion, respectively. The 

previous value of the traffic corresponding to the red line exceeds the previous value of 

the traffic corresponding to the blue line, which indicates that the more times aircraft 

appear in a segment, the higher is the probability of congestion in the segment. However, 

in one scenario, the segment is noncongested when the number of altitude adjustments 

the segment is high. In another scenario, the segment is congested when the number of 

altitude adjustments the segment is low. In Fig. 15a, the number of altitude adjustments 

at 9:00 and 10:00 is 174 and 151, respectively. At 11:00, this number is 145 but the 

segment is congested. The number of altitude adjustments at 20:00 is 130, and no 

congestion is noted.  The number of altitude adjustments at 21:00 is 118, the segment 

is congested. The differences between the congestion index values at the 



aforementioned time points are not extremely large. Considering that the segment is 

sometimes congested when the number of altitude adjustments is relatively low but is 

sometimes noncongested when the number of altitude adjustments is relatively high, 

the combined effect of the number of altitude adjustments and the other two crucial 

indicators (i.e., the number of flights and the rate of approaching traffic) has an indirect 

influence on the state of congestion. Analysis of the altitude adjustments times 

corresponding to the state of congestion in the segment on different days reveals the 

following information. When the difference between the number of flights going up and 

down the segment is large, no congestion is observed. Conversely, when this difference 

is small, congestion is observed. In Fig. 16a, the number of altitude adjustments at 9:00 

is 174, and the segment is noncongested. However, in Fig. 15b, the number of altitude 

adjustments at 11:00, 17:00, and 19:00 is 44, 46, and 46, respectively, and the segment 

is congested at all three times. Thus, on different days, the number of flights in a given 

segment cannot be used as an indicator of the state of congestion in the segment. In 

summary, the number of altitude adjustmentst exerts a strong influence on the evolution 

of congestion in the segment. The higher the congestion index value, the higher is the 

possibility of congestion in a segment. 

The congestion in a segment is also related to the number of flights and the rate of 

approaching traffic in the segment. 

We analyze the evolutionary pattern of the rate of approaching traffic and the state 

of congestion in the flight segment. In Fig. 17, the red and blue lines indicate that the 

segment is in a congested and noncongested state, respectively. Overall, the rate of 



approaching traffic corresponding to the red line is higher than that corresponding to the 

blue line. In Fig. 17b, the rate of approaching traffic at 8:00 is greater than that at 7:00 

and 9:00; however, the segment is noncongested. Considering the other two indicators, 

the number of altitude adjustments at 8:00 is relatively small in Figs. 15b and 16b, and 

the segment is noncongested. The aforementioned results indicate that the rate of 

approaching traffic in a noncongested segment does not exert a substantial effect on the 

state of congestion in the segment. In Fig. 16a, the number of flights at 10:00 is 19, which 

is the highest number of flights at a certain time during the considered day. However, the 

segment is noncongested. At 1:00 and 4:00, the segment is congested even though the 

number of flights is only 10, which is the smallest number of flights in the segment during 

a congested period on the considered day. In Fig. 15a, the number of altitude adjustments 

in the flight segment at 1:00, 4:00, and 10:00 is 118, 119, and 151, respectively. In Fig. 

17a, the rates of approaching traffic at 1:00, 4:00, and 10:00 are 91.64 10− , 91.13 10− , 

and 134.63 10− , respectively, and the rate of approaching traffic at 10:00 is significantly 

smaller than are those at 1:00 and 4:00. Thus, in a state of congestion, changes in the rate 

of approaching traffic strongly affect the congestion status of a segment. The 

aforementioned analysis indicates that of the three considered indicators, the rate of 

approaching traffic best reflects the evolutionary mechanism of congestion. 

The effects of individual indicators on congestion is analyzed to determine its 

evolutionary mechanism in the route network. The evolution of the considered indicators 

in states of congestion and noncongestion is examined in relation to the evolution of 

congestion in the route network. The values of critical congestion indicators in states of 



congestion and noncongestion are extracted such that these indicators can be applied to 

the route network according to the order in which segments along the route are connected. 

