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A Proof of Lemma 1

Before proceeding with the proof of Lemma 1, we need need to introduce some notation, as well as the

definition of the Dobrushin contraction coefficient.

For any pair of integers 0 < s < t we can explicitly construct the conditional pdf of the subsequence

of observations ys:t given a point Xs = xs in the state space and a choice parameters Θ = θ. We denote

this density as gys:t

s:t,θ(xs), with the notation chosen to make explicit that, for fixed ys:t, this is a function

of the state value xs (i.e., it is interpreted as a likelihood). It is not difficult to show that

gys:t

s:t,θ(xs) =

∫

· · ·
∫ t
∏

j=s

g
yj

j,θ(xj)

t
∏

l=s+1

τl,θ(dxl|xl−1). (A.1)

We also introduce a specific notation for the conditional distribution of the state Xj conditional on

Xj−1 = xj−1, Θ = θ and the subsequence of observations from time j up to time t, yj:t. For any j ≤ t,

this is a Markov kernel, denoted k
yj:t

j,θ (dxj |xj−1), that can be explicitly written as

k
yj:t

j,θ (dxj |xj−1) =
g
yj:t

j:t,θ(xj)τj,θ(dxj |xj−1)
∫

g
yj:t

j:t,θ(x̃j)τj,θ(dx̃j |xj−1)
(A.2)

via the Bayes’ theorem. If the observation sequence is fixed, then the composite probability measure

K
ys:t

s:t+1,θ(dxt+1|xs) =

∫

· · ·
∫

τt+1,θ(dxt+1|xt)

t
∏

j=s+1

k
yj:t

j,θ (dxj |xj−1) (A.3)

is a Markov kernel on (X ,B(X )).

The composite likelihood in (A.1) and the Markov kernel in (A.3) can be used to write integrals w.r.t.

the composite map Ψθ
t+1|s explicitly. To be specific, given a probability measure α ∈ P(X ), it is an
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exercise to show that
(

f,Ψθ
t+1|s(α)

)

=

(

(f,Kys:t

s:t+1,θ)g
ys:t

s:t,θ, α
)

(

gys:t

s:t,θ, α
) . (A.4)

The representation in (A.4), together with assumptions A3 and A4, enables the application of standard

results from [11] which become instrumental in the analysis of Algorithm 2.

We first define the Dobrushin contraction coefficient [12] for Markov kernels and then show how it

can be used to control the difference between between two probability measures Ψθ
t+1|s(α) and Ψθ

t+1|s(η)

which are constructed using the same composite map Ψθ
t+1|s (and, in particular, the same observation

subsequence ys:t+1) but different initial conditions α 6= η.

Definition 5 The Dobrushin contraction coefficient of a Markov kernel Kθ from X onto (X ,B(X )) is

β(Kθ) , sup
x,x′∈X ,A∈B(X )

|Kθ(A|x) −Kθ(A|x′)| ≤ 1.

An upper bound for the contraction coefficient of the kernel Kys:t

s:t+1,θ, explicitly given in terms of the

constants m, ǫτ and a in assumptions A4 and A3, is given below.

Lemma 3 If assumptions A3 and A4 hold, then

β(Kys:t

s:t+1,θ) ≤
(

1− ǫ2τ
am−1

)⌊ t−s+1
m

⌋
(A.5)

for every θ ∈ Dθ.

Proof of Lemma 3. Since the inequalities in A3 and A4 are assumed to hold uniformly over the

parameter space Dθ, the bound in (A.5) follows readily from Proposition 4.3.3 in [11] (see also [11,

Corollary 4.3.3]). ✷

Finally, we proceed with the proof of Lemma 1: From [11, Proposition 4.3.7] we obtain an upper

bound for the difference of integrals that depends on the Dobrushin coefficient of the Markov kernel

K
ys:t

s:t+1,θ, namely

∣

∣

∣(f,Ψθ
t+1|s(α)) − (f,Ψθ

t+1|s(η))
∣

∣

∣ ≤ 2‖f‖∞β(Kys:t

s:t+1,θ)

