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SUPPLIMENTARY MATERIAL: EXPONENTIAL AND GAMMA

FORM FOR TAIL EXPANSIONS OF FIRST-PASSAGE DISTRI-

BUTIONS IN SEMI-MARKOV PROCESSES

RONALD W. BUTLER,∗ Southern Methodist University

7.1. Proof of Proposition 1

Suppose the state space IM consists of relevant states in Im and non-relevant

states in IM−m = {m+ 1, . . . ,M}. Expression (4) can be applied to state space

IM using the M ×M transmittance matrix TM (s) = PM �MM (s). In block

form, write

IM −TM (s) =

 Im −T(s) −TImIM−m
(s)

0 IM−m −TIM−mIM−m
(s)

 ,

where −TIM−mIm(s) = 0 is a matrix of zeros, since the states in IM−m are not

relevant. Applying (4), then

f1mF1m(s) =
(m, 1) cofactor of IM −TM (s)

(m,m) cofactor of IM −TM (s)

=
(m, 1) cofactor of Im −T(s)

(m,m) cofactor of Im −T(s)
×
∣∣IM−m −TIM−mIM−m

(s)
∣∣∣∣IM−m −TIM−mIM−m

(s)
∣∣ . (1)

The first factor in (1) is defined on at least {Re(s) ≤ 0}. The second factor

is 1 apart from at s = 0 where it takes the form 0/0. The determinant is 0

due to the factor that TIM−mIM−m
(0)1 = 1, with 1 = (1, . . . , 1)T . The order of

the removable singularity is the algebraic multiplicity of eigenvalue 1 for the

matrix TIM−mIM−m
(0) = PIM−mIM−m

which counts the number of irreducible

and absorbing subchains in IM−m.
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7.2. Convergence domain

Assuming R1→m, there are a countable number of pathways from 1→ m and

all states in Im−1 are represented in at least one pathway. If all states in Im−1
are progressive, then the (m,m) cofactor of Im −P� Z in the denominator of

F1m(s) is 1 as seen in (17). Thus, F1m(s) has converge domain based only on

convergence of the the (m, 1) cofactor of Im −P� Z so that b = min{bij : i ∈

Im−1, j ∈ Im\{1}}.

Now suppose that not all states are progressive so there is at least one

irreducible class in Im−1. This may be as limited as a single state i for which

pii > 0 with all other states progressive. More generally, the communication

equivalence relation partitions Im−1 into classes C1, . . . , Cr which are either

irreducible or else single progressive states with K ⊆ {1, . . . , r} indexing the

irreducible classes. We may order these r classes so that Ci → Cj can occur if

i < j but not when j < i. With this ordering, the matrix (P�Z)m;m has block

diagonals {(P�Z)CiCi} for the classes {Ci} and consists of zero blocks below the

diagonal. For each block Ci representing a progressive state, (P�Z)CiCi = 0 is

1×1. For an irreducible block Ci of P�Z, let λ1{(P�Z)CiCi} denote its Perron-

Frobenius eigenvalue. Then, the Perron-Frobenius eigenvalue for (P � Z)m;m

is the largest such eigenvalue given by

λ1{(P� Z)m;m} = max
i∈K

λ1{(P� Z)CiCi}. (2)

When all entries of Z are 1, then λ1{PCiCi} < 1 for each i ∈ K since each PCiCi

has a row sum that is < 1. This follows from the Perron-Frobenius theorem

for irreducible matrices in Seneta (2006, thm. 1.5(e)). Thus O ⊃ {Zm; ∈

[0, 1](m−1)×m}. This same theorem ensures that the eigenvalues in (2) are all

monotone increasing in zij for each (i, j) ∈ Z̄2 (such that pij > 0) and i, j ∈ Ck
for k ∈ K. Hence the convergence domain for F1m(s) must take the form {s < b}

for some b > 0.



First-passage distributions in semi-Markov processes 3

7.3. Proof of Proposition 2

Let U =
∑

i∈Im−1

∑
j∈Im Nij count the number of steps required for first

passage from 1→ m. In block form, define

P̃ =

 Pm;m pm

0T 0

 and Z̃ =

 Zm;m zm

0T 0

 ,

where m; indicates removing the mth row and ;m indicates removing the mth

column. Then,

P̃n=

 Pn
m;m Pn−1

m;mpm

0T 0

 (3)

(Z̃� P̃)
n
=

 (Zm;m �Pm;m)n (Zm;m �Pm;m)n−1 (zm � pm)

0T 0

 . (4)

Take ξT1\ as the (m− 1)× 1 indicator vector for state 1. Then, by (3),

P(U = n) = ξT1\P
n−1
m;mpm = ξT1 P̃nξm

where ξ1 and ξm are m×1 indicators for states 1 and m. By the same argument

using (4),

E

 ∏
i∈Im−1

∏
j∈Im

z
Nij

ij 1{U=n}

 = ξT1\ (Zm;m �Pm;m)n−1 (zm � pm)

= ξT1 (P̃� Z)nξm. (5)

Thus, if P≤N consists of all distinct pathways from 1 → m requiring at most

N steps, then from (5),

∑
p∈P≤N

Tp(s) =

N∑
n=1

ξT1 {P̃�M(s)}nξm

= ξT1

({
Im − P̃�M(s)

}−1 [
Im − {P̃�M(s)}N+1

])
ξm (6)

when Im − P̃�M(s) is invertible, i.e. on C = {s ∈ C : ||λ1{P̃�M(s)}|| < 1}.
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For s ∈ C, {P̃�M(s)}N+1 → 0 as N →∞ for the following reason. Complex

matrix P̃�M(s) is similar to its Jordan form matrix J(s) hence its Nth power

is similar to J(s)N . By similarity the largest modulus term in {P̃�M(s)}N has

the same asymptotic order as the largest modulus component of J(s)N which

is O
(
Nm‖λ1{P̃�M(s)}‖N

)
→ 0 as N →∞.

Thus, the right-hand side of (6) has the finite limit∑
p∈P
Tp(s) := lim

N→∞

∑
p∈P≤N

Tp(s) = ξT1

{
Im − P̃�M(s)

}−1
ξm (7)

=
(−1)m+1|Ψm;1(s)|
|Im − P̃�M(s)|

=
(−1)m+1|Ψm;1(s)|
|Ψm;m(s)|

s ∈ C.

Cramer’s rule has been used in the third equality and the last equality follows

from the fact that the last row of Im − P̃ �M(s) is ξTm. The left side of (7)

is therefore well-defined and converges to the cofactor ratio for s ∈ C ⊂ C.

Note that the values of s which lead to an eigenvalue of 1 for P̃ �M(s) are

also zeros of |Ψm;m(s)| and vice versa. Under conditions R1→m and CD1→m,

C ⊃ {Re(s) < b} where b is the smallest positive zero of |Ψm;m(s)|. Conditions

R1→m and CD1→m are needed to ensure that Ψm;1(s) and Ψm;m(s) are complex

analytic in a neighbourhood of 0 and that |Ψm;m(0)| > 0. Since |Ψm;m(s)| is

monotone decreasing in s ≥ 0, a smallest positive zero for |Ψm;m(s)| must exist.

The identity in (7) continues to hold outside of {Re(s) < b} and in R ⊂ C as

given in (10). For all s ∈ R, all elements of Mm;(s) with pij > 0 have modulus

< 1 which places matrix Mm;(s) in the convergence domain of P(Zm;|X <∞).

7.4. Proof of Proposition 3

First: Presuming a convergence domain of {Re(s) < b}, we show b < bI .

With this bound and FS→m, then b < bmin.

The proof amounts to finding the domain on which the expression TP(s) =∑
p∈P Tp(s) is convergent. The class of all finite-step pathways P is partitioned

into two subsets, P0 and PC
0 , so that

f1mF1m(s) = TP(s) = TP0
(s) + TPC

0
(s),
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where TP0
(s) and TPC

0
(s) denote sums of transmittances for the distinct path-

ways in P0 and PC
0 respectively. If TP(s) < ∞ for some s ∈ (0, b), then

TP0
(s) < TP(s) < ∞. Hence, if TP0

(s) has a pole at s0, then TP(s) cannot be

convergent at s0 and b < s0. Subset P0 will be constructed in such a way that

TP0
has an infinity in (0, bI) so the convergence domain of TP0

(s) is a proper

subset of {Re(s) < bI}. Hence we conclude that b < bI .