Furthermore, the distribution relationships among the three considered indicators are 

determined. The evolutionary mechanism of congestion is illustrated in Figs. 18 and 19, 

where the color gradient represents the change in the number of flights. 

Fig. 18 displays the changes in the relationships among the three considered indicators 

when the segment is congested. When the number of flights in the segment is 1–35 and 

the number of altitude adjustments is 50–400, the rate of approaching traffic is extremely 

small and changes negligibly. When the number of flights is 35–40 and the number of 

altitude adjustments is 50–350, a small increase in the rate of approaching traffic occurs. 

A larger increase in this rate is observed when the number of flights and altitude 

adjustments is 40–45 and 50–300, respectively. This phenomenon indicates that when 

the number of flights increases to a certain extent, the rate of approaching traffic increases 

rapidly. This rate does not peak when the maximum numbers of flights and altitude 

adjustments are modified; instead, it shifts marginally. Specifically, when the number of 

flights exceeds the number of flights corresponding to the highest rate of approaching 

traffic, the air traffic controller slows the rate of approaching traffic. 

Fig. 19 illustrates the distribution relationships among the three considered indicators in 

a state of noncongestion. Because the Fig. 19 is obtained through scatter interpolation 

and because no original data are available for the indicators corresponding to a plane, part 

of the surface appears as a plane. When the number of flights and altitude adjustments is 

1–10 and 100–200, respectively, the rate of approaching traffic does not increase. By 



contrast, this rate increases rapidly and then decreases rapidly when the number of flights 

and altitude adjustments is 10–20 and 50–200, respectively. When the number of flights 

and altitude adjustments is 20–50 and 50–200, respectively, the rate of approaching 

traffic essentially remains unchanged. Table 5 presents a summary of evolutionary 

relationships between the status and indicators of congestion in a flight segment. 

 

5.3 Route network optimization 

Kunming control sector 6 encompasses eight regional airports (i.e., Diqing Shangri-La 

Airport, Ningland Luguhu Airport, Lijiang Sanyi International Airport, Dali Huangcaoba 

Airport, Panzhihua Bao’anying Airport, Baoshan Yunrui Airport, Tengchong Tuofeng 

Airport, and Dehong Mangshi Airport) and contains multiple routes, including H87, J512, 

J514, H90, H117, W162, and X33. This sector is selected for analysis because the eight 

airports are close to each other and have high flight volumes. Moreover, aircraft flying 

on the aforementioned sector make numerous altitude adjustments, and the route network 

is prone to congestion. The optimization period is set as 1 h, and the parameters of the 

particle swarm optimization algorithm are set as follows: inertia weight w = 0.8, number 

of particles = 1000, self-learning factor c1 = 0.1, global learning factor c2 = 0.1, and 

number of iterations = 100. 

The particle swarm optimization algorithm is used to solve the developed 

multiobjective optimization model. Figs. 20 and 121 present the optimal solution sets 

obtained by the two fitness functions at 30 iterations, and Fig. 22 displays the Pareto front 



at this point. Here, input_x1 is the number of flights (an independent variable), and 

input_x2 is the ratio of diverted flights. Fig. 22 indicates that when the particle swarm 

optimization algorithm reaches 30 iterations, the blue points are approaching the 

optimum solution, and a Pareto front has formed. 

Figs. 23 and 24 display the optimal solution sets obtained by the two fitness functions 

at 100 iterations, and Fig. 25 presents the Pareto front at this point. Fig. 25 indicates 

that at 100 iterations, the blue point almost disappears, which suggests that all the 

particle points are close to the optimal position and that the optimal Pareto solution has 

been obtained. The Pareto solution set provides various optimization schemes for 

Kunming control sector 6.A suitable optimization scheme can be selected according to 

actual operations and the preferences of air traffic controllers. Fig. 26 presents one of 

these schemes. The red line represents the newly added one-way line. A one-way line 

is added to a part of the flight segment of P334-PAN-P259, which reduces the number 

of head-to-head flights. This step results in the reduction of the rate of approaching 

traffic in the segment and alleviates congestion in the route network. Similarly, the 

utilization of the simulated annealing algorithm for obtaining a solution is presented in 

Figure 27. 

