Supplement to the paper "Singular vector distribution of sample covariance matrices $"$
XIUCAI DING,* Department of Statistical Sciences, University of Toronto

Abstract

This supplementary material contains the proofs of Lemma 3.4, 3.8 and 4.4 of the paper.

First of all, we will follow the basic approach of [2, Lemma 6.1] to prove Lemma 3.4, which compares the sharp counting function with its delta approximation smoothed on the scale $\tilde{\eta}$.

Proof of Lemma 3.4. Recall (3.40) of the paper, we have $\tilde{\eta} \ll t \ll E_{U}-E^{-} \leq$ $\frac{7}{2} N^{-2 / 3+\epsilon}$. Furthermore, for $x \in \mathbb{R}$, we have

$$
\begin{equation*}
\left|\mathcal{X}_{E}(x)-\mathcal{X}_{E} * \vartheta_{\tilde{\eta}}(x)\right|=\left|\left(\int_{\mathbb{R}} \mathcal{X}_{E}(x)-\int_{E^{-}-x}^{E_{U}-x}\right) \vartheta_{\tilde{\eta}}(y) d y\right| \tag{S1}
\end{equation*}
$$

Denote $d(x):=\left|x-E^{-}\right|+\tilde{\eta}$ and $d_{U}(x):=\left|x-E_{U}\right|+\tilde{\eta}$, we need the following bound to estimate (S1).
Lemma 0.1. There exists some constant $C>0$, such that

$$
\left|\mathcal{X}_{E}(x)-\mathcal{X}_{E} * \vartheta_{\tilde{\eta}}(x)\right| \leq C \tilde{\eta}\left[\frac{E_{U}-E^{-}}{d_{U}(x) d(x)}+\frac{\mathcal{X}_{E}(x)}{\left(d_{U}(x)+d(x)\right)}\right]
$$

Proof. When $x>E_{U}$, we have

$$
\begin{aligned}
\left|\mathcal{X}_{E}(x)-\mathcal{X}_{E} * \vartheta_{\tilde{\eta}}(x)\right|=\tilde{\eta}\left|\int_{x-E_{U}}^{x-E^{-}} \frac{1}{\pi\left(y^{2}+\tilde{\eta}^{2}\right)} d y\right| & =\frac{\tilde{\eta}}{\pi}\left[\int_{x-E_{U}}^{x-E^{-}} \frac{1}{(y+\tilde{\eta})^{2}}+\frac{2 \tilde{\eta} y}{\left(y^{2}+\tilde{\eta}^{2}\right)(y+\tilde{\eta})^{2}} d y\right] \\
& \leq C \tilde{\eta} \frac{E_{U}-E^{-}}{d_{U}(x) d(x)}
\end{aligned}
$$

Similarly, we can prove when $x<E^{-}$. When $E^{-} \leq x \leq E_{U}$, we have

$$
\left|\mathcal{X}_{E}(x)-\mathcal{X}_{E} * \vartheta_{\tilde{\eta}}(x)\right| \leq \frac{C \tilde{\eta}}{d_{U}(x)}+\frac{C \tilde{\eta}}{d(x)}=C \tilde{\eta}\left[\frac{E_{U}-E^{-}}{d_{U}(x) d(x)}+\frac{2 \tilde{\eta}}{d_{U}(x) d(x)}\right]
$$

where we use (3.12) of the paper. Therefore, it suffices to show that

$$
\begin{equation*}
d_{U}(x) d(x) \geq \frac{1}{4} \tilde{\eta}\left(d_{U}(x)+d(x)\right)=\frac{1}{4} \tilde{\eta}\left(E_{U}-E^{-}+2 \tilde{\eta}\right) \tag{S2}
\end{equation*}
$$

[^0]An elementary calculation yields that $d_{U}(x) d(x) \geq \tilde{\eta}\left(E_{U}-E^{-}+\tilde{\eta}\right)$, which implies (S2). Hence, we conclude our proof.

