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Appendix A. Basic examples

A.1. Spreading on a cycle
Consider the example of SI spreading with power law weights on the cycle Cn with

n vertices, with α ∈ (1/2, 1). The process on the cycle can be understood via the
process on the integer line Z: the time Tk of the infection of the k’th vertex has the
same distribution on Z as on Cn, for every k 6 n. On Z, we will denote by Xi the
power law distributed random weight on the edge (i − 1, i) if i > 0, and on the edge
(i, i+ 1) if i < 0.

Proposition A.1. For the SI spreading process (Tk)∞k=1 on Z with power law weights
α ∈ (1/2, 1), the expected time to infect k vertices satisfies

E(Tk) � k1/α,

where the constant factors depend only on α.

Proof. Let Sk =
k∑
i=1

Xi and S∗k =
−k∑
i=−1

Xi. Note that

min{Sbk/2c, S∗bk/2c} 6 Tk+1 6 min{Sk, S∗k}.

Then it is enough to prove that E(min{Sk, S∗k}) � k1/α. It is well-known (see [22,
Theorem 3.7.2]) that the sum Sk as k →∞ is in the domain of attraction of the stable
law Y with the same parameter α:

P(Sk/k
1/α > t) −−−−→

k→∞
P(Y > t).

Denote Sk = Sk/k
1/α. The convergence is given via the convergence of characteristic

functions, where the limit characteristic function is given by [22]:

φY (t) = lim
k→∞

φSk(t) = Csgn(t) exp(−b|t|α), (A.1)

where the constants, C−1 = C1 and b > 0, depend on α. Hence, in the bounded
interval |t| < 1 the convergence in (A.1) is uniform in t, thus we can write

φSk(t) = Csgn(t) exp(−b|t|α)(1 + o(1)),

where o(1) → 0 as k → ∞ uniformly in |t| < 1. Using the relation between the tail
distribution and the characteristic function, given by the following inequality [22, Eq.
(3.3.1)]:

P(|X| > 2/u) 6
1

u

u∫
−u

(1− φX(t)) dt,

where X is a random variable with characteristic function φX(t), we derive that when
t is sufficiently large then for all k,

P(Sk > t) 6 t

2/t∫
−2/t

1− (1 + o(1))Csgn(t) exp
(
− b|x|α

)
dx < t

2/t∫
−2/t

C2|x|αdx = C3t
−α,

(A.2)
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where C3 > 0 is constant that depends on α. Thus we have for sufficiently large t:

P(min{Sk, S∗k}/k1/α > t) 6 C4t
−2α,

where C4 > 0 is constant that depends on α. Since Sk is positive then we can find a ran-
dom variable Z with power law tail with exponent 2α such that |min{Sk, S∗k}/k1/α| <
Z a.s. for all k > 0, and thus by Dominated Convergence Theorem for α > 1/2 we
have convergence of expectations

E(min{Sk, S∗k}/k1/α) −−−−→
k→∞

E(min{Y, Y ∗}).

where Y, Y ∗ are stable with parameter α. The minimum of Y, Y ∗ has power law tail
with exponent 2α thus has finite expectation and we have:

E(min{Sk, S∗k}/k1/α) � 1,

for all k > 0, which implies the statement of the proposition. �

A.2. Spreading on a star
The star graph Stn consists of a distinguished root vertex 0 and vertices {1, 2, . . . , n−

1} attached to it. On Stn, we consider the SI spreading process T = (Tk)nk=1 started
from the root, with power law distributed random weights with α ∈ (1/2, 1), denoted
as X1, X2, . . . , Xn−1.

Proposition A.2. On the graph Stn with n > 2, the expected time to infect k vertices,
for k 6 n− 1, is bounded by

E(Tk) 6 Cαk
1/α,

where Cα > 0 is a constant that depends only on α. For k = n− 1, in order to infect
all but one vertices, we have

E(Tn−1) � n1/α,
with the implicit constant factors depending on α.