(

sup
xs∈X

gys:t

s:t,θ(xs)

(gys:t

s:t,θ, α)

)

∣

∣

∣(f̃s, α)− (f̃s, η)
∣

∣

∣ , (A.6)

for some f̃s : X → R with ‖f̃s‖ ≤ 1. Moreover, from the definition of the composite likelihood in (A.1)

and the assumption g
yj

j,θ ≤ 1 for every j ≥ 1 and θ ∈ Dθ (in A3), it follows that

gys:t

s:t,θ(xs) ≤ (g
ys+m:t

s+m:t,θ, τs+m|s,θ(·|xs)) (A.7)

whereas, from the bound g
yj

j,θ(x) ≥ 1
a , for all j ≥ 1 and θ ∈ Dθ (in A3) and the assumption A4, we obtain

that

(gys:t

s:t,θ, α) ≥
ǫτ
am

(g
ys+m:t

s+m:t , τs+m|s,θ(·|x̃s)) (A.8)
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for any x̃s ∈ X . In particular, for xs = x̃s, the inequalities (A.7) and (A.8) taken together yield

gys:t

s:t,θ(xs)

(gys:t

s:t,θ, α)
≤ am

ǫτ

independently of xs. This, in turn, enables us to rewrite (A.6) as

∣

∣

∣(f,Ψθ
t+1|s(α)) − (f,Ψθ

t+1|s(η))
∣

∣

∣ ≤ 2‖f‖∞β(Kys:t

s:t+1,θ)
am

ǫτ

∣

∣

∣(f̃s, α)− (f̃s, η)
∣

∣

∣ . (A.9)

By combining Lemma 3 with (A.9) we readily obtain the inequality (5.3) and complete the proof.

B Proof of Lemma 2

We look into the approximation error
∣

∣

∣(f, ξNt,θt)− (f, ξt,θt)
∣

∣

∣, which can be written as

∣

∣(f, ξNt,θt)− (f, ξt,θt)
∣

∣ =

∣

∣

∣

∣

∣

t−1
∑

k=0

(

f,Ψθt
t|t−k

(

ξNt−k,θt−k

))

−
(

f,Ψθt
t|t−k−1

(

ξNt−k−1,θt−k−1

))

+
(

f,Ψθt
t|0
(

ξN0,θ0
)

)

−
(

f,Ψθt
t|0 (τ0)

)∣

∣

∣

≤
t−1
∑

k=0

∣

∣

∣

(

f,Ψθt
t|t−k

(

ξNt−k,θt−k

))

−
(

f,Ψθt
t|t−k−1

(

ξNt−k−1,θt−k−1

))∣

∣

∣

+
∣

∣

∣

(

f,Ψθt
t|0
(

ξN0,θ0
)

)

−
(

f,Ψθt
t|0 (τ0)

)∣

∣

∣ , (B.1)

where the equality follows from a ‘telescopic’ decomposition of the difference (f, ξNt,θt)− (f, ξt,θt). To see

this, simply recall that ξN0,θ0 ≡ φN
0,θ0

≡ τN0 (independently of θ0 according to the model in Section 2.2)

and note that Ψθt
t|0(τ0) = ξt,θt . By way of Minkowski’s inequality, (B.1) enables us to express the Lp norm

of the approximation error (for p ≥ 1) as

∥

∥(f, ξNt,θt)− (f, ξt,θt)
∥

∥

p
≤

t−1
∑

k=0

∥

∥

∥

(

f,Ψθt
t|t−k

(

ξNt−k,θt−k

))

−
(

f,Ψθt
t|t−k−1

(

ξNt−k−1,θt−k−1

))∥

∥

∥

p

+
∥

∥

∥

(

f,Ψθt
t|0
(

ξN0,θ0
)

)

−
(

f,Ψθt
t|0 (τ0)