For the right-hand side of $(\mathrm{S} 1)$, when $\min \left\{d(x), d_{U}(x)\right\} \geq t$, it will be bounded by $O\left(N^{-3 \epsilon_{0}+\epsilon}\right)$; when $\min \left\{d(x), d_{U}(x)\right\} \leq t$, then we must have $\max \left\{d(x), d_{U}(x)\right\} \geq$ $\left(E_{U}-E^{-}\right) / 2$, therefore, it will be bounded by a constant c as $\min \left\{d(x), d_{U}(x)\right\} \geq \tilde{\eta}$. Therefore, by using the above results for the diagonal elements of Q_{1}, we have

$$
\begin{align*}
& \left|\operatorname{Tr} \mathcal{X}_{E}\left(Q_{1}\right)-\operatorname{Tr} \mathcal{X}_{E} * \vartheta_{\tilde{\eta}}\left(Q_{1}\right)\right| \leq C\left[\operatorname{Tr} f\left(Q_{1}\right)+c \mathcal{N}\left(E^{-}-t, E^{-}+t\right)+N^{-3 \epsilon_{0}+\epsilon} \mathcal{N}\left(E^{-}+t, E_{U}-t\right)\right. \\
& \left.\quad+c \mathcal{N}\left(E_{U}-t, E_{U}+t\right)+N^{-3 \epsilon_{0}+\epsilon} \mathcal{N}\left(E_{U}+t, a_{2 k-2}\right)+\sum_{i=1}^{M} \mathcal{X}_{E} * \vartheta_{\tilde{\eta}}\left(\left(Q_{1}\right)_{i i}\right) \mathbf{1}\left(\left(Q_{1}\right)_{i i}>a_{2 k-2}\right)\right] \tag{S3}
\end{align*}
$$

where f is defined as

$$
f(x):=\frac{\tilde{\eta}\left(E_{U}-E^{-}\right)}{d_{U}(x) d(x)} \mathbf{1}\left(x \leq E^{-}-t\right) .
$$

As we assume that $\epsilon<\epsilon_{0}$, by Assumption 1.2, (2.20) of the paper and the fact $\epsilon_{1}<\epsilon$, with $1-N^{-D_{1}}$ probability, we have

$$
\mathcal{N}\left(E_{U}-t, E_{U}+t\right)=0, \mathcal{N}\left(E_{U}+t, a_{2 k-2}\right)=0, \mathcal{N}\left(E^{-}+t, E_{U}-t\right) \leq N^{\epsilon_{0}}
$$

On the other hand, when $\left(Q_{1}\right)_{i i}>a_{2 k-2}$, by Assumption 1.2 of the paper, we have

$$
\mathcal{X}_{E} * \vartheta_{\tilde{\eta}}\left(\left(Q_{1}\right)_{i i}\right)=\tilde{\eta} \int_{\left(Q_{1}\right)_{i i}-E_{U}}^{\left(Q_{1}\right)_{i i}-E^{-}} \frac{1}{y^{2}+\tilde{\eta}^{2}} d y \leq \tilde{\eta} \int_{\left(Q_{1}\right)_{i i}-E_{U}}^{\left(Q_{1}\right)_{i i}-E^{-}} \frac{1}{y^{2}} d y \leq \frac{7}{2 \tau^{2}} N^{-4 / 3+\epsilon-9 \epsilon_{0}}
$$

where τ is defined in Assumption 1.2 of the paper. Hence, we have $\sum_{i=1}^{M} \mathcal{X}_{E} *$ $\left.\vartheta_{\tilde{\eta}}\left(\left(Q_{1}\right)_{i i}\right) \mathbf{1}\left(\left(Q_{1}\right)_{i i}>a_{2 k-2}\right)\right) \leq C N^{-1 / 3+\epsilon-9 \epsilon_{0}}$. Therefore, (S3) can be bounded in the following way

$$
\left|\operatorname{Tr} \mathcal{X}_{E}\left(Q_{1}\right)-\operatorname{Tr} \mathcal{X}_{E} * \vartheta_{\tilde{\eta}}\left(Q_{1}\right)\right| \leq C\left(\operatorname{Tr} f\left(Q_{1}\right)+\mathcal{N}\left(E^{-}-t, E^{-}+t\right)+N^{-2 \epsilon_{0}}\right) .
$$