For simplicity of argument, suppose (2, 3) ∈ L so that b23 = bI and M23(s)

converges on {Re(s) < bI} (the proof does not depend upon this particular

choice). To get P0, construct a sojourn that passes from state 2 to 3, loops

back to 2, and then is absorbed into m. For definiteness, suppose this sequence

is 1 → 6 → 2 → 3 → 2 → m and call it pathway p0 with feedback loop

2→ 3→ 2 denoted as f0 (again the proof does not depend upon these choices).

Such a pathway exists because 2 is a relevant state and we can return to 2 from

another state since all states in Im−1 communicate. The transmittance of this

pathway p0 is

Tp0
(s) = T16(s)T62(s)Tf0(s)T2m(s) Re(s) < b23 = bI , (8)

where Tf0(s) = T23(s)T32(s). The existence of such a pathway p0 for which

Tp0
(0) > 0 relies on the assumption of an irreducible class. Now let P0 consist

of the additional distinct pathways in which loop f0 is allowed to repeat in

sequence an arbitrary number of times. The pathway taking k such loops in

sequence has transmittance

Tp0,k(s) = T16(s)T62(s)T kf0 (s)T2m(s) k = 0, 1, . . . (9)

Let P0 be the collection of pathways in (9). The summation is

TP0
(s) =

∞∑
k=0

Tp0,k(s) =
T16(s)T62(s)T2m(s)

1− Tf0(s)
. (10)

The convergence domain for (10) is limited by zeros of 1 − Tf0(s). Since this

function is monotonic decreasing over s ∈ [0, bI), ranging from 1 − Tf0(0) > 0
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to 1 − Tf0(bI) = −∞ (since M23(bI) = ∞), TP0
(s) has a simple pole at some

c ∈ (0, bI). Thus, the convergence domain of TP0
(s) and hence F1m(s) is a

subset of {Re(s) < c}, where c < bI .

Second: From Proposition 1, b is the smallest positive zero of |Ψm;m(s)|

and we show that it is a simple zero. This follows using the Perron-Frobenius

theory in Seneta (2006).

To show the smallest zero b is a simple zero, consider the set of irreducible

nonnegative matrices {Tm;m(s) : |s − b| < ε, s ∈ R} with ε sufficiently

small. All these matrices have the same pattern of zeros and positive entries

given by Tm;m(0) = Pm;m. Denote the m − 1 eigenvalues of Tm;m(s) as

λ1(s), . . . , λm−1(s) so that

|Ψm;m(s)| = {1− λ1(s)}
∏
j≥2
{1− λj(s)}, (11)

where λ1(s) is the dominant real Perron-Frobenius eigenvalue.

If Pm;m is aperiodic then both Pm;m and Tm;m(s) are primitive (Seneta,

2006, thm. 1.4, p. 21). Then, by Theorem 1.1(a) and (c) of Seneta (2006,

p. 3–4), 0 < λ1(s) > ‖λj(s)‖ for j ≥ 2. If b is the smallest positive zero of

|Ψm;m(s)|, then it is also a zero of 1− λ1(s). Since the components of Tm;m(s)

are all real analytic in a neighbourhood of {|s − b| < ε} ⊂ R, then so also is

eigenvalue λ1(s). Therefore, as s→ b, 1− λ1(s)→ 0 and it has the expansion

1− λ1(s) = −λ′1(b)(s− b) +O(s− b)2. (12)

The value of λ′1(b) can be determined by direct implicit differentiation using

the chain rule. Take Cm;m(s) := λ1(s)Im−1 − Tm;m(s) and differentiate 0 ≡

|Cm;m(s)|. Using the fact that d|A| = tr{adj(A)dA}, where adj(A) is the

adjoint or adjugate of A, then

0 = d|Cm;m(s)| = tr
[
adj{Cm;m(s)}

{
λ′1(s)Im−1 −T′m;m(s)

}]
ds, (13)
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where T′m;m(s) = ∂Tm;m(s)/∂s. At s = b we solve (13) to get

λ′1(b) =
tr
[
adj{Cm;m(b)}T′m;m(b)

]
tr [adj{Cm;m(b)}]

> 0. (14)

To see that the ratio in (14) is positive, first note λ1(b) = 1 is the Perron-

Frobenius eigenvalue of Tm;m(b). Hence, all the cofactors of Im−1 − Tm;m(b)

which comprise adj{Cm;m(b)} are positive; see the proof of theorem 1.1 part

(f) on p. 7 in Seneta (2006). Since all components of T′m;m(b) are nonnegative

and at least one is positive, then both the numerator and denominator of (14)

are positive. Substituting (12) into (11) gives

|Ψm;m(s)| = −λ′1(b)(s− b)
∏
j≥2
{1− λj(b)}+O(s− b)2 (15)

as s→ b. The factor
∏
j≥2{1−λj(b)} > 0 because (a) it is a product of complex

conjugate pairs and (b) none of the terms are zero due to ‖λj(b)‖ < λ1(b) = 1

for j ≥ 2. Thus, b is a simple zero.

When Pm;m is d-periodic, then matrix Tm;m(s) has d eigenvalues of magni-

tude λ1(s) > 0 of the form λ1(s)αj where {αj = exp(i2πj/d) : j = 0, . . . , d−1}

as specified in Theorem 1.7 of Seneta (2006, p. 23). The value λ′1(b) is given in

(14) and is positive since all entries of adj{Cm;m(b)} are positive. Proof of this

latter result follows from Theorem 1.5 of Seneta (2006, p. 22) and is based on

replicating the argument used to prove Theorem 1.1 part (f) on p. 7 of Seneta

(2006) for the periodic case as the argument does not rely on aperiodicity. The

factor
∏
j≥2{1 − λj(b)} > 0 by the same logic as in the aperiodic case. Note

also that

1− λj(b) = 1− λ1(b)αj = 1− αj 6= 0 j = 1, . . . , d− 1.

Thus b is a simple zero of |Ψm;m(s)| when Pm;m is irreducible regardless of

whether it is aperiodic or periodic.

Third: We show (−1)m+1|Ψm;1(b)| > 0. Let the cofactors of Ψm;m(b) be

denoted as {Cij : i, j = 1, . . . ,m − 1}. They must all be positive according to
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the Perron-Frobenius theory mentioned in the second part of the proof. Then

|Ψm;m(b)| has a cofactor expansion down its first column as

0 = |Ψm;m(b)| = {1− T11(b)}C11 −
m−1∑
j=2

Tj1(b)Cj1. (16)

Since the last term of (16) is strictly negative and C11 > 0, then necessarily

1− T11(b) > 0.

A cofactor expansion of Ψm;1(b) can be expressed in terms of the same cofac-

tors. Take the (m, 1) minor of Im−T(b), move its last column {−T1m(b), . . . ,−Tm−1,m(b)}T

forward so it becomes the leading column of the resulting matrix. This leads

to a matrix denoted as Ψm;m;1←m(b) which is the (m,m) minor of Im − T(b)

but with its first column replaced by the last column of the (m, 1) minor. The

m− 2 steps used to move the column changes the sign of |Ψm;1(b)| by a factor

of (−1)m−2 so

(−1)m+1|Ψm;1(b)| = (−1)m+1(−1)m−2|Ψm;m;1←m(b)| = −|Ψm;m;1←m(b)|.

Taking the cofactor expansion of |Ψm;m;1←m(b)| down the first column yields

(−1)m+1|Ψm;1(b)| = −
m−1∑
j=1

−Tjm(b)Cj1 > 0. (17)

7.5. Proof of Propositions 4 and 5

We consider the convergence domain of P(Zm;|X <∞) for Zm; ∈ C(m−1)×m

and show it is convergent for ‖Z‖m; = { ‖zij‖}m; ∈ R(m−1)×m in the open (m−

1)m-dimensional rectangle (0,Mm;(b)) ⊂ R(m−1)×m when Pm; > 0 and all

its components are > 0. For settings where Z2 = {(i, j) ∈ Im−1 × Im : pij =

0} 6= ∅, then the statement of convergence means convergent for Zm; with

arbitrary values of {zij : (i, j) ∈ Z2} and with values ||zij || < Mij(b) for all

(i, j) ∈ Z̄2 = Im−1 × Im\Z2.