Proof. Denote by Xn−1
(1) < · · · < Xn−1

(n−1) the order statistics of X1, . . . , Xn−1. Then
we have Tk+1 = Xn−1

(k) , and it is obvious that

Xn−1
(k) � Xk+1

(k) ,

for k 6 n− 2, hence the second statement of the theorem implies the first one.
It is straightforward to calculate the tail distribution of Xk+1

(k) :

P
(
Xk+1

(k) > t
)

= 1− P(Xk+1
(k) < t)

= 1− (k + 1)P(X1, . . . , Xk < t,Xk+1 > t)− P(X1, . . . , Xk+1 < t)

= 1− (k + 1)(1− t−α)kt−α − (1− t−α)k+1.
(A.3)

To get an upper bound on E(Xk+1
(k) ), we integrate (A.3) over t > 0, using the bound

(1 − t−α)k > 1 − kt−α for t > k1/α, and the bound P(Xk+1
(k) > t) 6 1 for t < k1/α.
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After cancellations,

E
(
Xk+1

(k)

)
6

k1/α∫
0

1 dt+ (k + 1)k

∞∫
k1/α

t−2αdt

= k1/α + (k + 1)k
k1/α−2

2α− 1
6 Cαk

1/α.

In order to get a lower bound, we use the bound (1− t−α)k < 1− kt−α + 1
2k

2t−2α

for t > k1/α, and the bound P(Xk+1
(k) > t) ≥ 0 for t < k1/α:

E
(
Xk+1

(k)

)
>

(
k(k + 1)− (k + 1)2

2

) ∞∫
k1/α

t−2αdt− (k + 1)k2

2

∞∫
k1/α

t−3αdt

∼ 1

2

(
1

2α− 1
− 1

3α− 1

)
k1/α > cαk

1/α,

with some cα > 0. Thus,
E
(
Xk+1

(k)

)
� k1/α,

which finishes proof of the theorem. �

Appendix B. Preliminary lemmas for general deterministic graphs

Lemma B.1. Let (bn)∞n=1 be a positive sequence that satisfies the following recursive
inequality for some C > 0 and 0 < α < 1:

bn+1 6 bn + Cb1−αn . (B.1)

Then
bn 6 dn

1/α,

with d = max{b1, (αC)1/α}.
Proof. We prove the statement by induction. By definition, the statement holds for

b1 6 d. Suppose the statement holds for some n > 1: for any k with 1 6 k 6 n, we
have bk 6 dk1/α. Now rewrite (B.1) as

bk+1 − bk 6 Cb1−αk .

Making a telescopic sum, then using the induction hypothesis and bounding the sum
with an integral, we obtain

bn+1 − b1 6
n∑
k=1

Cb1−αk 6
n∑
k=1

Cd1−αk1/α−1 6

n+1∫
1

Cd1−αx1/α−1dx

= αCd1−α
(

(n+ 1)1/α − 1
)
6 d

(
(n+ 1)1/α − 1

)
.

(B.2)

Adding b1 6 d to this inequality, we arrive at bn+1 6 d(n+ 1)1/α, as desired. �
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Lemma B.2. Let X and Y be i.i.d. power law distributed random variables with
α ∈ (1/2, 1). Then, for any t > 1:

E(min{X,Y − t}|Y > t) � t1−α,

with the constant factors depending on α.

Proof. The conditional tail distribution of the minimum is the following:

P
(
min{X,Y − t} > s

∣∣ Y > t
)

=
P(X > s, Y > t+ s)

P(Y > t)
=

=


s−α

(
1 +

s

t

)−α
, s > 1;(

1 +
s

t

)−α
, 0 < s < 1.

Using the substitution u =
s

t
we write the expected value as follows:

E(min{X,Y − t}|Y > t) =

∞∫
0

P
(
min{X,Y − t} > s|Y > t

)
ds

=

1∫
0

(
1 +

s

t

)−α
ds+ t−α

∞∫
1

(s
t

(
1 +

s

t

))−α
ds

= t

1/t∫
0

(1 + u)−αdu+ t1−α
∞∫

1/t

(u (1 + u))
−α

du.