To finish our proof, we need to show that with $1-N^{-D_{1}}$ probability, $\operatorname{Tr} f\left(Q_{1}\right) \leq N^{-2 \epsilon_{0}}$. By (6.16) of [2], we have

$$
\frac{f(x)}{\tilde{\eta}\left(E_{U}-E^{-}\right)} \leq C\left(g * \vartheta_{t}\right)\left(E^{-}-x\right)
$$

where $g(y)$ is defined as $g(y):=\frac{1}{y^{2}+t^{2}}$. Recall (2.6) and (3.34) of the paper. We have

$$
\frac{1}{N} \operatorname{Tr} \vartheta_{t}\left(Q_{1}-E^{-}\right)=\frac{1}{\pi} \operatorname{Im} m_{2}\left(E^{-}+i t\right)
$$

Hence, we can obtain that

$$
\begin{align*}
\operatorname{Tr} f\left(Q_{1}\right) & \leq C N \tilde{\eta}\left(E_{U}-E^{-}\right) \int_{\mathbb{R}} \frac{1}{y^{2}+t^{2}} \operatorname{Im} m_{2}\left(E^{-}-y+i t\right) d y \\
& \leq C N^{1 / 3+\epsilon} \tilde{\eta} \int_{\mathbb{R}} \frac{1}{y^{2}+t^{2}}\left[\operatorname{Im} m\left(E^{-}-y+i t\right)+\frac{N^{\epsilon_{1}}}{N t}\right] d y \tag{S4}
\end{align*}
$$

where we use (2.16) of the paper. It is easy to check that

$$
\begin{equation*}
C N^{-1 / 3+\epsilon+\epsilon_{1}-9 \epsilon_{0}} \int_{\mathbb{R}} \frac{1}{y^{2}+t^{2}} \frac{1}{N t} d y \leq C N^{-4 / 3+\epsilon+\epsilon_{1}-9 \epsilon_{0}} t^{-2} \int_{\mathbb{R}} \frac{t}{t^{2}+y^{2}} d y \leq N^{-2 \epsilon_{0}} \tag{S5}
\end{equation*}
$$

Next, we will use (3.42) of the paper to estimate (S4). When $E^{-}-y \geq a_{2 k-1}$, we have

$$
\operatorname{Im} m\left(E^{-}-y+i t\right) \leq C \sqrt{t+E^{-}-y-a_{2 k-1}}
$$

Denote $A:=\left\{E^{-}-y-a_{2 k-1} \geq t\right\}$. Then we have

$$
\begin{gather*}
\int_{A} \frac{\operatorname{Im} m\left(E^{-}-y+i t\right)}{y^{2}+t^{2}} d y \leq C \int_{\mathbb{R}} \frac{|y|^{1 / 2}+\left|E^{-}-a_{2 k-1}\right|^{1 / 2}}{y^{2}+t^{2}} d y \leq C\left(\frac{1}{t^{1 / 2}}+\frac{\left|E^{-}-a_{2 k-1}\right|^{1 / 2}}{y^{2}+t^{2}}\right) \\
\int_{A^{c}} \frac{\operatorname{Im} m\left(E^{-}-y+i t\right)}{y^{2}+t^{2}} d y \leq C t^{-1 / 2} \tag{S6}
\end{gather*}
$$

The other case can be treated similarly. Therefore, by (S4), (S5), (S6) and (S7), we have proved $\operatorname{Tr} f\left(Q_{1}\right) \leq N^{-2 \epsilon_{0}}$ holds true with $1-N^{-D_{1}}$ probability. Hence, we conclude our proof.

Next we will follow the approach of [3, Lemma 3.6] to finish the proof of Lemma 3.8. A key observation is that when $s=0$, we will have a smaller bound but the total number of such terms are $O(N)$ for $x(E)$ and $O\left(N^{2}\right)$ for $y(E)$. And when $s=1$, we have a larger bound but the number of such terms are $O(1)$. We need to analyze the items with $s=0,1$ separately.