Assume Pm; > 0 and take Zm; ∈ C(m−1)×m such that ‖Z‖m; ∈ O ⊂
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R(m−1)×m, where O is in (8). Then,

‖P(Zm;|X <∞)‖=

∥∥∥∥∥∥E
 ∏
i∈Im−1

∏
j∈Im

z
Nij

ij

∥∥∥∥∥∥ ≤ E

 ∏
i∈Im−1

∏
j∈Im

‖zij‖Nij


= P( ‖Z‖m; |X <∞) <∞. (18)

For real-valued 0 ≤ Zm; ∈ O, generating function P(Zm;|X <∞) is strictly in-

creasing in each component of Zm;. As s ∈ [0, b) increases, then each component

of Mm;(s) increases forming a one-dimensional path through O∩[1,∞)(m−1)×m

with tangent direction M′
m;(s) such that M′

m;(s) > 0 componentwise for each

s ∈ [0, b). Since b < bmin, the path crosses the boundary of O ∩ (0,∞)(m−1)×m

at Mm;(b) ∈ (1,∞)(m−1)×m so that P(Zm;|X < ∞) converges in the open

(m − 1)m-dimensional rectangle Zm; ∈ (0,Mm;(b)) ⊂ R(m−1)×m. For Zm; ∈

C(m−1)×m, P(Zm;|X <∞) is convergent for ‖Z‖m; ∈ (0,Mm;(b)).

More generally, some components of Pm; are zero for branches in Z2. In

this setting, the same argument used above applies but with the geometry of

O∩ [1,∞)(m−1)×m restricted to the subspace of branches in complementary set

Z̄2 = {(i, j) ∈ Im−1 × Im : pij > 0}. Since the value of P(Zm;|X < ∞) does

not depend on values of zij when (i, j) ∈ Z2, we may conclude generally that

P(Zm;|X <∞) is convergent for Zm; with arbitrary values of {zij : (i, j) ∈ Z2}

and with values ||zij || < Mij(b) for all (i, j) ∈ Z̄2. In the remaining proofs

of §7.5.1, we assume Z2 = ∅ with all pij > 0 for (i, j) ∈ Im−1 × Im. When

this is not the case, then the same proofs hold when modified to consider only

components (i, j) ∈ Z̄2.

7.5.1. Continuous-time processes Since b < bmin and b is a pole of F1m(s), then b

must be a zero of |Ψm;m(s)|. Furthermore, there must exist a η1 > 0 such that

all components of Ψm;m(s) and Ψm;1(s) are analytic on {s ∈ C : Re(s) ≤ b+η1}.

Thus, there exists Y > 0 such that

max
(i,j)∈Im−1×Im

max
0≤x≤b+η1

‖Mij(x+ iy)‖ < 1 ∀|y| > Y.
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This ensures for any s ∈ A := {s ∈ C : 0 ≤ Re(s) ≤ b + η1 ∩ Im(s) > Y } ⊂ C

that

‖Mm;(s)‖ := {‖Mij(s)‖}m; ∈
{

Zm; ∈ <(m−1)×m : ‖zij‖ ≤ 1 for (i, j) ∈ Im−1 × Im
}
⊂ O.

Thus, the compound MGF F1m(s) = P{Mm;(s)|X < ∞}/f1m is analytic on

both A ⊂ C and its the complex conjugate region Ā ⊂ C where A∪ Ā includes

the distant regions away from the real axis in both its convergence domain and

in a η1-strip of its analytic continuation. Thus, analytic continuation holds on

{s ∈ C : Re(s) < b+ η1, | Im(s)| > Y }.

Now consider analytic continuation when {s ∈ C : | Im(s)| ≤ Y }. Since b is

an isolated pole of F1m(s), there exists η2 > 0 such that F1m(s) is analytic in

D(b, η2)\{b}, an open punctured disk of radius η2 centred at b.

Now consider points on the line {b + iy : η2/2 ≤ y ≤ Y + 1}. For every

y ∈ [η2/2, Y + 1], we show there exists disk D(b+ iy, ηy) with ηy > 0 such that

F1m(s) is analytic on D(b+ iy, ηy). The argument for this uses the fact that

‖Mij(b+ iy)‖ <Mij(b) <∞ y 6= 0; (i, j) ∈ Im−1 × Im (19)

as was shown by Daniels (1954, p. 632) for absolutely continuous distributions.

That (19) holds with non-strict inequality ≤ follows directly from the triangle

inequality for integrals; that it holds with strict inequality is what Daniels

showed.

From (19), there exists a sufficiently small ηy > 0 such that

sup
s∈D(b+iy,ηy)

‖Mm;(s)‖ < Mm;(b), (20)

where the sup is performed individually over each component (i, j) ∈ Z̄2.

Applying inequalities (18) and (20) for any s ∈ D(b+ iy, ηy), then

‖P{Mm;(s)|X <∞}‖ ≤ P{ ‖Mm;(s)‖ |X <∞} < P{Mm;(b)|X <∞} =∞

so that F1m(s) is analytic in D(b+ iy, ηy). Thus, F1m(s) is analytic on the open

cover ∪y∈[η2/2,Y+1]D(b + iy, εy) for compact set {b + iy : η2/2 ≤ y ≤ Y + 1}.
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Compactness guarantees a finite subcover ∪nj=1D(b + iyj , εyj ) with y1 < y2 <

· · · < yn. The two circular neighbourhoods associated with contiguous points

(b, iyj) and (b, iyj+1) create a rectangle [b, b + λj ]× [iyj , iyj+1] with λj > 0 on

which F1m(s) is analytic. Thus, if ε0 is taken to be ε0 = min{η2, λ1, . . . λn−1},

then F1m(s) is analytic on {0 ≤ Re(s) ≤ b+ ε0}\{b}.

7.5.2. Integer-time processes The arguments in this setting are the same as those

for the continuous-time setting and only concern F1m(s) defined within {s :

Re(s) ≤ b + η1 and −π < Im(s} ≤ π}, where {−π < Im(s} ≤ π} restricts

consideration to the principal convergence domain in the integer-lattice case.

For points on the boundary {b + iy : η2/2 < y ≤ π}, we can find an open

cover ∪y∈[η2/2,π]D(b+ iy, εy) on which F1m(s) is analytic if (19) can be shown

to hold for y ∈ (−π, π]\{0}. The required strict inequality in (19) does not

hold if the mass function for Mij is either periodic or degenerate at a single

integer. In the former case the maximum modulus Mij(b) repeats itself for

y ∈ (−π, π] according to the periodicity while in the latter case the inequality

becomes an identity. Apart from these two settings, strict inequality holds

as formalised in Lemma 1 below. Thus, the remainder of the argument in

continuous time applies to give F1m an analytic continuation {s : Re(s) ≤ b+ε0

and −π < Im(s} ≤ π}\{b} for some ε0 > 0.

Lemma 1. In the integer-time setting, condition ND-A1→m ensures that the

strict inequality in (19) holds for y ∈ (−π, π]\{0}.

Proof. The proof is by contradiction. Suppose ND-A1→m holds but (19) does

not. Then there must exist y ∈ (−π, π]\{0} such thatMij(b+ iy) =Mij(b)e
αi

for some α. Since b+ iy and b are in the convergence domain of Mij ,

0 + 0i =Mij(b+ iy)−Mij(b)e
iα =

∑
n≥0

ebnp(n) [{cos(yn)− cosα}+ i{sin(yn)− sinα}]

= A+ iB,
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where p is the mass function for Mij . Thus,

0 = A cosα+B sinα =
∑
n≥0

ebnp(n){cos(yn− α)− 1}. (21)

For equality (21) to hold, we require that yn − α ∈ {0,±2π, . . .} for a.e. n,

i.e. for {n ≥ 0 : p(n) > 0}. We now show this cannot hold, hence we reach a

contradiction, if ND-A1→m holds. There are two aperiodic settings to consider.

Suppose the support for p is two points. It can only be aperiodic in this

case if there is an n0 for which p(n0) > 0 < p(n0 + 1). Then a solution in

y ∈ (−π, π]\{0} to

y(n0 + 1)− α = 2m0π ∃m0 ∈ I

yn0 − α = 2m1π ∃m1 ∈ I, m1 6= m0

is y = 2(m0−m1)π which is not in (−π, π]\{0}. Thus we reach a contradiction.

Suppose the support for p is three or more points {ni : i = 0− 2} for which

n1 − n0 and n2 − n1 have no common prime factors. A solution to

yni − α = 2miπ ∃mi∈I for i = 0− 2

can be obtained by taking first differences to get

y(n1 − n0) = 2(m1 −m0)π (22)

y(n2 − n1) = 2(m2 −m1)π.

In this solution, n1 − n0 cannot divide m1 −m0 since if it did, then y = 2m3π

for some integer m3 and y /∈ (−π, π]\{0}. Thus

2π
m2 −m1

n2 − n1
= y = 2π

m1 −m0

n1 − n0
. (23)

The {mi} must be distinct since otherwise y = 0 by (22). Therefore

m2 −m1 =
1

n1 − n0
(n2 − n1)(m1 −m0).

