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Appendix A. Basic examples

A.1. Spreading on a cycle

Consider the example of SI spreading with power law weights on the cycle C,, with
n vertices, with a € (1/2,1). The process on the cycle can be understood via the
process on the integer line Z: the time T} of the infection of the k’th vertex has the
same distribution on Z as on C,, for every £ < n. On Z, we will denote by X; the
power law distributed random weight on the edge (i — 1,4) if ¢ > 0, and on the edge
(i,i4+1)if i < 0.
Proposition A.1. For the SI spreading process (T})72, on Z with power law weights
a € (1/2,1), the expected time to infect k vertices satisfies

E(T}) =< kY,
where the constant factors depend only on .
k —k
Proof. Let S, = Y X, and S; = > X;. Note that
i=1 i=—1
min{SLk/QJ 5 ka/% } < Tk+1 < min{Sk, SZ}
Then it is enough to prove that E(min{Sk,S;}) < k'/*. Tt is well-known (see [22,

Theorem 3.7.2]) that the sum Sy, as k& — oo is in the domain of attraction of the stable
law Y with the same parameter a:

P(Sy/EY* > t) ——P(Y > 1),
—00

Denote Sy, = Si/kY®. The convergence is given via the convergence of characteristic
functions, where the limit characteristic function is given by [22]:

Oy (1) = lim 65, (1) = Cuguiey exp(~Dlt]*), (A1)

where the constants, C_; = C; and b > 0, depend on «. Hence, in the bounded
interval [t| < 1 the convergence in (A.1) is uniform in ¢, thus we can write

95, (t) = Cogn(r) exp(=0[t|*) (1 + o(1)),

where o(1) — 0 as k — oo uniformly in |¢{| < 1. Using the relation between the tail
distribution and the characteristic function, given by the following inequality [22, Eq.
(3.3.1)]:

u

1
P(X| > 2/w) < [ (1= ox(®)d
where X is a random variable with characteristic function ¢x (t), we derive that when
t is sufficiently large then for all &,

2/t 2/t
P(Sy >t) <t / 1= (14 0(1)) Csgnesy exp ( — blx|*) do < t / Calz|%dx = C5t™,
—2/t -2/t

(A.2)
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where C'5 > 0 is constant that depends on a. Thus we have for sufficiently large ¢:
P(min{Sy, S} }/kY* > t) < Cyt 2%,

where Cy > 0 is constant that depends on «. Since Sy, is positive then we can find a ran-
dom variable Z with power law tail with exponent 2« such that | min{S, S; }/k/¢| <
Z a.s. for all k£ > 0, and thus by Dominated Convergence Theorem for o > 1/2 we
have convergence of expectations

E(min{S, S;}/k/<) —— E(min{Y,Y"}).

where Y, Y™ are stable with parameter . The minimum of Y, Y™ has power law tail
with exponent 2« thus has finite expectation and we have:

E(min{Sy, S; } /Y %) =< 1,

for all £ > 0, which implies the statement of the proposition. a

A.2. Spreading on a star

The star graph St,, consists of a distinguished root vertex 0 and vertices {1,2,...,n—
1} attached to it. On St,, we consider the SI spreading process T = (T})j_, started
from the root, with power law distributed random weights with o € (1/2,1), denoted
as )(1,)(27 N aXn—l-

Proposition A.2. On the graph St,, withn > 2, the expected time to infect k vertices,
for k <n—1, is bounded by
E(T}) < Cok/®,

where Cy > 0 is a constant that depends only on «. For k =n — 1, in order to infect
all but one vertices, we have
E(T,_1) = n'/®,

with the implicit constant factors depending on a.

Proof. Denote by X("Sl << Xglnill) the order statistics of X1,...,X,,_1. Then
n—1

we have Ty = X(k) , and it is obvious that

n—1 k+1
Xy 2 Xw >

for k < n — 2, hence the second statement of the theorem implies the first one.

It is straightforward to calculate the tail distribution of X (kkJ)rl:

P(X(H > 1) =1 -P(XGH <)

=1- (k’+ 1)P(X1,...,Xk <t, Xgy1 > t) 7]P)(X1,...,Xk+1 < t)
=1—(k+1)(Q -tk — (1 — )k,
(A.3)
To get an upper bound on E(X(k]:gl), we integrate (A.3) over ¢ > 0, using the bound

(1 —t=*)% > 1 —kt= for t > k¥, and the bound IP’(X(ICI:)r1 >t) < 1for t < k/e.



Speeding up non-Markovian First Passage Percolation with a few extra edges

After cancellations,

g1/ 0o
E(X(51) < / Ldt + (k+ 1)k / t2edt
0 El/e
1 kl/a—Q 1
= kY + (k+ 1)k < Cokt/e.
+(k+1) 2a -1

k+1

In order to get a lower bound, we use the bound (1 — ¢~ %)F <1 — kt=* + 1k?¢—2«
for ¢ > k'/, and the bound P(X(5' > ) > 0 for t < k'/*:

E(XH

k+1)2\ T k+ Dk [
o= (k(k+1)—(z)> /t’%‘dt—% / 3t
kl/a
1/ 1 1
2

kl/a
_ 1/a> 1/«
2\2a-1 3a—1>k > ek’

with some ¢, > 0. Thus,

E+1\ _ 11
E(X(5") = ke,
which finishes proof of the theorem.

O
Appendix B. Preliminary lemmas for general deterministic graphs

Lemma B.1. Let (b,)5%, be a positive sequence that satisfies the following recursive
inequality for some C' >0 and 0 < o < 1:

bnt1 < by + C’b}fa.
Then

(B.1)
by, < dn'/?,
with d = max{by, (aC)"/}.

Proof. We prove the statement by induction. By definition, the statement holds for
b1 < d. Suppose the statement holds for some n > 1: for any k& with 1 < k < n, we
have b, < dk'/®. Now rewrite (B.1) as

b1 — b, < Cb .
Making a telescopic sum, then using the induction hypothesis and bounding the sum
with an integral, we obtain
n n n+1

b1 — b1 <D _Ch* <Y Cd' okt < / Cd' "z d

k=1 k=1 !

(B.2)
= aCdi—® ((n 1)le 1) <d ((n r1)le 1)

Adding b; < d to this inequality, we arrive at b,,1 < d(n + 1)/, as desired.
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Lemma B.2. Let X and Y be i.i.d. power law distributed random wvariables with
a € (1/2,1). Then, for any t > 1:

E(min{X,Y —t}|Y > t) <t~
with the constant factors depending on a.

Proof. The conditional tail distribution of the minimum is the following:

Pmin{X,Y — 1} > s |V > 1) = DA 28V > 145

P(Y >t)
—a(1+§)7, s> 1;
(1+§)7, 0<s<l.

S
Using the substitution u = n we write the expected value as follows:

o

Emin{X,Y —t}|Y > 1) = /P(min{X,Y —t} > s|Y > t)ds

0
1 e’}

S - —a
/(1+¥ ds+1t~ a/ ds
0 1

1/

t

:t/(l—l-u)_adu—&-tl_“/(u(1+u)) * du,

0 1/t

In the first integral, 1 < 1+ u < 2, hence that integral is =< 1/t and the term is
altogether < 1. To calculate the second term, we split the interval of integration into
two parts again:

tlfa/(u(Hu))—“du:tl*a /(u(1+u))—“du+/(u(1+u))—“du . (B3)
1/t 1/t 1

The first integral on the RHS of (B.3) is less than fol u*du = 2. The second
integral can be bounded in the following way:

/1+u 20‘du</(u(l—ku))_adué/u_mdu,
1 1 1

which is clearly = 20}71. Summing up the three terms we have calculated, we have

proved the lemma. O
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Appendix C. Speed of convergence to the infinite tree

Proposition C.1. Let TV be a CGW tree conditioned on Zy > 0 and T be an
infinite CGW tree. Then, as N — oo, for any € > 0 there exist 6 > 0 and a coupling
between TN and T, such that

P(TN[SN] # T®[6N]) < e.

Proof. In order to prove the statement of the proposition we show that the condi-
tioned measure and the infinite measure are close in total variation distance. First we
establish bounds on the conditioned measure. Consider a rooted tree T with height &,
where k£ < 0N and § > 0 is small. Then by Bayes’ formula,

BT = 12y > 0) = P43 > OTIH =)

P(TIk =T)

P(Zy > 0) o
_P(zy) > o0u- vz Y >O)IP’(T[/~:]ZT) '
P(Zy > 0) ’

where Z%lk denotes the (N — k)’th generation in the copy of the CGW process ARE
started from a vertex at level k. By Lemma 3.2, for a large enough N there exists
€g > 0 such that,

2

ol — ) <B(Zy > 0) < 2 (142 (C.2)

02N
Also, when N — k is large enough, there exists £; > 0, such that

2

(1 - (4)
aQ(N—k)(l e1) <P(Zy_, >0) <

Ao e): (C.3)

where 1 < i < #T). In order to simplify the further calculations we take common
€9 := max(gg, 1) instead of g9 and 1 in (C.2) and (C.3), and the conditioned measure

is denoted as Py (-) :==P(- | Zny > 0).