)∥

∥

∥

p
, (B.2)

The last term in the decomposition above can be easily upper bounded using Lemma 1, namely

∥

∥

∥

(

f,Ψθt
t|0
(

ξN0,θ0
)

)

−
(

f,Ψθt
t|0 (τ0)

)∥

∥

∥

p
≤ 2‖f‖∞

(

1− ǫ2τ
am−1

)⌊ t
m

⌋
am

ǫτ

∥

∥

∥(f̃0, τ
N
0 )− (f̃0, τ0)

∥

∥

∥

p
,

≤ 2‖f‖∞
(

1− ǫ2τ
am−1

)⌊ t
m

⌋
am

ǫτ

C̃0√
N

(B.3)

where ‖f̃0‖∞ ≤ 1 and the second inequality follows readily from the fact that τN0 = ξN0,θ0 is an i.i.d. Monte

Carlo approximation of τ0 (hence, C̃0 < ∞ is a constant independent of N). For the remaining terms in

the sum of (B.2), Lemma 1 yields

∥

∥

∥

(

f,Ψθt
t|t−k

(

ξNt−k,θt−k

))

−
(

f,Ψθt
t|t−k−1

(

ξNt−k−1,θt−k−1

))∥

∥

∥

p
≤

2‖f‖∞
(

1− ǫ2τ
am−1

)⌊ k
m

⌋
am

ǫτ

∥

∥

∥

(

f̃t−k, ξ
N
t−k,θt−k

)

−
(

f̃t−k,Ψ
θt
t−k

(

ξNt−k−1,θt−k−1

))∥

∥

∥

p
. (B.4)
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where ‖f̃t−k‖∞ ≤ 1.

In order to convert (B.4) into an explicit error rate, we need to derive bounds for errors of the form
∥

∥

∥

(

h, ξNt−k,θt−k

)

−
(

h,Ψθt
t−k

(

ξNt−k−1,θt−k−1

))∥

∥

∥

p
, where h : X → R with ‖h‖∞ ≤ 1. With this aim, we

consider the triangular inequality
∥

∥

∥

(

h, ξNt−k,θt−k

)

−
(

h,Ψθt
t−k

(

ξNt−k−1,θt−k−1

))∥

∥

∥

p
≤
∥

∥

∥

(

h, ξNt−k,θt−k

)

− E
[(

h, ξNt−k,θt−k

)

|Gt−k

]∥

∥

∥

p
+

∥

∥

∥E
[(

h, ξNt−k,θt−k

)

|Gt−k

]

−
(

h,Ψθt
t−k

(

ξNt−k−1,θt−k−1

))∥

∥

∥

p
, (B.5)

where Gt−k = σ
(

x
(n)
0:t−k−1, x̄

(n)
1:t−k−1, {θs}s≥0; 1 ≤ n ≤ N

)

is the σ-algebra generated by the random

variables between brackets, and analyse the two terms on the right hand side separately.

For the first term on the right hand side of (B.5), we note that

(

h, ξNt−k,θt−k

)

− E
[(

h, ξNt−k,θt−k

)

|Gt−k

]

=
1

N

N
∑

n=1

S̄
(n)
t−k,

where

S̄
(n)
t−k = h(x̄

(n)
t−k)− E

[

h(x̄
(n)
t−k)|Gt−k

]

, n = 1, ..., N,

are zero-mean and conditionally (on Gt−k) independent r.v.’s. Therefore it is straightforward to show that

E
[∣

∣

∣

(

h, ξNt−k,θt−k

)

− E
[(

h, ξNt−k,θt−k

)

|Gt−k

]∣

∣

∣

p

|Gt−k

]

= E

[∣

∣

∣

∣

∣

1

N

N
∑

n=1

S̄
(n)
t−k

∣

∣

∣

∣

∣

p

|Gt−k

]