Proof of Lemma 3.8. Condition on the variable $s=0$, 1 , we introduce the following decomposition

$$
\begin{gathered}
x_{s}(E):=\frac{N \eta}{\pi} \sum_{k=M+1, \text { and } \neq \mu, \nu}^{M+N} X_{\mu \nu, k}(E+i \eta) \mathbf{1}\left(s=\mathbf{1}\left(\left(\{\mu, \nu\} \cap\left\{\mu_{1}\right\} \neq \emptyset\right) \cup\left(\left\{k=\mu_{1}\right\}\right)\right)\right), \\
y_{s}(E):=\frac{\tilde{\eta}}{\pi} \int_{E^{-}}^{E_{U}} \sum_{k} \sum_{\beta \neq k} X_{\beta \beta, k}(E+i \tilde{\eta}) d E \mathbf{1}\left(s=\mathbf{1}\left(\left(\left\{\beta=\mu_{1}\right\}\right) \cup\left(\left\{k=\mu_{1}\right\}\right)\right)\right) .
\end{gathered}
$$

$\Delta x_{s}, \Delta y_{s}$ can be defined in the same fashion. Similar to the discussion of (3.64) of the paper, for any E-dependent variable $f \equiv f(E)$ independent of the $\left(i, \mu_{1}\right)$-th entry of X^{G}, there exist two random variables A_{2}, A_{3}, which depend on the randomness only through O, f and the first two moments of $X_{i \mu_{1}}^{G}$, for any event Ω, with $1-N^{-D_{1}}$ probability, we have

$$
\begin{gathered}
\left|\int_{I} \mathbb{E}_{\gamma} \Delta x_{s}(E) f(E) d E-A_{2}\right| \mathbf{1}(\Omega) \leq\|f \mathbf{1}(\Omega)\|_{\infty} N^{-11 / 6+C \epsilon_{0}} N^{-2 s / 3+t} \\
\left|\mathbb{E}_{\gamma} \Delta y_{s}(E)-A_{3}\right| \leq N^{-11 / 6+C \epsilon_{0}} N^{-2 s / 3}
\end{gathered}
$$

In our application, f is usually a function of the entries of R (recall R is independent of $V)$. Next, we use

$$
\begin{equation*}
\theta\left[\int_{I} x^{S} q\left(y^{S}\right) d E\right]=\theta\left[\int_{I}\left(x^{R}+\Delta x_{0}+\Delta x_{1}\right) q\left(y^{R}+\Delta y_{0}+\Delta y_{1}\right) d E\right] \tag{S8}
\end{equation*}
$$

By (3.60), (3.61) and (3.62) of the paper, it is easy to check that, with $1-N^{-D_{1}}$ probability, we have

$$
\begin{align*}
\int_{I}\left|\Delta x_{s}(E)\right| d E \leq & N^{-5 / 6+C \epsilon_{0}} N^{-2 s / 3+t},\left|\Delta y_{s}(E)\right| \leq N^{-5 / 6+C \epsilon_{0}} N^{-2 s / 3} \tag{S9}\\
& \int_{I}|x(E)| d E \leq N^{C \epsilon_{0}},|y(E)| \leq N^{C \epsilon_{0}} \tag{S10}
\end{align*}
$$

By (S8) and (S9), with $1-N^{-D_{1}}$ probability, we have
$\theta\left[\int_{I} x^{S} q\left(y^{S}\right) d E\right]=\theta\left[\int_{I} x^{S}\left(q\left(y^{R}\right)+q^{\prime}\left(y^{R}\right)\left(\Delta y_{0}+\Delta y_{1}\right)+q^{\prime \prime}\left(y^{R}\right)\left(\Delta y_{0}\right)^{2}\right) d E\right]+o\left(N^{-2}\right)$.
Similarly, we have (see (3.44) of [3])

$$
\begin{align*}
& \theta\left[\int_{I} x^{S} q\left(y^{S}\right) d E\right]-\theta\left[\int_{I} x^{R} q\left(y^{R}\right) d E\right]=\theta^{\prime}\left[\int_{I} x^{R} q\left(y^{R}\right) d E\right] \\
& \times\left[\int_{I}\left(\left(\Delta x_{0}+\Delta x_{1}\right) q\left(y^{R}\right)+x^{R} q^{\prime}\left(y^{R}\right)\left(\Delta y_{0}+\Delta y_{1}\right)+\Delta x_{0} q^{\prime}\left(y^{R}\right) \Delta y_{0}+x^{R} q^{\prime \prime}\left(y^{R}\right)\left(\Delta y_{0}\right)^{2}\right) d E\right] \\
& +\frac{1}{2} \theta^{\prime \prime}\left[\int_{I} x^{R} q\left(y^{R}\right) d E\right]\left[\int_{I}\left(\Delta x_{0} q\left(y^{R}\right)+x^{R} q^{\prime}\left(y^{R}\right) \Delta y_{0}\right) d E\right]^{2}+o\left(N^{-2+t}\right) \tag{S11}
\end{align*}
$$

Now we start dealing with the individual terms on the right-hand side of (S11). Firstly, we consider the terms containing $\Delta x_{1}, \Delta y_{1}$. Similar to (3.64) of the paper, we can find a random variable A_{4}, which depends on randomness only through O and the first two moments of $X_{i \mu_{1}}^{G}$, such that with $1-N^{-D_{1}}$ probability,

$$
\left|\mathbb{E}_{\gamma} \int_{I}\left(\Delta x_{1} q\left(y^{R}\right)+x^{R} q^{\prime}\left(y^{R}\right) \Delta y_{1}\right) d E-A_{4}\right|=o\left(N^{-2+t}\right)
$$

Hence, we only need to focus on $\Delta x_{0}, \Delta y_{0}$. We first observe that

$$
\begin{gathered}
\Delta x_{0}(E)=\mathbf{1}(t=0) \frac{N \eta}{\pi} \sum_{k \neq \mu, \nu, \mu_{1}} \Delta X_{\mu \nu, k}(z) \\
\Delta y_{0}(E)=\frac{\tilde{\eta}}{\pi} \int_{E^{-}}^{E_{U}} \sum_{k \neq \mu_{1}} \sum_{\beta \neq k, \mu_{1}} \Delta X_{\beta \beta, k}(E+i \tilde{\eta}) d E
\end{gathered}
$$

Denote $\Delta x_{0}^{(k)}(E)$ by the summations of the terms in $\Delta x_{0}(E)$ containing k items of $X_{i \mu_{1}}^{G}$. By $(3.46),(3.60)$ and (3.61) of the paper, it is easy to check that with $1-N^{-D_{1}}$ probability,

$$
\begin{equation*}
\left|\Delta x_{0}^{(3)}\right| \leq N^{-7 / 6+C \epsilon_{0}},\left|\Delta y_{0}^{(3)}\right| \leq N^{-11 / 6+C \epsilon_{0}} \tag{S12}
\end{equation*}
$$

We now decompose $\Delta X_{\mu \nu, k}$ into three parts indexed by the number of $X_{i \mu_{1}}^{G}$ they contain. By (3.46), (3.60), (3.61) of the paper and (S12), with $1-N^{-D_{1}}$ probability, we have

$$
\begin{align*}
\Delta X_{\mu \nu, k} & =\Delta X_{\mu \nu, k}^{(1)}+\Delta X_{\mu \nu, k}^{(2)}+\Delta X_{\mu \nu, k}^{(3)}+O\left(N^{-3+C \epsilon_{0}}\right), \\
\Delta x_{0} & =\Delta x_{0}^{(1)}+\Delta x_{0}^{(2)}+\Delta x_{0}^{(3)}+O\left(N^{-5 / 3+C \epsilon_{0}}\right) \tag{S13}\\
\Delta y_{0} & =\Delta y_{0}^{(1)}+\Delta y_{0}^{(2)}+\Delta y_{0}^{(3)}+O\left(N^{-7 / 3+C \epsilon_{0}}\right) . \tag{S14}
\end{align*}
$$