If n1 − n0 = 1, then the argument from the first case provides a contradiction.

If n1 − n0 ≥ 2, then its prime factors must all cancel with prime factors of
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(n2 − n1)(m1 −m0) for m2 −m1 to be an integer. By assumption ND-A1→m,

none cancel with n2 − n1 so all must cancel with m1 −m0 and hence n1 − n0
must divide m1 − m0. Hence by (23), y = 2m4π for some integer m4 6= 0 so

y /∈ (−π, π]\{0} and a contradiction is reached. �

7.6. Proof of Theorem 1

The integer-time results follow directly from Butler (2020, thm. 2). The

continuous-time results require the arguments below which show that the con-

ditions of Theorems 1 and 2 in Butler (2019) are satisfied and therefore apply.

Continuous-time survival expansion. The derivation of (14) uses Butler

(2019, thm. 2). The results of Proposition 4 ensure that condition AC of

Theorem 2 in Butler (2019) holds.

We show that F1m(s) satisfies condition X of Theorem 2 in Butler (2019).

Since {b ≤ Re(s) ≤ b+ ε0} lies within the convergence domain for all MGFs in

the first m− 1 rows of matrix T(s), then

max
0≤x≤ ε

|Mij(b+ x+ iN)| → 0

as N → ∞ for all (i, j) ∈ Im−1 × Im. Thus, for the denominator of F1m,

|Ψm;m(b + x + iN)| → 1 uniformly over all x ∈ [0, ε]. For the numerator,

|Ψm;1(b+ x+ iN)| → 0 uniformly in x ∈ [0, ε] as N →∞. Thus, F1m(b+ x+

iN)→ 0 uniformly for all x ∈ [0, ε] and condition X holds.

The remaining condition UIS is to show that the principal-value integral∫ ∞
−∞

F1m(b+ + iy)

b+ + iy
e−itydy (24)

is uniformly integrable for t > T0, for some T0. Break the integral into the range

[−N,N ] and (−∞,−N ]∪[N,∞) where N > Y and Y is chosen sufficiently large

that

max
(i,j)∈Im−1×Im

sup
|y|≥Y

∥∥Mij(b
+ + iy)

∥∥ < 1. (25)
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Using the Riemann-Lebesgue lemma for arbitrary η > 0 and N,∫ N

−N

F1m(b+ + iy)

b+ + iy
e−itydy < η/2 t ≥ T1(N). (26)

For the remaining portion of the integral, use identity (9) of Proposition 2 which

holds in the analytic continuation due to (25) and N > Y . This allows us to

consider this integral separately over each distinct pathway from 1 → m and

then add them up. For each pathway transmittance Tp and with N > Y,(∫ ∞
N

+

∫ −N
−∞

)
Tp(b+ + iy)

b+ + iy
e−itydy ≤ 2pp

∫ ∞
N

∣∣∣∣Mb(p)(b
+ + iy)

b+ + iy

∣∣∣∣ dy, (27)

where pp is the probability of pathway p and b(p) ∈ p ∩ B denotes a branch of

blockade set B in pathway p. Using Hölder’s inequality, then (27) is bounded

above by

2pp

{∫ ∞
N

∥∥Mb(p)(b
+ + iy)

∥∥q dy}1/q {∫ ∞
N

1

‖b+ + iy‖r
dy

}1/r

(28)

where q = q{b(p)} and 1/q + 1/r = 1. The product in (28) can be made

< ηpp/2 for N ≥ N1{b(p)} > Y. Thus, adding up all these upper bounds over

all distinct pathways and bound (26), the value of (24) is < η for t ≥ T0 =

T1
[
max(i.j)∈BN1{(i, j)}

]
and uniform integrability holds.

Continuous-time density expansion. The derivation of (16) uses Theorem

1 in Butler (2019).

We first must show that the unknown density f(t) is locally of bounded

variation. To do this, invert the summation in (9) term-by-term to give

f(t) =
∑
p∈P

ppfp(t) a.e. t

where fp is the convolution of densities for pathway p. A formal proof that

the inversion of a countably infinite summation may be done in this manner is

given in Doetsch (1974, thm. 30.1). The total variation of f is therefore

V (f) ≤
∑
p∈P

ppV (fp). (29)
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By Lemma 3 in Butler (2019, §5.2.1), V (fp) ≤ min(i,j)∈p V (gij). For each

pathway p, at least one of its branches b(p) ∈ B. Therefore, by assumption

BT V1→m,

V (fp) ≤ V (gb(p)) ≤ max
(i,j)∈B

V (gij) = Vmax <∞.

Hence (29) is bounded above by Vmax and f has bounded total variation.

The last remaining condition UI in Butler (2019, thm. 1) is uniform in-

tegrability of
∫∞
−∞F1m(b+ + iy)e−itydy for t > T0. By the Riemann-Lebesgue

lemma, ∫ N

−N
F1m(b+ + iy)e−itydy < η/2 t > T1(N).

Suppose P≥ consists of all pathways in which at least q(i, j) transitions from

i→ j occur for at least one branch (i, j) ∈ BU ⊆ Im−1 × Im−1 in the pathway.

Let P< = P\P≥. In the integration over (−∞,−N ]∪[N,∞) for N > Y, express

F1m as the summation over all pathways as in Proposition 2 and consider sets

P≥ and P< separately. For pathway p ∈ P≥, denote ij(p) ∈ BU as the branch

of pathway p ∈ P≥ for which there are more than q{ij(p)} transitions. Also

let N3(i, j) be such that

∫ ∞
N3(i,j)

∥∥Mij(p)(b
+ + iy)

∥∥q{ij(p)} dy < η/4.

For infinite set P≥,

∑
p∈P≥

(∫ −N
−∞

+

∫ ∞
N

)
Tp(b+ + iy)e−itydy ≤ 2

∑
p∈P≥

pp

∫ ∞
N

∥∥Mij(p)(b
+ + iy)

∥∥q{ij(p)} dy
< η/2

∑
p∈P≥

pp

for N > N1 := max(i,j)∈BU
N3(i, j) > Y.

For finite set P<, note {Re(s) = b+} is in the convergence domain for Tp for
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all p ∈ P<. Therefore, since Tp(b+ + iy) is the transform for ppe
b+tfp(t),

∑
p∈P<

(∫ −N
−∞

+

∫ ∞
N

)
Tp(b+ + iy)e−itydy

=
∑
p∈P<

{
2πppe

b+tfp(t)−
∫ N

−N
Tp(b+ + iy)e−itydy

}
< 2π

∑
p∈P<

ppe
b+tfp(t) < η/2

∑
p∈P<

pp (30)

for t > T2 where the last inequality needs to be justified. For this we need the

following lemma.

Lemma 2. For a finite number of densities g1, . . . , gn, if eb
+tgi(t) → 0 as

t → ∞ and Mgi(b
+) < ∞ for i = 1, . . . , n, then the tilted convolution

eb
+t (~ni=1gi) (t)→ 0 as t→∞.

Proof. The proof is by induction. For arbitrary η2 > 0, let T3 be such that

eb
+t/2 max{g1(t/2), g2(t/2)} < η2/{Mg1(b

+) +Mg2(b
+)} for t > T3. Then,

eb
+t(g1 ∗ g2)(t) =

(∫ t/2

0
+

∫ t

t/2

)
eb

+(t−u)g1(t− u)eb
+ug2(u)du. (31)

The choice of T3 allows us to exploit that eb
+(t−u)g1(t − u) is bounded above

for u ∈ [0, t/2] and t > T3 and also eb
+ug2(u) is bounded above for u ∈ [t/2, t]

and t > T3. Thus, an upper bound for (31) is

η2
Mg2(b

+) +Mg1(b
+)

(∫ t/2

0
eb

+ug2(u)du+

∫ t

t/2
eb

+(t−u)g1(t− u)du

)
≤ η2

for t > T3. The remainder of the induction proof is the same argument. �

By assumption ZD1→m and Lemma 2, eb
+tfp(t) → 0 as t → ∞ for each

pathway p ∈ P<. Hence (30) holds for t > T2. Overall the value of T0 required

is T0 = max{T2, T1(N1)}.
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7.6.1. Residue computation The residue is

β−1 = Res{F1m(s); b} =
1

f1m
lim
s→b
{(s− b)F1m(s)}

=
Ψm;m (0) |

(−1)m+1 |Ψm;1 (0)|
(−1)m+1 |Ψm;1 (b)|
∂|Ψm;m (s) |/∂s|s=b

,

which is (11) since ∂|Ψm;m (s) |/∂s|s=b = tr
[
adj{Ψm;m (b)}Ψ′m;m (b)

]
.