A comparison of the congestion index values obtained before and after optimization 

(Table 6) indicate that the number of flights, the number of altitude adjustments, and the 

rate of approaching traffic in a segment decrease after optimization. Thus, the 

optimization model for PSO is effective in alleviating congestion in the route network. 



The average preoptimization flight time is 485 s, whereas the average postoptimization 

flight time is 435 s, which corresponds to a 10% reduction. 

 

6.0 CONCLUSIONS 

In this study, a flight network is generated from flight trajectory data by using deep-

learning-related methods, traffic flow characteristics observed in actual flight data are 

examined, the evolutionary mechanism of congestion in the route network is investigated, 

and a multiobjective optimization scheme for mitigating congestion in the network is 

established. This study is summarized in the following text. 

First, a real operational route is generated. Considering the large deviation between 

planned and actual operational routes, radar track data are preprocessed with the 

preservation of track characteristics. An adversarial neural network is employed to 

generate the nominal track from a large volume of radar track data. To obtain the real 

operational route, rules concerning track distribution and operation are examined. 

Second, the evolutionary mechanism of congestion in the route network is explored. 

By extending road traffic engineering theory to the civil aviation field, we use the flight 

time as a congestion indicator and select a set of congestion indicators by integrating the 

operational characteristics of actual aircraft with the network operation status. Under a 

gradient boosted regression tree model, a set of three critical congestion indicators is 

established. We analyze the relationships between these indicators and the flight time, 

investigate the patterns of change in these indicators and in the state of congestion in 



different flight segments at different times, and examine the evolutionary mechanism of 

congestion in the route network. 

Third, we construct an optimization scheme for alleviating congestion in the route 

network. On the basis of the evolutionary mechanism of congestion, a multiobjective 

optimization model is established with the objectives of minimizing operating and 

optimization costs, the number of altitude adjustments, and the rate of approaching traffic 

as well as maximizing the proportion of same-direction flights among the diverted flights. 

A particle swarm optimization algorithm is executed to solve the developed model and 

obtain a set of Pareto optimal solutions. The model can be employed to select different 

optimal solutions according to the actual operation of the route network. Furthermore, 

different optimal solutions can be applied to different congested segments such that 

congestion can be mitigated to the highest extent. 

Because of the high complexity of air networks and the high dimensionality and 

large scale of radar track data, research on methods for the intelligent analysis of historical 

radar track data is incipient. On the basis of the present study, further investigations can 

be conducted on different aspects. 

First, this study is a preliminary exploration of the evolutionary mechanism of 

congestion in air networks. Because of limitations in time and energy, the influence of 

the congestion propagation law on the congestion mechanism is not considered. Future 

studies can investigate this influence. 

Second, in the developed multiobjective optimization model, the effects of 

meteorological factors, major events, and the flight performance of actual aircraft on 



congestion are not considered. Future studies can incorporate such data into the 

developed optimization model to improve its performance. 
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Table 1 

Importance of congestion indicators in congested conditions 

Scenario Segment Congestion Indicators Importance(GBDT) Importance(RF)  

1 Rate of approaching traffic 0.660965 0.470345  

2 Number of altitude adjustments 0.155885 0.255387  

3 Number of flights 0.140275 0.172233  

4 Segment traffic density 0.023028 0.009387  

5 Segment traffic flow 0.009377 0.008765  

6 Segment traffic altitude adjustment rate 0.005857 0.006986  

7 Number of altitude layers passed by the aircraft 0.004613 0.001414  



Table 2 

Importance of congestion indicators in noncongested conditions 

Scenario Segment Congestion Indicators Importance(GBDT) Importance(RF)  

1 Number of  altitude adjustments 0.435617 0.356843  

2 Number of flights 0.289859 0.306524  

3 Rate of approaching traffic 0.266781 0.297009  

4 Segment traffic density 0.003563 0.035765  

5 Segment traffic flow 0.003553 0.002987  

6 Segment traffic altitude adjustment rate 0.000593 0.000675  

7 Number of altitude layers passed by the aircraft 0.000034 0.000197  

 

  



Table 3 

Evaluation indicator values for the gradient boosted regression tree model 

Scenario Evaluation Indicators Values 

1 EV 0.87105 

2 MAE 0.022152 

3 MSE 0.001049 

4 R2 0.930826 

 

  



 

Table 4 

Partial plan of route connection in kunming control sector 2 

Scenario Route Waypoints 

1 A581 LPS-XISLI 

2 W143 LPS-KIBES 

3 H121 P249-XISLI 

4 H24 P249-P146 

 

  



Table 5 

Evolutionary relationships between congestion status and congestion indicators in a segment 

Scenario Number of flights Number of  altitude adjustments Rate of approaching traffic /E-03 Route Status 

1 1-10 100-200 0-0.1 smooth and unhindered 

2 10-20 50-200 0.1-1 smooth and unhindered 

3 20-35 50-400 0-0.1 Congestion 

4 35-40 50-350 0.1-0.4 Congestion 

5 40-45 50-300 0.4-1.2 Congestion 

6 20-50 50-200 0-0.1 smooth and unhindered 

 

  



Table 6 

Congestion index values for a segment before and after optimization 

Scenario Indicators Before Optimization After Optimization(PSO) After Optimization(SA) 

1 Number of flights  22 15 20 

2 

Number of altitude 

adjustments  

221 105 155 

3 Rate of approaching traffic   101.17 10−  122.19 10−   121.86 10−   

 



 

Figure captions 

Figure1. Iterative graph of the loss function. 

Figure 2. Joint density distribution of the number of flights and the flight time. 

Figure 3. Joint density distribution of the altitude adjustments and the flight time in a 

flight segment. 

Figure 4.Joint density distribution of the altitude adjustments and the number of flights 

in a flight segment. 

Figure 5. Linear regression between the number of flights and the flight time in a flight 

segment.  

Figure 6.Linear regression between the altitude adjustments and the flight time. 

Figure 7.Results of tenfold cross-validation for RF and GBDT. 

 

Figure 8.Results of tenfold cross-validation. 

Figure 9.Fitting results of the gradient boosted regression tree model. 

Figure 10. Flowchart of the multiobjective particle swarm optimization algorithm. 

Figure 11. Flow chart of the multiobjective simulated annealing algorithm. 

Figure 12. Flight track operation map of the Kunming control sector. 

Figure 13. Nominal track map of the Kunming control sector.Figure 12. PSO process. 

Figure 14. Nominal track map of Kunming control sector 2. 

Figure 15. Evolutionary pattern of the number of altitude adjustments and the state of 

congestion in the segment. 

Figure 16. Evolutionary pattern of the number of flights and the state of congestion in 



a segment. 

Figure 17. Evolution of the relationship between the rate of approaching traffic and the 

congestion in a segment. 

Figure 18. Evolutionary mechanism of congestion in a segment. 

Figure 19. Distribution relationships among the congestion indicators when a segment 

is noncongested. 

Figure 20.Solution of objective function 1 at 30 iterations. 

Figure 21. Solution of objective function 2 at 30 iterations. 

Figure 22. Pareto front at 30 iterations. 

Figure 23. Solution of objective function 1 at 100 iterations. 

Figure 24. Solution of objective function 2 at 100 iterations. 

Figure 25. Pareto front of objective function 1 at 30 iterations. 

Figure 26. Network optimization scheme for Yunnan control sector 6 with PSO. 

Figure 27. Network optimization scheme for Yunnan control sector 6 with SA. 

 

 