Inserting (S13) and (S14) into (S11), similar to the discussion of (3.64) of the paper, we can find a random variable A_{5} depending on the randomness only through O and the first two moments of $X_{i \mu_{1}}^{G}$, such that with $1-N^{-D_{1}}$ probability,

$$
\begin{aligned}
& \mathbb{E}_{\gamma} \theta\left[\int_{I} x^{S} q\left(y^{S}\right) d E\right]-\mathbb{E}_{\gamma} \theta\left[\int_{I} x^{R} q\left(y^{R}\right) d E\right] \\
& =\mathbb{E}_{\gamma} \theta^{\prime}\left[\int_{I} x^{R} q\left(y^{R}\right) d E\right]\left[\int_{I} \Delta x_{0}^{(3)} q\left(y^{R}\right)+x^{R} q^{\prime}\left(y^{R}\right) \Delta y_{0}^{(3)} d E\right]+A_{4}+A_{5}+o\left(N^{-2+t}\right)
\end{aligned}
$$

Lemma 3.8 will be proved if we can show

$$
\mathbb{E} \theta^{\prime}\left[\int_{I} x^{R} q\left(y^{R}\right) d E\right]\left[\int_{I} \Delta x_{0}^{(3)} q\left(y^{R}\right)+x^{R} q^{\prime}\left(y^{R}\right) \Delta y_{0}^{(3)} d E\right]=o\left(N^{-2}\right) .
$$

Due to the similarity, we shall prove

$$
\mathbb{E} \theta^{\prime}\left[\int_{I} x^{R} q\left(y^{R}\right) d E\right]\left[\int_{I} \Delta x_{0}^{(3)} q\left(y^{R}\right) d E\right]=o\left(N^{-2}\right)
$$

the other term follows. By (3.3) of the paper and (S10), with $1-N^{-D_{1}}$ probability, we have $\left|B^{R}\right|:=\left|\theta^{\prime}\left[\int_{I} x^{R} q\left(y^{R}\right) d E\right]\right| \leq N^{C \epsilon_{0}}$. Similar to (3.66) of the paper, $\Delta x_{0}^{(3)}$ is a finite sum of terms of the form

$$
\begin{equation*}
\mathbf{1}(t=0) N \eta \sum_{k \neq \mu, \nu, \mu_{1}} R_{\mu k}\left(\sigma_{i}\right)^{3 / 2}\left(X_{i \mu_{1}}^{G}\right)^{3} \overline{z^{3 / 2} R_{\nu a_{1}} R_{b_{1} a_{2}} R_{b_{2} a_{3}} R_{b_{3} k}} . \tag{S15}
\end{equation*}
$$

Inserting (S15) into $\int_{I} \Delta x_{0}^{(3)} q\left(y^{R}\right) d E$, for some constant $C>0$, we have

$$
\begin{equation*}
\left|\mathbb{E} \theta^{\prime}\left[\int_{I} x^{R} q\left(y^{R}\right) d E\right]\left[\int_{I} \Delta x_{0}^{(3)} q\left(y^{R}\right) d E\right]\right| \leq N^{-5 / 6+C \epsilon_{0}} \max _{k \neq \mu, \nu, \mu_{1}} \sup _{E \in I}\left|\mathbb{E} B^{R} R_{\mu k} \overline{R_{\nu \mu_{1}} R_{i k}} q\left(y^{R}\right)\right|+o\left(N^{-2}\right) . \tag{S16}
\end{equation*}
$$

Again by (3.60), (3.61) and (3.62) of the paper, it is easy to check that with $1-N^{-D_{1}}$ probability, for some constant $C>0$, we have

$$
\left|R_{\mu k} \overline{R_{\nu \mu_{1}} R_{i k}} B^{R} q\left(y^{R}\right)-S_{\mu k} \overline{S_{\nu \mu_{1}} S_{i k}} B^{S} q\left(y^{S}\right)\right| \leq N^{-4 / 3+C \epsilon_{0}} .
$$