≤ cp

N
p
2

(B.6)

for some constant c > 0 independent of N and independent of the distribution of the variables S̄
(n)
t−k,

n = 1, ..., N (in particular, independent of the sequence {θt}t≥0). Taking expectations on both sides of

(B.6), and then exponentiating by 1
p , yields

∥

∥

∥

(

h, ξNt−k,θt−k

)

− E
[(

h, ξNt−k,θt−k

)

|Gt−k

]∥

∥

∥

p
≤ c√

N
. (B.7)

To find a rate for the second term in (B.5), we note that

E
[(

h, ξNt−k,θt−k

)

|Gt−k

]

=

(

g
yt−k−1

t−k−1,θt−k−1

(

h, τt−k,θt−k

)

, ξNt−k−1,θt−k−1

)

(

g
yt−k−1

t−k−1,θt−k−1
, ξNt−k−1,θt−k−1

) (B.8)

whereas
(

h,Ψθt
t−k

(

ξNt−k−1,θt−k−1

))

=

(

g
yt−k−1

t−k−1,θt
(h, τt−k,θt) , ξ

N
t−k−1,θt−k−1

)

(

g
yt−k−1

t−k−1,θt
, ξNt−k−1,θt−k−1

) . (B.9)

Subtracting (B.9) from (B.8) and then rearranging terms yields

E
[(

h, ξNt−k,θt−k

)

|Gt−k

]

−
(

h,Ψθt
t−k

(

ξNt−k−1,θt−k−1

))

=
(

g
yt−k−1

t−k−1,θt−k−1

(

h, τt−k,θt−k

)

− g
yt−k−1

t−k−1,θt
(h, τt−k,θt) , ξ

N
t−k−1,θt−k−1

)

(

g
yt−k−1

t−k−1,θt
, ξNt−k−1,θt−k−1

) +

E
[(

h, ξNt−k,θt−k

)

|Gt−k

]

×
(

g
yt−k−1

t−k−1,θt
− g

yt−k−1

t−k−1,θt−k−1
, ξNt−k−1,θt−k−1

)

(

g
yt−k−1

t−k−1,θt
, ξNt−k−1,θt−k−1

) ,
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hence

∣

∣

∣E
[(

h, ξNt−k,θt−k

)

|Gt−k

]

−
(

h,Ψθt
t−k

(

ξNt−k−1,θt−k−1

))∣

∣

∣ ≤

a×
(∣

∣

∣g
yt−k−1

t−k−1,θt−k−1

(

h, τt−k,θt−k

)

− g
yt−k−1

t−k−1,θt
(h, τt−k,θt)

∣

∣

∣ , ξNt−k−1,θt−k−1

)

+

a×
(∣

∣

∣
g
yt−k−1

t−k−1,θt
− g

yt−k−1

t−k−1,θt−k−1

∣

∣

∣
, ξNt−k−1,θt−k−1

)

, (B.10)

where we have used the obvious bounds E
[(

h, ξNt−k,θt−k

)

|Gt−k

]

≤ ‖h‖∞ ≤ 1 and, from assumption A3,
(

g
yt−k−1

t−k−1,θt
, ξNt−k−1,θt−k−1

)

≥ a−1.

From assumption A5, the likelihoods gyt

t,θ(x) are Lipschitz in the parameter θ, with constant Lg

independent of t and x. In particular,

sup
x∈X ,t≥T

∣

∣

∣g
yt−k−1

t−k−1,θt
(x)− g

yt−k−1

t−k−1,θt−k−1
(x)
∣

∣

∣ ≤ Lg‖θt − θt−k−1‖. (B.11)

Also from assumption A5, the kernels τt,θ(dx|x) ∈ P(X ) are endowed with densities w.r.t. the Lebesgue

measure, hence we can write

∣

∣

∣
g
yt−k−1

t−k−1,θt−k−1
(x)
(

h, τt−k,θt−k

)

(x) − g
yt−k−1

t−k−1,θt
(x) (h, τt−k,θt) (x)

∣

∣

∣
=

∣

∣

∣

∣

g
yt−k−1

t−k−1,θt−k−1
(x)

∫

h(x′)τxt−k,θt−k
(x′)dx′ − g

yt−k−1

t−k−1,θt
(x)

∫

h(x′)τxt−k,θt(x
′)dx′

∣

∣

∣

∣

and a simple triangle inequality yields

∣

∣

∣g
yt−k−1

t−k−1,θt−k−1
(x)
(

h, τt−k,θt−k

)

(x) − g
yt−k−1

t−k−1,θt
(x) (h, τt−k,θt) (x)

∣

∣

∣ ≤
∣

∣

∣

∣

(

g
yt−k−1

t−k−1,θt−k−1
(x) − g

yt−k−1

t−k−1,θt−k
(x)
)

∫

h(x′)τxt−k,θt−k
(x′)dx′

∣

∣

∣

∣

+

∣

∣

∣

∣

∫

h(x′)
(

g
yt−k−1

t−k−1,θt−k
(x)τxt−k,θt−k

(x′)− g
yt−k−1

t−k−1,θt
(x)τxt−k,θt (x

′)
)

dx′
∣

∣

∣

∣

≤

(Lg ∨ Lg,τ ) (‖θt−k−1 − θt−k‖+ ‖θt − θt−k‖) , (B.12)

where the second inequality is satisfied because the product gyt

t,θτ
x
t,θ′(x′) is Lipschitz in θ for every t ≥ 1

and x, x′ ∈ X (a consequence of assumption A5) with constant Lg,τ .

If we substitute (B.11) and (B.12) back into (B.10) we obtain

∣

∣

∣E
[(

h, ξNt−k,θt−k

)

|Gt−k

]

−
(

h,Ψθt
t−k

(

ξNt−k−1,θt−k−1

))∣

∣

∣ ≤ 2aL

k
∑

j=0

‖θt−j − θt−j−1‖ (B.13)

where we have introduced the constant L = max{Lg, Lg,τ} and taken advantage of the straightforward

inequality ‖θt−θt−k−1‖ ≤∑k
j=0 ‖θt−j−θt−j−1‖. Raising both sides of (B.13) to power p and then taking
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expectations yields

E
[∣

∣

∣
E
[(

h, ξNt−k,θt−k

)

|Gt−k

]

−
(

h,Ψθt
t−k

(

ξNt−k−1,θt−k−1

))∣

∣

∣

p]

≤ (2aL)pE





∣

∣

∣

∣

∣

∣

k
∑

j=0

‖θt−j − θt−j−1‖

∣

∣

∣

∣

∣

∣

p



≤ (2aL(k + 1))
p ×

× 1

k + 1

k
∑

j=0

E [‖θt−j − θt−j−1‖p] ,

(B.14)

where (B.14) follows from Jensen’s inequality. Combining (B.14) with Proposition 1 we arrive at

∥

∥

∥E
[(

h, ξNt−k,θt−k

)

|Gt−k

]

−
(

h,Ψθt
t−k

(

ξNt−k−1,θt−k−1

))∥

∥

∥

p
≤ 2aL(k + 1)

cκ√
N

, (B.15)

where cκ < ∞ is a constant independent of N , t and {θn}n≥0.

If we now insert (B.7) and (B.15) into (B.5) we obtain the relationship

∥

∥

∥

(

h, ξNt−k,θt−k

)

−
(

h,Ψθt
t−k

(

ξNt−k−1,θt−k−1

))∥

∥

∥

p
≤ c+ 2aL(k + 1)cκ√

N
, (B.16)

where the numerator is finite and constant w.r.t. N , {θn}n≥0 and t. At this point, we only need to

substitute the latter inequality backwards. Indeed, if we plug (B.16), with h = f̃t−k, into (B.4) and then

substitute the resulting bound, together with (B.3), into (B.2), we arrive at

∥

∥(f, ξNt,θt)− (f, ξt,θt)
∥

∥

p
≤ 2‖f‖∞amǫ−1

τ√
N

t
∑

k=0

(

1− ǫ2τ
am−1

)⌊ k
m

⌋
(C̄0 + C̄1k), (B.17)

where C̄0 = c+ 2aLcκ and C̄1 = C̃0 ∨ 2aLcκ.

What remains to be proved is that the sum in (B.17) admits an upper bound C̄ < ∞ independent of

t. To show this, we decompose

t
∑

k=0

(

1− ǫ2τ
am−1

)⌊ k
m

⌋
(C̄0 + C̄1k) = C̄0

t
∑

k=0

(

1− ǫ2τ
am−1

)⌊ k
m

⌋
+ C̄1

t
∑

k=0

k

(

1− ǫ2τ
am−1

)⌊ k
m

⌋
(B.18)

and note that each term in (B.18) can be written as a sum of convergent series. Indeed, for the first term

we have

t
∑

k=0

(

1− ǫ2τ
am−1

)⌊ k
m

⌋
≤ m

∞
∑

k=0

(

1− ǫ2τ
am−1

)k

(B.19)

= mam−1ǫ−2
τ , (B.20)

where the inequality (B.19) is obtained from the identity
∑∞

k=0 r
⌊ k
m

⌋ = m
∑∞

k=0 r
k (for any r ∈ (0, 1))
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and (B.20) follows from the limit of the geometric series. For the second term in (B.18) we have

t
∑

k=0

k

(

1− ǫ2τ
am−1

)⌊ k
m

⌋
≤ 2m

∞
∑

k=0

⌊

k

m

⌋(

1− ǫ2τ
am−1

)⌊ k
m⌋

(B.21)

= 2m2
∞
∑

k=0

k

(

1− ǫ2τ
am−1

)k

, (B.22)

= 2m2 1− ǫ2τa
−(m−1)

ǫ2τa
−2(m−1)

, (B.23)

where (B.21) follows from the inequality k ≤ 2m⌊ k
m⌋ (for k = 0, 1, 2, ... and m ≥ 1), (B.22) holds because

of the identity
∑∞

k=0⌊ k
m⌋r⌊ k

m
⌋ = m

∑∞
k=0 kr

k (for any r ∈ (0, 1)) and (B.23) is readily obtained from the

limit
∑∞

k=0 kr
k = r

(1−r)2 (for |r| < 1).

To conclude the proof, we simply put (B.17), (B.18), (B.20) and (B.23) together, to obtain the desired

inequality (5.5) with

C̄ = 2‖f‖∞amǫ−1
τ

(

C̄0mam−1ǫ−2
τ + 2C̄1m

2 1− ǫ2τa
−(m−1)

ǫ2τa
−2(m−1)

)

≤ 4‖f‖∞(C̄0 ∨ C̄1)ǫ
−3
τ a3m

and C̄0 ∨ C̄1 ≤ a(c+ C̃0 + 2Lcκ).

C A proof for inequality (5.27)

We need to prove that ‖(v, µ̄N
n−1) − (v, µN

n−1)‖p ≤ s1‖v‖∞√
N

for some s1 < ∞ independent of N and

v ∈ B(Dθ).

Recall that we draw the particles θ̄
(i)
n , i = 1, . . . , N , independently from the kernels κ

θ
(i)
n−1

N,p , i = 1, . . . , N ,

respectively, and start from the triangle inequality

‖(v, µ̄N
n−1)− (v, µN

n−1)‖p ≤ ‖(v, µ̄N
n−1)− (v, κN,pµ

N
n−1)‖p + ‖(v, κN,pµ

N
n−1)− (v, µN

n−1)‖p (C.1)

where

(v, κN,pµ
N
n−1) =

1

N

N
∑

i=1

∫

v(θ)κ
θ
(i)
n−1

N,p (dθ),

and then analyse the two terms on the right hand side of (C.1) separately.

Let Gn−1 be the σ-algebra generated by the random particles {θ̄(i)1:n−1, θ
(i)
0:n−1}1≤i≤N . Then

E
[

(v, µ̄N
n−1)|Gn−1

]

=
1

N

N
∑

i=1

∫

v(θ)κ
θ
(i)
n−1

N,p (dθ) = (v, κN,pµ
N
n−1)

and the difference (v, µ̄N
n−1)− (v, κN,pµ

N
n−1) can be written as

(v, µ̄N
n−1)− (v, κN,pµ

N
n−1) =

1

N

N
∑

i=1

Z̄
(i)
n−1,
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where the random variables Z̄
(i)
n−1 = v(θ̄

(i)
n )− E[v(θ̄

(i)
n )|Gn−1], i = 1, ..., N , are conditionally independent

(given Gn−1), have zero mean and can be bounded as |Z̄(i)
n−1| ≤ 2‖v‖∞. As a consequence, it is an exercise

in combinatorics to show that

E
[

∣

∣(v, µ̄N
n−1)− (v, κN,pµ

N
n−1)

∣

∣

p |Gn−1

]

= E

[∣

∣

∣

∣

∣

1

N

N
∑

i=1

Z̄
(i)
n−1

∣

∣

∣

∣

∣

p

|Gn−1

]

≤ c̃p1‖v‖p∞
N

p
2

, (C.2)

where c̃1 is a constant independent of N , n and v (actually, independent of the distribution of the Z̄
(i)
n−1’s).

From (C.2) we readily obtain that

‖(v, µ̄N
n−1)− (v, κN,pµ

N
n−1)‖p ≤ c̃1‖v‖∞√

N
. (C.3)

For the remaining term in (C.1), namely, ‖(v, κN,pµ
N
n−1)− (v, µN

n−1)‖p, we simply note that

∣

∣(v, κN,pµ
N
n−1)− (v, µN

n−1)
∣

∣ =

∣

∣

∣

∣

∣

1

N

N
∑

i=1

∫

(

v(θ) − v(θ
(i)
n−1)

)

κ
θ
(i)
n−1

N,p (dθ)

∣

∣

∣

∣

∣

≤ 1

N

N
∑

i=1

∫

∣

∣

∣v(θ)− v(θ
(i)
n−1)

∣

∣

∣ κ
θ
(i)
n−1

N,p (dθ) ≤ 2‖v‖∞√
N

, (C.4)

where the last inequality follows from Proposition 1.

Substituting the inequalities (C.3) and (C.4) into Eq. (C.1) yields the desired conclusion, viz., Eq.

(5.27), with constant s1 = 2 + c̃1 independent of N .

D Additional results on the numerical experiment of Figure 1

In order to provide additional numerical evidence of the stability of the posterior-mean estimates of

the parameters over time, Figure 5 shows the normalised posterior standard deviation (NSTD) of the

parameter estimates for the same simulation run as in Figure 1. At each time n, this is computed for the

j-th parameter, j = 1, ..., 4, as

NSTDj,n =

√

∑N
i=1 w

(i)
n (θ̄

(i)
j,n − θ̂Nj,n)

2

θ∗j
,

where θ∗j is the true value of the j-th parameter (namely, θ∗1 = S = 10, θ∗2 = R = 28, θ∗3 = B = 8
3 and

θ∗4 = ko = 0.8). Again, the NSTD is a random statistic and it displays fluctuations, however it can be

seen that their amplitudes remain bounded and there is no apparent increase over time.
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(a) Parameter S.
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(b) Parameter R.
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(c) Parameter B.
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(d) Parameter ko.

Figure 5: Evolution of the normalised posterior standard deviation of the Lorenz 63 model parameters
S,R,B and ko over time. The horizontal axes are labeled with continuous time units. After Euler’s
discretisation, each continuous time unit amounts to 1,000 discrete time steps, with one observation
vector every 40 discrete-time steps. The number of particles is N = M = 300.
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