7.6.2. Proof of Corollary 1 The two conditions ZD1→m and UB1→m are used to

deal with the integral over (−∞,−N ]∪[N,∞) for showing uniform integrability.

With a minimum of q steps for first passage, however, a generalised Hölder

inequality can be used instead to deal with this integral. For example, with

q = 3 then take N > Y so the identity in Proposition 2 holds. Then,∑
p∈P

(∫ ∞
N

+

∫ −N
−∞

)
Tp(b+ + iy)e−itydy

≤ 2
∑
p∈P

pp

∫ ∞
N

∥∥Mb1
(b+ + iy)

∥∥ ∥∥Mb2
(b+ + iy)

∥∥ ∥∥Mb3
(b+ + iy)

∥∥ dy, (32)

where b1, b2, b3 ∈ p ∩ (Im−1 × Im). Using a generalised Hölder inequality, an

upper bound on (32) is

2
∑
p∈P

pp{I(b1)I(b2)I(b3)}1/3 < η/2
∑
p∈P

pp,

where I(bj) =
∫∞
N

∥∥Mbj
(b+ + iy)

∥∥3 dy for j = 1−3 and the last inequality holds

for N > maxb1,b2,b3∈Im−1×Im N3(b1, b2, b3), where N > N3(b1, b2, b3) ensures

that maxj=1−3 I(bj) < η/4.

7.7. Theorem 5 and its proof

Theorem 5. (Progressive-state expansions). Let all transient states in

Im−1 be progressive as described in §3.2 and suppose R1→m and CD1→m hold

along with the following condition.

(ACL) For all (i, j) ∈ L, Mij(s) can be analytically continued across its con-

vergence bound b to {b ≤ Re(s) < b+ ε0} save from an mij-pole at b for some

ε0 > 0. Denote m = max(i,j)∈Lmij .
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Integer time. The conditional first-passage survival and mass functions of

X|X < ∞ have discretised Gamma (k, e−b) tail expansions for k = 1, . . .m as

n→∞ given by

S(n) = S1(n) +RS1 (n) :=

m∑
k=1

SDG(k,b)(n)
(−1)kβ−k

bk
+RS1 (n) (33)

p(n) = p1(n) +R1(n) := e−bn
m∑
k=1

nk−1
(−1)kβ−k
(k − 1)!

+R1(n), (34)

where RS1 (n) = o(e−b
+n) = R1(n) as n → ∞, b+ = b + ε for sufficiently small

ε > 0, and

SDG(k,b)(n) :=
bk

(k − 1)!

∞∑
j=n

e−jbjk−1.

Here, {β−k} are Laurent coefficients from
∑m

k=1 β−k(s−b)−k, the principal part

of the Laurent expansion of F1m(s) about b. Explicit expressions for the errors

R1(n) and RS1 (n) are given in Theorem 1.

Continuous time. The conditional first-passage survival and density func-

tions of X|X < ∞ have Gamma (k, b) tail expansions for k = 1, . . .m as

n→∞. With the additional condition B1→m from Theorem 1 and ZML below,

the survival function expansion is

S(t) = S1(t) +RS1 (t) :=

m∑
k=1

SG(k,b)(t)
(−1)kβ−k

bk
+RS1 (t), (35)

where SG(k,b) is the survival function of a Gamma (k, b) distribution or

SG(k,b)(t) = e−bt
k−1∑
j=1

(bt)j

j!
,

RS1 (t) = o(e−(b+ε)t) as t→∞, andε satisfies ZML.

(ZML) For some b+ = b + ε with ε ∈ (0, ε0), maxb≤x≤b+ |Mij(x+ iN)| → 0

as N →∞ for all (i, j) ∈ L.

Assuming additional condition ZML above along with BT V1→m from The-

orem 1 and ONE1→m and MIN 1→m from Corollary 1, the density function
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expansion is

f(t) = f1(t) +R1(t) := e−bt
m∑
k=1

tk−1
(−1)kβ−k
(k − 1)!

+R1(t), (36)

where R1(t) = o(e−b
+t) as t→∞. Error terms RS1 (t) and R1(t) are well-defined

and given in (15) of Theorem 1 under the above conditions.

Proof. The proof follows the same arguments used in Theorem 1 and Corollary

1. In the integer time setting, condition ACL is required in order to apply

Cauchy’s theorem as used in Butler (2020, thm. 2).

In continuous time, both ACL and ZML are required to apply Cauchy’s

theorem as used in Butler (2019, thms. 1 and 2). The remainder of the

arguments needed to show that Theorems 1 and 2 in Butler (2019) apply are

exactly the same as those used in Theorem 1 and Corollary 1 in §7.6 of these

Supplementary Materials. �

The expansion results in integer time could be expressed in terms of Negative

Binomial (k, e−b) tail expansions for k = 1, . . .m as n → ∞ as presented in

Butler (2020, thm. 1). These expansions are analytically the same as those

given in (33) and (34) and are based on the Laurent coefficients of the first-

passage PGF F1m(ln z) rather than those from MGF F1m(s). See Butler (2020,

§2) for further discussion.

The conditions in Theorem 5 are somewhat less eloquent than in Theorem

1 and this is due to the need to make assumptions about {Mij(s) : (i, j) ∈

L} in their analytic continuation {b ≤ Re(s) < b+}. In continuous time, the

main conditions are MIN 1→m and ONE1→m of Corollary 1 which provide

some of the weakest conditions that can be imposed to yield a general density

expansion for progressive SMPs lacking feedback. For conservative CTMCs,

such conditions automatically hold. The simpler condition that ‖Mij(b
+ + iy)‖

is integrable in y for all (i, j) ∈ Im−1×Im ensures thatMIN 1→m and ONE1→m
hold, however this condition excludes CTMCs.
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7.8. Proof of Proposition 6

The proofs are, for the most part, identical in form to those used in Propo-

sitions 2–4. For example, the second part of the proof of Proposition 3 deals

with the Perron-Frobenius theory of Tm;m(s); the comparable matrix relevant

to the proof here is TII(s) as justified by (18).

However, the third part of the proof of Proposition 3 to show b is a simple

pole requires proving that (−1)m+1|Ψm;1(b)| > 0. The argument for this is not

the same as in Proposition 3 and is entirely non-trivial and is now given over

the next 6 pages.

We must show (−1)m+1|Ψm;1(b)| > 0 for a SMP with Im−1 = P ∪ I. The

proof begins with cofactor expansion (17) applied to this new setting with some

additional progressive states. Stage 1 of the proof takes P = P1 so there are

no progressive states that can be entered after leaving I. Stage 2 includes P2

states and we shall see that the proof with such states reduces to the proof in

stage 1.

7.8.1. Stage 1 We use general arguments later on but simplify the proof initially

by working with p = 2 progressive states and I = 3 states in the irreducible

class so m = 6. The structure of I−T(s) has the form

I−T(b) =


1 −T12 ∗ −T16
0 1 ∗ −T26
0 0 I3 −TII −TI6

∗ ∗ ∗ 1− T66



where ∗ indicates a number or block of numbers which are either negative or

0, and Tij = Tij(b), etc. . Then, with m = 6, we take matrix Ψm;1(b) and move

its last column forward to be its first column. This is a movement of 4 column
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exchanges. Thus

−|Ψm;1(b)| = −|Ψm;m;1←m(b)| = −

∣∣∣∣∣∣∣∣∣
−T16 −T12 ∗

−T26 1 ∗

−TI6 0 I3 −TII

∣∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣∣
T16 −T12 ∗

T26 1 ∗

TI6 0 I3 −TII

∣∣∣∣∣∣∣∣∣ .
Taking the cofactor expansion down the first column, the first two terms are

T16 |I3 −TII | − T26(−T12) |I3 −TII | = 0

since |I3 −TII(b)| = 0. The final three terms are

T36

∣∣∣∣∣∣∣∣∣∣∣∣

−T12 ∗ ∗ ∗

1 −T23 −T24 −T25
0 −T43 1− T44 −T45
0 −T53 −T54 1− T55

∣∣∣∣∣∣∣∣∣∣∣∣
−T46

∣∣∣∣∣∣∣∣∣∣∣∣

−T12 ∗ ∗ ∗

1 ∗ ∗ ∗

0 1− T33 −T34 −T35
0 −T53 −T54 1− T55

∣∣∣∣∣∣∣∣∣∣∣∣

+ T56

∣∣∣∣∣∣∣∣∣∣∣∣

−T12 ∗ ∗ ∗

1 ∗ ∗ ∗

0 1− T33 −T34 −T35
0 −T43 1− T44 −T45

∣∣∣∣∣∣∣∣∣∣∣∣
= T36A− T46B + T56C.