Therefore, if we can show

$$
\begin{equation*}
\left|\mathbb{E} S_{\mu k} \overline{S_{\nu \mu_{1}} S_{i k}} B^{S} q\left(y^{S}\right)\right| \leq N^{-4 / 3+C \epsilon_{0}}, \tag{S17}
\end{equation*}
$$

then by (S16), we finish proving (). The rest leaves to prove (S17). Recall Definition 2.3 and (3.57) of the paper, by [4, Lemma 3.2 and 3.3](or [1, Lemma A.2]), we have the following resolvent identities,

$$
\begin{gather*}
S_{\mu \nu}^{\left(\mu_{1}\right)}=S_{\mu \nu}-\frac{S_{\mu \mu_{1}} S_{\mu_{1} \nu}}{S_{\mu_{1} \mu_{1}}}, \mu, \nu \neq \mu_{1} \tag{S18}\\
S_{\mu \nu}=z S_{\mu \mu} S_{\nu \nu}^{(\mu)}\left(Y_{\gamma-1}^{*} S^{(\mu \nu)} Y_{\gamma-1}\right)_{\mu \nu}, \mu \neq \nu \tag{S19}
\end{gather*}
$$

By (3.61), (3.62) of the paper and (S18), it is easy to check that (see (3.72) of [3]),

$$
\begin{equation*}
\left|S_{\mu k} \overline{S_{\nu \mu_{1}} S_{i k}} B^{S} q\left(y^{S}\right)-S_{\mu k}^{\left(\mu_{1}\right)} \overline{S_{\nu \mu_{1}} S_{i k}^{\left(\mu_{1}\right)}}\left(B^{S}\right)^{\left(\mu_{1}\right)} q\left(\left(y^{S}\right)^{\left(\mu_{1}\right)}\right)\right| \leq N^{-4 / 3+C \epsilon_{0}} \tag{S20}
\end{equation*}
$$

Moreover, by (3.73) of [3], we have

$$
\begin{equation*}
S_{\mu k}^{\left(\mu_{1}\right)} \overline{S_{\nu \mu_{1}} S_{i k}^{\left(\mu_{1}\right)}}\left(B^{S}\right)^{\left(\mu_{1}\right)} q\left(\left(y^{S}\right)^{\left(\mu_{1}\right)}\right)=\left(S_{\mu k} \overline{S_{i k}} B^{S} q\left(y^{S}\right)\right)^{\left(\mu_{1}\right)} \bar{S}_{\nu \mu_{1}} \tag{S21}
\end{equation*}
$$

As $t=0$, by (S19), we have

$$
\begin{equation*}
S_{\nu \mu_{1}}=z m(z) S_{\mu_{1} \mu_{1}}^{(\nu)} \sum_{p, q} S_{p q}^{\left(\nu \mu_{1}\right)}\left(Y_{\gamma-1}^{*}\right)_{\nu p}\left(Y_{\gamma-1}\right)_{q \mu_{1}}+z\left(S_{\nu \nu}-m(z)\right) S_{\mu_{1} \mu_{1}}^{(\nu)} \sum_{p, q} S_{p q}^{\left(\nu \mu_{1}\right)}\left(Y_{\gamma-1}^{*}\right)_{\nu p}\left(Y_{\gamma-1}\right)_{q \mu_{1}} \tag{S22}
\end{equation*}
$$

The conditional expectation \mathbb{E}_{γ} applied to the first term of (S22) vanishes; hence its contribution to the expectation of (S21) will vanish. By (2.19) of the paper, with $1-N^{-D_{1}}$ probability, we have

$$
\begin{equation*}
\left|S_{\nu \nu}-m(z)\right| \leq N^{-1 / 3+C \epsilon_{0}} \tag{S23}
\end{equation*}
$$

By the large deviation bound [4, Lemma 3.6], with $1-N^{-D_{1}}$ probability, we have

$$
\begin{equation*}
\left|\sum_{p, q} S_{p q}^{\left(\nu \mu_{1}\right)}\left(Y_{\gamma-1}^{*}\right)_{\nu p}\left(Y_{\gamma-1}\right)_{q \mu_{1}}\right| \leq N^{\epsilon_{1}} \frac{\left(\sum_{p, q}\left|S_{p q}^{\left(\nu \mu_{1}\right)}\right|^{2}\right)^{1 / 2}}{N} \tag{S24}
\end{equation*}
$$