In the first integral, 1 6 1 + u 6 2, hence that integral is � 1/t and the term is
altogether � 1. To calculate the second term, we split the interval of integration into
two parts again:

t1−α
∞∫

1/t

(u (1 + u))
−α

du = t1−α

 1∫
1/t

(u (1 + u))
−α

du+

∞∫
1

(u (1 + u))
−α

du

 . (B.3)

The first integral on the RHS of (B.3) is less than
∫ 1

0
u−αdu = 1

1−α . The second
integral can be bounded in the following way:

∞∫
1

(1 + u)−2αdu 6

∞∫
1

(u (1 + u))
−α

du 6

∞∫
1

u−2αdu,

which is clearly � 1
2α−1 . Summing up the three terms we have calculated, we have

proved the lemma. �
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Appendix C. Speed of convergence to the infinite tree

Proposition C.1. Let T N be a CGW tree conditioned on ZN > 0 and T ∞ be an
infinite CGW tree. Then, as N → ∞, for any ε > 0 there exist δ > 0 and a coupling
between T N and T ∞, such that

P(T N [δN ] 6= T ∞[δN ]) < ε.

Proof. In order to prove the statement of the proposition we show that the condi-
tioned measure and the infinite measure are close in total variation distance. First we
establish bounds on the conditioned measure. Consider a rooted tree T with height k,
where k 6 δN and δ > 0 is small. Then by Bayes’ formula,

P(T [k] = T |ZN > 0) =
P(ZN > 0|T [k] = T )

P(ZN > 0)
P(T [k] = T )

=
P(Z

(1)
N−k > 0 ∪ · · · ∪ Z(#Tk)

N−k > 0)

P(ZN > 0)
P(T [k] = T ),

(C.1)

where Z(i)
N−k denotes the (N − k)’th generation in the copy of the CGW process Z(i),

started from a vertex at level k. By Lemma 3.2, for a large enough N there exists
ε0 > 0 such that,

2

σ2N
(1− ε0) < P(ZN > 0) <

2

σ2N
(1 + ε0). (C.2)

Also, when N − k is large enough, there exists ε1 > 0, such that

2

σ2(N − k)
(1− ε1) < P(Z

(i)
N−k > 0) <

2

σ2(N − k)
(1 + ε1), (C.3)

where 1 6 i 6 #Tk. In order to simplify the further calculations we take common
ε2 := max(ε0, ε1) instead of ε0 and ε1 in (C.2) and (C.3), and the conditioned measure
is denoted as PN (·) := P(· | ZN > 0).

Upper bound. We use the union bound on the right-hand side of (C.1) and together
with (C.2) and (C.3), we obtain

PN (T [k] = T ) 6
#TkP(ZN−k > 0)

P(ZN > 0)
P(T [k] = T )

<
N

(N − k)
#TkP(T [k] = T )

1 + ε2
1− ε2

.

(C.4)

Therefore, we can write that for small enough k there exists ε3 > 0, such that

PN (T [k] = T ) <
N

(N − k)
#TkP(T [k] = T )(1 + ε3). (C.5)
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Lower bound. We rewrite (C.1) using (C.5) as follows:

PN (T [k] = T ) =
1

P(ZN > 0)

(
1− P(Z

(1)
N−k = 0 ∩ · · · ∩ Z(#Tk)

N−k = 0)
)
P(T [k] = T )

=
1

P(ZN > 0)

(
1− (1− P(ZN−k > 0))

#Tk
)
P(T [k] = T )

>
1

P(ZN > 0)

(
1−

(
1− 2(1− ε1)

σ2(N − k)

)#Tk
)
P(T [k] = T ).