It suffices to show that A > 0, B < 0, and C > 0. If it can be shown that the

pattern in A leads to A > 0, then this implies B < 0 since the pattern in A is

obtained by interchanging columns 2 and 3 of B. Likewise A > 0 implies C > 0

by interchanging columns 3 and 4 in C followed by columns 2 and 3.

A cofactor expansion of A down its first column yields

A = −T12

∣∣∣∣∣∣∣∣∣
−T23 −T24 −T25
−T43 1− T44 −T45
−T53 −T54 1− T55

∣∣∣∣∣∣∣∣∣−
∣∣∣∣∣∣∣∣∣
∗ ∗ ∗

−T43 1− T44 −T45
−T53 −T54 1− T55

∣∣∣∣∣∣∣∣∣ = −T12D−E

where D and E need to be negative but also note that they have the same

structure. All matrices of the form given by D and E have negative determinant

as shown in Lemma 4, which proves the result.
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The case above has p = 2 progressive states and I = 3 states in irreducible

class I but a more general argument is needed to determine the sign of

(−1)m+1|Ψm;1(a)| = (−1)m+1+m−2|Ψm;m;1←m(a)| = −|Ψm;m;1←m(a)|.

With P as the first p states and I = {p + 1, . . . , p + I = m − 1}, we compute

a cofactor expansion down the first column of |Ψm;m;1←m(a)|. The portion of

this sum over only the progressive block of p terms leads to a summation of

the form
∑p

i=1(−1)i+1Tim|Ui| |II − TII | = 0 in which Ui is a square matrix

and |II −TII | = 0 is a factor in each term. The remaining block, with leading

terms from I, is considered for the cases I = 1 and I ≥ 2 separately.

If I = 1, then the single cofactor term is −Tp+1,m(−1)p+2|Ap+1| where Ap+1

is p× p and is a patterned matrix taking the following forms. Let − stand for

a negative entry. Then, A2 = (−),

A3 =

 − −

1 −

 , (37)

and, for p ≥ 3,

Ap+1 =

#Im−1 2 3 4 · · · p− 1 p I

1 −a − − · · · − − −

2 1 − − · · · − − −

3 0 1 − · · · − − −
...

...
. . .

. . .
. . .

...
...

...

p− 2 0 0 0
. . . − − −

p− 1 0 0 0
. . . 1 − −

p 0 0 0 · · · 0 1 −

, (38)

where the p × p matrix is enclosed by the solid lines and the exit states

and destination states are enumerated on the left and top. Lemma 3 be-

low proves that sgn{|Ap+1|} = (−1)p for all p ≥ 1. Therefore cofactor term

−Tp+1,m(−1)p+2|Ap+1| < 0 as required.
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For the case in which I ≥ 2, the cofactor expansion terms over I are

I∑
i=1

−Tp+i,m(−1)p+i+1|Bp+i| (39)

where {Bp+i} is a sequence of (p + I − 1) × (p + I − 1) patterned matrices.

Matrix Bp+1 takes the form

Bp+1 =

#Im−1 2 3 · · · p p+ 1 I\

1 −a − · · · − − (−, . . . ,−)

2 1 − · · · − − (−, . . . ,−)

3 0 1
. . . − − (−, . . . ,−)

...
...

. . .
. . .

. . .
...

...

p 0 0
. . . 1 − (−, . . . ,−)

I\ 0 0 · · · 0 −TI\,p+1 II−1 −TI\,I\

(40)

with I\ = I\{p+1}, i.e. I without its first member, TI\,p+1 = (Tp+2,p+1, . . . , Tm−1,p+1)
T .

For the moment, we assume that the determinant sign for patterned matrix

Bp+1 is (−1)p where the power p = 1 + (p− 1), where p− 1 counts the number

of columns with the value 0 in the bottom row block (This result is proved

further below.). Thus the i = 1 term in (39) has

sgn
{
−Tp+1,m(−1)p+1+1|Bp+1|

}
= sgn {−Tp+1,m(−1)p(−1)p} = −1.

The rest of the patterns for i ≥ 2 are such that Bp+i matches the pattern of

Bp+1 if the (p+ i− 1)st column (holding destination state p+ i) is moved i− 1

steps to the left so it occupies the pth column (holding destination state p+ 1).

This results in (−1)i−1 sign changes so that

sgn
{
−Tp+i,m(−1)p+i+1|Bp+i|

}
= sgn

{
−Tp+i,m(−1)p+i+1(−1)i−1|Bp+1|

}
= sgn {−Tp+i,m(−1)p(−1)p} = −1.

Thus what remains is to show that sgn{|Bp+1| = (−1)p. Take the cofactor

expansion of Bp+1 down its first column. One sees that the two minor matrices
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involved have the same pattern as Bp+1 but with one less column with 0 in the

bottom row while their scalar factors are negative. Hence if |C1| is the (1, 1)

cofactor of Bp+1, then sgn{|Bp+1|} = − sgn{|C1|}. Continuing such cofactor

expansions down the first column of (p + I − 2) × (p + I − 2) matrix C1, the

same pattern emerges so that sgn{|C1|} = − sgn{|C2|} where |C2| is the (1, 1)

cofactor of C1. This progression of cofactor expansions continues until I × I

matrix Cp−1 is reached. This matrix has the form in (42) given in Lemma 4

below so its determinant must be negative and sgn{|Cp−1|} = −1. Thus,

sgn{|Bp+1|} = − sgn{|C1|} = sgn{|C2|} = · · · = (−1)p−1 sgn{|Cp−1|} = (−1)p.

Thus, −|Ψm;m;1←m(b)| > 0 as required. �

Lemma 3. For matrices Ap+1 given in (37) and (38), sgn{|Ap+1|} = (−1)p for

all p ≥ 1.

Proof. Proof is by induction. The result clearly holds for #I = p = 1 and 2.

Assume it holds for general p. Then, taking the cofactor expansion down the

first column,

|Ap+2| = (−1)2(−a)|A1
p+1|+ (−1)2+1|A2

p+1| (41)

where A1
p+1 and A2

p+1 are the same sort of patterned matrices for case p.

Therefore,

sgn{|Ap+2|} = − sgn{|A1
p+1|} = −(−1)p = (−1)p+1

and the lemma follows. �

Lemma 4. Let J ⊂ I be a subset of the irreducible relevant set with #J = n ≤

I − 1 and with #I = I. Consider the (n+ 1)× (n+ 1) matrix −a (−b1, . . .−bn)

(−c1, . . .−cn)T In −TJJ

 , (42)

where all elements in the first row and column are negative and TJJ = TJJ (b).

Then the matrix in (42) has a negative determinant.
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Proof. The proof is by induction. Consider the n = 1 case so #J = 1. The

determinant is

(−a)(1− TJJ )− (−c1)(−b1) < 0,

since 1 − TJJ > 0; see the third part of the proof of Proposition 2. Now,

suppose the result holds for all #J = n cases. We must show it holds in all the

#J = n+ 1 cases. With n replaced by n+ 1 in (42), take a cofactor expansion

down its first column so the determinant is

(−a)|In+1 −TJJ |+
n+1∑
j=1

(−1)j(−cj)

∣∣∣∣∣∣ (−b1, . . .−b,n+1)

(In+1 −TJJ )\j

∣∣∣∣∣∣ (43)

where (In+1 −TJJ )\j is In+1 −TJJ without its jth row. The j = 1 term in

(43) has the form in (42) with #J\1 = n instead of n + 1. For j ≥ 2, the jth

determinant in (43) can be put into the same form by moving column j to the

left so it is the first column. This entails j − 1 steps or j − 1 sign changes so

(43) is

(−a)|In+1 −TJJ |+
n+1∑
j=1

(−1)j(−cj)(−1)j−1

∣∣∣∣∣∣ −bj −b\j

(−d1j , . . .−dnj)T In −TJ\jJ\j

∣∣∣∣∣∣
(44)

where (−d1j , . . .−dnj)T represents the jth column of (In+1 − TJJ )\j , −b\j is

(−b1, . . .−b,n+1) without its jth column, and J\j = J \{j}. The determinant

in the summation in (44) is for a matrix which has the form (42). Since {J\j}

are size n, by assumption the determinants are negative so the last summation

must be negative. The result follows if the leading term is also negative, or if

|In+1 − TJJ | > 0 for any J ⊂ I of size ≤ I − 1. This result is shown in the

next lemma. �

Lemma 5. If J ⊂ I and #J = n ≤ I − 1, then |In − TJJ | > 0 where

TJJ = TJJ (b) and b is the asymptotic failure rate for irreducible class I.

Proof. Matrix TII(b) has Perron-Frobenius eigenvalue 1. After suitable per-

mutation of the rows and columns of TII , suppose TJJ forms the n×n block
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for J in the lower right of TII . Then

0 ≤

 0 0

0 TJJ

 ≤ TII (45)

componentwise with strict inequality occurring in some components other than

those in the lower right. Let eJ ∈ C be the eigenvalue of TJJ with largest

modulus. Since J may not be irreducible we do not know if eJ is a Perron-

Frobenius eigenvalue and hence whether it is real. Since TII has Perron-

Frobenius eigenvalue 1, then using (45) and Theorem 1.5e of Seneta (2006, p.

22), |eJ | ≤ 1. However, if |eJ | = 1, then equality must hold in (45) which

is false. Thus 0 < |eJ | < 1. Denote the characteristic polynomial for TJJ

as ϕ(x) := |xIn − TJJ | so that ϕ(eJ ) = 0. For x > |eJ |, the characteristic

polynomial cannot have further roots (this would contradict that eJ is the

eigenvalue of largest modulus). Since ϕ(x)→∞ as x→∞, then ϕ(x) > 0 for

x > |eJ |. Therefore, since 1 > |eJ | then

0 < ϕ(1) = |In −TJJ |.

7.8.2. Stage 2 Assuming P = P1∪P2, the numerator of (4) or (−1)m+1|Ψm;1(b)|

is

(−1)m+1

∣∣∣∣∣∣∣∣∣∣


{Ip1 −TP1P1};1 −TP1I −TP1P2 −TP1m

0 II −TII −TIP2(s) −TIm

0 0 Ip2 −TP2P2 −TP2m


∣∣∣∣∣∣∣∣∣∣

= (−1)m+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣



Im−1 P1
\1 I P2 {m}

{1} −T1P1
\1

−T1I −T1P2 −T1m

P1
\1 Ip1−1 −TP1

\1P1
\1

−TP1
\1I −TP1

\1P2 −TP1
\1m

I 0 II −TII −TIP2 −TIm

P2 0 0 Ip2 −TP2P2 −TP2m



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

(46)
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where {Ip1 −TP1P1};1 is the matrix without its first column, TP1I = TP1I(b),

P1
\1 = P1\{1}, and the matrix whose determinant is computed is enclosed in

solid lines with exit and destination states noted in the left and top columns.

The computation in (46), is facilitated by moving the last column so it becomes

the first column. This is p2 + I + p1 − 1 = m − 2 interchanges resulting in a

sign change of (−1)m−2 so (46) is

−

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Im−1 {m} P1
\1 I P2

{1} − T1m −T1P1
\1

−T1I −T1P2

P1
\1 −TP1

\1m
Ip1−1 −TP1

\1P1
\1

−TP1
\1I −TP1

\1P2

I −TIm 0 II −TII −TIP2

P2 −TP2m 0 0 Ip2 −TP2P2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= −

 p1∑
i=1

(−1)i+1(−Tim)|Ai|+
p1+I∑
i=p1+1

(−1)i+1(−Tim)|Bi|+
p+I∑

i=p1+I+1

(−1)i+1(−Tim)|Ci|

 ,

where the last step uses a cofactor expansion down the first column. For states

in P1,

|A1| = |Ip1−1 −TP1
\1P1
\1
| × |II −TII | × |Ip2 −TP2P2 | = 0

|Ai| = |Ai1| × |II −TII | × |Ip2 −TP2P2 | = 0 i = 2, . . . , p1,

for some (p1 − 1) × (p1 − 1) matrices Ai1. The cofactor terms (−1)i+1|Bi| are

exactly the same structure as in stage 1 except they include the extra factor

|Ip2 −TP2P2 | = 1; hence they have the same sign as in stage 1 and contribute

an overall negative sign.

Finally consider the cofactor terms from P2. The first term is

(−1)p1+I(−Tp1+I+1,m)|Cp1+I+1| where, splitting P1
\1 into {2} and P1

\{1,2} for
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clarity, we have

Cp1+I+1 =

Im−1 {2} P1
\{1,2} I {p1 + I + 1} P2

\1

{1} −T12 − − − −

P1
\1 Ip1−1 −TP1

\1P1
\1

− − −

I 0 0 II −TII − −

P2
\1 0 0 0 0 Ip2−1 −TP2

\1P2
\1

where P2
\1 = P2\{p1 + I + 1}. Thus,

|Cp1+I+1| =

∣∣∣∣∣∣∣∣∣∣∣∣∣

Im−1 {2} P1
\{1,2} I {p1 + I + 1}

{1} −T12 − − −

P1
\1 Ip1−1 −TP1

\1P1
\1

− −

I 0 0 II −TII −

∣∣∣∣∣∣∣∣∣∣∣∣∣
(47)

The matrix in (47) takes the form of Bp+1 in (40) when the last column is

moved I steps to the left and inserted between columns P1
\{1,2} and I; this

gives a factor of (−1)I . There are p1− 1 nested cofactor steps to determine the

sign of Cp1+I+1 just as there were p−1 to determine the sign of Bp+1 as (−1)p.

Therefore

sgn{|Cp1+I+1|} = (−1)I(−1)p1

and

sgn{(−1)p1+I(−Tp1+I+1,m)|Cp1+I+1|} = (−1)p1+I+1+I+p1 = −1

as required. For the remaining terms, matrix Cp1+I+j has the same pattern

as Cp1+I+1 if the jth column in the P2 block is moved leftward j − 1 columns

to replace the first column in the P2 block of columns. Then |Cp1+I+j | is

computed with the same pattern as given in (47) and

sgn{|Cp1+I+j |} = (−1)j−1(−1)I(−1)p1
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so that

p+I∑
i=p1+I+1

(−1)i+1(−Tim) sgn{|Ci|} =

p2∑
j=1

(−1)p1+I+1+j(−Tp1+I+j,m)(−1)j−1(−1)I(−1)p1

=

p2∑
j=1

(−Tp1+I+j,m) < 0

as required. �

7.8.3. Residue for Theorem 2 The residue in (19) follows by showing that |Ψm;m(0)| =

|ΨII(0)| and

d

ds
|Ψm;m(s)|

∣∣∣∣
s=b

= tr[adj{ΨII (b)}Ψ′II (b)]. (48)

These results follow directly from the identity |Ψm;m(s)| = |ΨII(s)| as stated

in (18).

7.9. Corollary 2

7.9.1. Derivation of conditional phase-type distributions The process starts in state

1 and is in state j at time t with probability ξT1 exp(Qm;mt)ξj . In time dt

transition j → m occurs w.p. qjmdt so that the unconditional density of passage

time X is ξT1 exp(Qm;mt)qm. The absorption probability into state m starting

from state 1 is −ξT1 Q−1m;mqm so the conditional density of X given X <∞ is

f(t) =
ξT1 exp(Qm;mt)qm

−ξT1 Q−1m;mqm
.

The conditional survival function is

S(t) =

∫ ∞
t

f(u)du =
ξT1 exp(Qm;mt)(−Q−1m;m)qm

−ξT1 Q−1m;mqm

as given in (21).
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7.9.2. Proof of Corollary 2 In continuous time, the zeros of |Ψm;m(s)| are deter-

mined in terms of Q, by writing

Ψm;m(s) = Im−1 −Tm;m(s) =



1 q12
s+q11

· · · q1,m−1

s+q11

q21
s+q22

1 q2,m−1

s+q22

...
. . .

...

qm−1,1

s+qm−1,m−1

qm−1,2

s+qm−1,m−1
1


.

Then, factoring out {(s+ qii)
−1} from the rows, we see that

|Ψm;m(s)| = |sIm−1 + Qm;m|
m−1∏
i=1

(s+ qii)
−1.

To compute (−1)m+1|Ψm;1(s)|, define

Am;1(s) =


q12 q13 · · · q1,m

s+ q22 q23 · · · q2,m
. . .

. . .
...

qm−1,2 s+ qm−1,m−1 qm−1,m


so that

|Ψm;1(s)| = |Am;1(s)|
m−1∏
i=1

(s+ qii)
−1

Then,

F1m(s) =
(−1)m+1|Ψm;1(s)|
|Ψm;m(s)|

=
(−1)m+1 |Am;1(s)|
|sIm−1 + Qm;m|

.

Let I = #I. Since

|sIm−1 + Qm;m| = |sII + QII | ×
∏
i∈P

(s+ qii),

the zeros of |Ψm;m(s)| are either the eigenvalues of −QII or values {−qii; i ∈

P}. Since I is irreducible, the dominant eigenvalue of −QII is b > 0 and for

the other eigenvalues λj of −QII for j = 2, . . . , I, Re(λj) > b. By assumption

b < mini∈P(−qii) so b is a simple pole for F1m(s).
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The residue computation is

Res{F1m; b} =
1

F1m(0)
lim
s→b
{(s− b)F1m(s)}

=
|Qm;m| |Am;1(b)|
|Am;1(0)|

∏
i∈P

(b+ qii)
−1 lim

s→b

s− b
|sII + QII |

=
|Qm;m| |Am;1(b)|
|Am;1(0)|

∏
i∈P

(b+ qii)
−1 lim

s→b

s− b
(s− b)

∏I
j=2(s− λj)

=
|Qm;m| |Am;1(b)|
|Am;1(0)|

∏
i∈P

(b+ qii)
−1

I∏
j=2

(b− λj)−1. (49)

The exact expression for the conditional survival function is given in (20). In

this expression, the eigenvalues of block QII and their corresponding left/right

eigenvectors of Qm;m are denoted as −b, uT1 , and v1 for the dominant eigenvalue

and −λj , uTj , and vj with j = 2, . . . , I for the others with Re(λj) > b (Seneta,

thm. 2.6(c)). Associated with P = P1∪P2 are eigenvalues qii for i = 1, . . . , p

and corresponding left/right eigenvectors of Qm;m denoted as wT
i , and xi.

Assuming Qm;m is diagonalisable (as occurs when the eigenvalues are distinct),

we have the exponential expansion

S(t) =
1

ξT1 Q−1m;mqm
ξT1


 1

−b
e−btu1v

T
1 +

I∑
j=2

1

−λj
e−λjtujv

T
j

+
∑
i∈P

1

qii
eqiitwix

T
i

qm

=
1

b
e−bt

ξT1 u1v
T
1 qm

−ξT1 Q−1m;mqm
+ o(e−b

+t)

where b+ < b2 = min {minj≥2 Re(λj),mini∈P(−qii)} . The coefficient (ξT1 u1)(v
T
1 qm)/{−

ξT1 Q−1m;mqm} of e−bt/b in this expression is −Res{F1m; b} so

β−1 = Res{F1m; b} =
ξT1 u1v

T
1 qm

ξT1 Q−1m;mqm
. (50)

If Qm;m is not diagonalisable, then its Jordan form must be used and the same

argument applies. �

7.10. Proof of Corollary 3

7.10.1. Derivation of conditional phase-type distributions The process starts in state

1 and arrives for the first time in state m at time n w.p. ξT1 Pn−1
m;mpm. The
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probability of finite passage is
∑∞

n=1 ξ
T
1 Pn−1

m;mpm = ξT1 (Im−1−Pm;m)−1pm so

the conditional first passage mass function is

p(n) =
ξT1 Pn−1

m;mpm

ξT1 (Im−1−Pm;m)−1pm
.

The conditional survival function is

S(n) =

∞∑
k=n

p(n) =
ξT1 (Im−1−Pm;m)−1Pn−1

m;mpm

ξT1 (Im−1−Pm;m)−1pm

as given in (23).

7.10.2. PII is aperiodic The transmittance matrix Im−1 − Pm;mes for states in

Im−1 has block form with zero blocks below its diagonal blocks. Thus (22) holds.

If Pm;m can be diagonalised, then the eigenvalue/eigenvector decomposition of

Pm;m is

Pm;m = λ1u1v
T
1 +

I∑
j=2

λjujv
T
j +

∑
{i∈P:pii>0}

p−1ii wix
T
i

so that

Pn−1
m;m = λn−11 u1v

T
1 +

I∑
j=2

λn−1j ujvj +
∑

{i∈P:pii>0}

p
−(n−1)
ii wix

T
i .

With b = − lnλ1, and using (23), then

S(n) =
ξT1 (Im−1−Pm;m)−1Pn−1

m;mpm

ξT1 (Im−1−Pm;m)−1pm
= e−b(n−1)

ξT1 (Im−1−Pm;m)−1u1v
T
1 pm

ξT1 (Im−1−Pm;m)−1pm
+ o(e−b

+n)

(51)

= e−b(n−1)
ξT1 u1v

T
1 pm

(1− e−b)ξT1 (Im−1−Pm;m)−1pm
+ o(e−b

+n)

= e−bn
−β−1

1− e−b
+ o(e−b

+n),

where in the second equality Pn−1
m;m ∼ λn−11 u1v

T
1 , and in the third equality we

use (Im−1−Pm;m)−1u1 = u1/(1− e−b). This leads to

β−1 = Res{F1m(s); b} = −eb ξT1 u1v
T
1 pm

ξT1 (Im−1−Pm;m)−1pm
(52)
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In addition,

p(n) = S(n)−S(n+1) =
{
e−b(n−1) − e−bn

} −β−1
(1− e−b)

+o(e−b
+n) = e−bn(−β−1)+o(e−b

+n).

(53)

If Pm;m cannot be diagonalised, then its Jordan decomposition leads to the

same expansions as in (51) and (53).

7.10.3. PII is periodic For the periodic setting, the transmittance matrix TII(s) =

PIIe
s is an irreducible periodic matrix and if |II −PIIe

b| = 0, then PIIe
b has

d dominant eigenvalues {αl} equally-spaced round the unit circle in C starting

at α0 = 0 as specified in Theorem 1.7 of Seneta (2006, p. 23). Thus if αl is any

one of these, then

0 = |αlII −PIIe
b|α−Il = |II −PIIe

b−lnαl | = |Ψm;m(b− lnαl)|

and all values

b− lnαl = b+ i2πl/d l = d−(d− 1)/2e , . . . , 0, . . . , dd/2e

are simple poles on the boundary of the principal convergence domain {s ∈ C :

Re(s) = b, −π < Im(s) ≤ π}.

7.11. Proof of Theorems 3 and 4

7.11.1. Theorem 3 The proof also entails showing that Propositions 2–5 apply to

first-return from 1→ 1. To show Proposition 2, note expression (26) expresses

f11F11(s) as a linear function of {fj1Fj1(s) : j ≥ 2}. By Proposition 2, all

members of {fj1Fj1(s) : j ≥ 2} admit infinite expansions summing over all

distinct pathways from j → 1 for j ≥ 2 hence we have the same type of

expansions, summing over all distinct pathways from 1→ 1, for f11F11(s) and

Proposition 2 applies to first return to 1.

The proof of Proposition 3 for first return to 1 is almost entirely the same as

passage from 1 → m. Once the process enters Im\1, exit from this irreducible

class with asymptotic hazard rate b > 0 is the same idea as exit from Im−1 for



34 R. W. BUTLER

first passage 1→ m. The only difference in the proof is the need to show that

the simple zero of |Ψ11(s)| at b leads to a simple pole for F11(s). This can be

done by using (26) and noting that {(−1)j+1|Ψ1j(b)| : j ≥ 2} are all positive

by arguments from Proposition 3. Another more direct route, is to note that

|Im −T(s)| is monotone decreasing in s, zero at s = 0, and therefore negative

at b > 0.

The proof of Proposition 4 also uses (26). By Proposition 4, there exists

ε0 > 0 such that {Fj1(s) : j ≥ 2} are analytic on {s ∈ C : Re(s) < b + ε0}

apart from them all having a simple pole at b. Thus by (26) the same is true

for F11(s).

The proof of Theorem 3 now follows using exactly the same arguments as in

Theorem 1 and relying on results from Propositions 2–5 as they apply to first

return to 1.

7.11.2. Theorem 4 The proof requires extending first-return results with Im\1 =

I to the setting in which Im\1 = P1∪P2∪I. Proof of Proposition 6 for f11F11(s)

makes use of the identity (26) in which f11F11(s) is linear in {fj1Fj1(s) : j ≥ 2}.

Since Proposition 6 applies to each fj1Fj1(s), this may be extended to f11F11(s)

using the same arguments as used to prove Theorem 3. Proving Theorem 4 from

Proposition 6 as applied to first return to 1 uses the same arguments as used

concerning first passage 1→ m.