Upper bound. We use the union bound on the right-hand side of (C.1) and together
with (C.2) and (C.3), we obtain

#ToP(Zy_j, > 0)

Bn(TIH = 1) < T k2R = ) o
< ﬁ#ﬂﬂ”(ﬂk} = T)i fiz
Therefore, we can write that for small enough k there exists e5 > 0, such that
Py (TTH = T) < (NNi_k)#Tkp(fr[k} —T)(1 4 25). (C.5)
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Lower bound. We rewrite (C.1) using (C.5) as follows:

Py (TTk] =T) = m (1 —pz{), =0n---nzFH = 0)) P(TTk] =T)
_ m (1= (= PZxs > 0)*™ ) BT = T)

1 2(1 —ep) \ ™
> B0 <1 - (1 - k>> ) P(TTk] = T).

Since for any x, where z > 0, we have 1 — z < exp(—x) < 1 — z + 22 /2, then for any
n>1

(C.6)

(ne)®

2
We rewrite (C.6) using (C.7) for x = P(Zn_j > 0) and n = #T}, as follows:

1-(1—2)" >1—exp(—nx) > nx — (C.7)

P(TIk] =T)

BT =T) > 3755

(#TkP(ZN k> O) - = (#TkP(ZN k> O)) ) . (08)

Now use (C.3) and we obtain:

P (Tl = 7) > S =T) (2#%(1 —e2) 1 (2#%(1 + sz>)2>
) (©9)

P(Zy >0 o?(N — k) 2\ o%(N —k)
N 1- C1N
P(T _
> BT = DT (g e~ g )
where C7 = % < 1/0%. Therefore, we can write that for small enough & there

exists €4 > 0 and a bounded C5 > 0, that depends on ¢ and &5, such that

By (TIK = T) > B(T[k] = T)#T; (N—#Tkﬁ) (1-e.  (C10)

Combining the (C.5) and (C.10), and choosing €5 := max{e3,e4}, we obtain the
following bounds on the probability Py (T [k] = T):

N CyN Py(T[k]=T) N
(N—k;# k(N 7)? >(1€5) < #TJZ]P’(T[IC] —_ < (N—k:)(1+€5)' (C.11)

Total variation distance. Now we bound the total variation distance between
conditioned and infinite measures. From the upper bound in (C.11) we obtain that
when k is small enough, the following inequality holds:

Py (T[] =T) —P(T™[k]| = T) < (N —(1+e5) - 1) #T,P(T[K] = T)

= (- 1) + e ) #rub(T = )
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and, on the other hand, from the lower bound in (C.11) we obtain

N C.N
oMkl = T) — =T)<([1-——(1- - (1- :
P(T®k]=T)—-Pn(Tk]=T) < (1 N k(l e5) + #Tx V- k)Q(l 55))
HTE(TIH = T)
N N C.N
(- 5mp) g ¥t =)
#T P(Tk]=T)
Comparing both bounds we see that all summands are positive, except of (1 — Ni_k ,

thus we can inverse the sign it and derive the bound for an absolute value. Summing
those bounds over all possible trees of height &k, we obtain

ET: ’IF’N(T[k] = T) —P(T™[k] = T)‘ <§T: ((NN—k - 1) tes N]i -+ #Tkwcijvl;)z,(l - 55)) :
HTP(T[K] = T).

(C.12)

From the fact that we have a measure on the set of infinite trees and from Lemma 3.4

we have
NPTk =T)=> #T:P(Tk]=T) =1,

E(Zy | T%) =Y (#Tk)*P(T[k] = T) = 1+ ko,

T

Therefore we can rewrite (C.12) for k = N, when § > 0 is small, and obtain

1) S5

Z’PN(TMN]:T)*]P’(TOO[(SN]:T)‘g n Lot G loss
T

1—
=02 " N{I=02

1—-6 1-96

where C} = Cy0? < 1. Hence, for any ¢ > 0 we can find large N and small § > 0,
such that

> [P (T16N] = T) — B(T[5N] = T)| < e (C.13)

Denote the projection of measures Py and P., onto the trees with common first 6 /V
layers T[ON] as Py lsy and Poo[sny respectively. Then, by (C.13) and the definition of
the total variation distance we have

1
drv (Pnlsn, Poolsn) < 5¢6-

Hence by Strassen’s Theorem there exists a coupling of random variables T[0N] and
T>°[0N], with the same dpy. This finishes the proof of Proposition 1.1. O