By (2.19) of the paper and (S24), with $1-N^{-D_{1}}$ probability, we have

$$
\begin{equation*}
\left|\sum_{p, q} S_{p q}^{\left(\nu \mu_{1}\right)}\left(Y_{\gamma-1}^{*}\right)_{\nu p}\left(Y_{\gamma-1}\right)_{q \mu_{1}}\right| \leq N^{-1 / 3+C \epsilon_{0}} \tag{S25}
\end{equation*}
$$

Therefore, inserting (S23) and (S25) into (S21), by (2.19) of the paper, we have

$$
\left|\mathbb{E} S_{\mu k}^{\left(\mu_{1}\right)} \overline{S_{\nu \mu_{1}} S_{i k}^{\left(\mu_{1}\right)}}\left(B^{S}\right)^{\left(\mu_{1}\right)} q\left(\left(y^{S}\right)^{\left(\mu_{1}\right)}\right)\right| \leq N^{-4 / 3+C \epsilon_{0}}
$$

Combine with (S20), we conclude our proof.

Proof of Lemma 4.4. It is easy to check that with $1-N^{-D_{1}}$ probability, (3.39) of the paper still holds true. Therefore, it remains to prove the following result
$\mathbb{E}^{V} \theta\left[\frac{N}{\pi} \int_{I} \tilde{G}_{\mu \nu}(E+i \eta) q\left(\operatorname{Tr} \mathcal{X}_{E}\left(Q_{1}\right)\right)\right]-\mathbb{E}^{V} \theta\left[\frac{N}{\pi} \int_{I} \tilde{G}_{\mu \nu}(E+i \eta) q\left(\operatorname{Tr} f_{E}\left(Q_{1}\right)\right) d E\right]=o(1)$.
We first observe that for any $x \in \mathbb{R}$, we have

$$
\left|\mathcal{X}_{E}(x)-f_{E}(x)\right|= \begin{cases}0, & x \in\left[E^{-}, E_{U}\right] \cup\left(-\infty, E^{-}-\eta_{d}\right) \cup\left(E_{U}+\eta_{d},+\infty\right) ; \\ \left|f_{E}(x)\right|, & x \in\left[E^{-}-\eta_{d}, E^{-}\right) \cup\left(E_{U}, E_{U}+\eta_{d}\right] .\end{cases}
$$

Therefore, we have

$$
\left|\operatorname{Tr} \mathcal{X}_{E}\left(Q_{1}\right)-\operatorname{Tr} f_{E}\left(Q_{1}\right)\right| \leq \max _{x}\left|f_{E}(x)\right|\left(\mathcal{N}\left(E^{-}-\eta_{d}, E^{-}\right)+\mathcal{N}\left(E_{U}, E_{U}+\eta_{d}\right)\right) .
$$

By Lemma 2.3 of the paper, the definition of η_{d} and a similar argument to (3.44) of the paper, we can finish the proof of (S26).

References

[1] X. Ding and F. Yang. A necessary and sufficient condition for edge universality at the largest singular values of covariance matrices. Ann. Appl. Probab., 3: 1679-1738, 2018.
[2] L. Erdős, H.-T. Yau, and J. Yin. Rigidity of eigenvalues of generalized Wigner matrices. Adv. Math., 229:1435-1515, 2012.
[3] A. Knowles and J. Yin. Eigenvector distribution of Wigner matrices. Prob. Theor. Rel. Fields, 155:543582, 2013.
[4] H. Xi, F. Yang, and J. Yin. Local circular law for the product of a deterministic matrix with a random matrix. Electr.J. Prob., 22:no.60, 77pp, 2017.

[^0]: * Postal address: Sidney Smith Hall, 100 St. George Street, Toronto, ON M5S 3G3, Canada.
 * Email address: xiucai.ding@mail.utoronto.ca.