(C.6)

Since for any x, where x > 0, we have 1 − x < exp(−x) < 1 − x + x2/2, then for any
n > 1

1− (1− x)n > 1− exp(−nx) > nx− (nx)2

2
. (C.7)

We rewrite (C.6) using (C.7) for x = P(ZN−k > 0) and n = #Tk as follows:

PN (T [k] = T ) >
P(T [k] = T )

P(ZN > 0)

(
#TkP(ZN−k > 0)− 1

2
(#TkP(ZN−k > 0))

2

)
. (C.8)

Now use (C.3) and we obtain:

PN (T [k] = T ) >
P(T [k] = T )

P(ZN > 0)

(
2#Tk(1− ε2)

σ2(N − k)
− 1

2

(
2#Tk(1 + ε2)

σ2(N − k)

)2
)

> P(T [k] = T )#Tk

(
N

N − k
1− ε2
1 + ε2

−#Tk
C1N

(N − k)2

)
,

(C.9)

where C1 = (1+ε2)
2σ2 < 1/σ2. Therefore, we can write that for small enough k there

exists ε4 > 0 and a bounded C2 > 0, that depends on σ and ε2, such that

PN (T [k] = T ) > P(T [k] = T )#Tk

(
N

N − k −#Tk
C2N

(N − k)2

)
(1− ε4). (C.10)

Combining the (C.5) and (C.10), and choosing ε5 := max{ε3, ε4}, we obtain the
following bounds on the probability PN (T [k] = T ):(

N

N − k −#Tk
C2N

(N − k)2

)
(1− ε5) 6

PN (T [k] = T )

#TkP(T [k] = T )
6

N

(N − k)
(1 + ε5). (C.11)

Total variation distance. Now we bound the total variation distance between
conditioned and infinite measures. From the upper bound in (C.11) we obtain that
when k is small enough, the following inequality holds:

PN (T [k] = T )− P(T ∞[k] = T ) 6

(
N

N − k (1 + ε5)− 1

)
#TkP(T [k] = T )

=

((
N

N − k − 1

)
+

N

N − k ε5
)

#TkP(T [k] = T ),
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and, on the other hand, from the lower bound in (C.11) we obtain

P(T ∞[k] = T )− PN (T [k] = T ) 6

(
1− N

N − k (1− ε5) + #Tk
CεN

(N − k)2
(1− ε5)

)
·

·#TkP(T [k] = T )

=

((
1− N

N − k

)
+

N

N − k ε5 + #Tk
CεN

(N − k)2
(1− ε5)

)
·

·#TkP(T [k] = T ).

Comparing both bounds we see that all summands are positive, except of
(

1− N
N−k

)
,

thus we can inverse the sign it and derive the bound for an absolute value. Summing
those bounds over all possible trees of height k, we obtain∑
T

∣∣∣PN (T [k] = T )− P(T ∞[k] = T )
∣∣∣ 6∑

T

((
N

N − k − 1

)
+ ε5

N

N − k + #Tk
CεN

(N − k)2
(1− ε5)

)
·

·#TkP(T [k] = T ).

(C.12)

From the fact that we have a measure on the set of infinite trees and from Lemma 3.4
we have ∑

T

P(T ∞[k] = T ) =
∑
T

#TkP(T [k] = T ) = 1,

E(Zk | T ∞) =
∑
T

(#Tk)2P(T [k] = T ) = 1 + kσ2.

Therefore we can rewrite (C.12) for k = δN , when δ > 0 is small, and obtain∑
T

∣∣∣PN (T [δN ] = T )− P(T ∞[δN ] = T )
∣∣∣ 6 δ

1− δ +
ε5

1− δ + C ′2δ
1− ε5

(1− δ)2 +
C2

N

1− ε5
(1− δ)2 ,

where C ′2 = C2σ
2 < 1. Hence, for any ε6 > 0 we can find large N and small δ > 0,

such that ∑
T

∣∣∣PN (T [δN ] = T )− P(T ∞[δN ] = T )
∣∣∣ 6 ε6. (C.13)

Denote the projection of measures PN and P∞ onto the trees with common first δN
layers T [δN ] as PN�δN and P∞�δN respectively. Then, by (C.13) and the definition of
the total variation distance we have

dTV (PN�δN ,P∞�δN ) 6
1

2
ε6.

Hence by Strassen’s Theorem there exists a coupling of random variables T [δN ] and
T ∞[δN ], with the same dTV . This finishes the proof of Proposition 1.1. �


