
SUPPLEMENTARY MATERIAL653

1 DETAILS OF METHODS654

1.1 Equations for the deterministic discrete trait variation model655

In Table 1 of the main text, we presented equations for the deterministic trait variation model when the trait656

sapling mortality rate (µi) was variable. Below, we show equations for the model considering other two657

trait variations:658

For varying tree death rate νi, there are 2k+1 coupled differential equations given by:659
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And similarly for varying half saturation of the fire resistance function θi, the 2k+1 coupled differential660

equations given by:661
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It is also possible to vary more than one trait in which case the type of savanna sapling/tree can be denoted662

by a vector as in Si, j,l or Ti, j,l and the sum is over all such tuples. The system of 2k1k2k3 +1 equations663

would then be, for example:664
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1.2 Simulation details of the deterministic trait variation model665

For the no variation case, we use analytical methods to find the equilibrium grass and tree cover (using666

Wolfram Research, Inc., Mathematica, Version 12.2).667

For the deterministic discrete trait variation model, we numerically integrate the system of ordinary668

differential equations using Euler’s method. For each value of sapling birth rate (β ), we run the simulations669

with various initial values of the grass cover: G0 =0, 0.1, 0.2,.., or 0.9. For a given G0, we set both the670

overall initial tree and sapling cover to be equal to (1−G0)/2. Using this initial proportion cover of tree671

(and sapling), we assume that this proportion is distributed equally among all corresponding k types, i.e.,672

each sapling or tree type has a proportion cover of (1−G0)/2k.673

For each parameter value, we run the simulations for 107 time steps, with a step size of 0.001. We observe674

that the system reaches steady-state much earlier, typically by 105 time steps, as seen in Fig 4A of the main675

text.676

To better understand the mechanisms at play, we study the population level dynamics wherein we examine677

how the covers of all variables (G, S1, S2,...,S10, T1, T2,...,T10) change with time in all these cases.678

Low trait variation is implemented as a smaller range of the trait values (0.3 to 0.7) while thehigh trait679

variation corresponds to a larger range (0 to 1). We present our main text results of the deterministic model680

for a fixed number of trait-types (k = 10). For example, if k was 10 with low trait variation, the specific681

trait values considered are 0.32, 0.36, 0.4, to 0.68 at an interval of 0.04 units. Note that we also consider682

k = 100 and 1000 and present those results in the Supplementary Materials.683



1.3 Some general comments on our discrete trait modelling assumptions and approach684

We note that the inheritance in our model is clonal and thus the heritability value is 1. Selection forces685

for the traits sapling death rate (µ) and tree death rate (ν) are frequency independent as can be seen by686

looking at the expression of per-capita growth rate; to see this, note that the mortality term for sapling via687

the equation for per-capita growth rate 1
Si

dSi
dt is equal to µi and does not depend on the frequencies of any688

of the vegetation frequencies. Likewise, the mortality term for savanna trees via the equation for per-capita689

growth rate 1
Ti

dTi
dt is equal to νi and does not depend on any of the vegetation frequencies.690

One could consider alternative modelling strategies such as game theory or equivalently the replicator691

equations, or adaptive dynamics. Deriving an expression of the fitness of a type would require casting these692

equations in the form of a replicator-like equation for the frequency of traits. However, that may not very693

straightforward due to the structure of the Staver and Levin (2012) model equations we begin with, which694

are also partly age-structured. However, these are worthwhile alternative modelling approaches that future695

studies can take. A main advantage of our approach is that in the limit of only one trait, we revert to the696

well-known model of savanna-woodland-forest dynamics by Staver and Levin (2012), which also serves as697

no-variation baseline for our analysis.698

1.4 Simulation details of the stochastic agent-based model699

For the stochastic continuous trait agent-based model, we study the ecosystem-level dynamics in a similar700

way as for the deterministic model. We look at the changes in the bifurcation diagram with an increase in701

trait variations. Since this is a stochastic simulation, a single realization is not sufficient to fully understand702

it. Therefore, for each value of the drive sapling birth rate β (the x-axis of the bifurcation diagram), we703

simulate the system 1000 times with different initial conditions, take the final state after 1000 time units,704

and plot a histogram. Each of the simulations starts-off with each of the sapling and tree individuals705

having a different trait, randomly drawn from a uniform distribution with limits given by the extent of trait706

variation. The parameter values are used are the same as that of the deterministic model with discrete traits.707

Likewise, in the population level dynamics, we look at the dynamics in the trait distribution of a single708

population. We compare the initial and final distribution of traits for different levels of trait variation.709

We take the average of the final distribution after 104 time units over an ensemble of simulations (104 in710

number) as the process is stochastic.711

2 ROBUSTNESS OF RESULTS WITH THE INCLUSION OF FOREST TREE712

AS A NEW VEGETATION TYPE713

To the base model, we add another state variable F , representing forest trees, as in (Staver and Levin, 2012)714

while incorporating trait variations within S and T traits as before. Note that forest trees are fundamentally715

different from savanna trees. While savanna trees are fire resistant, forest trees succumb to fire, the impact716

of which is is captured by a nonlinear sigmoidal like function of φ(G) which is similar to a mirror image of717

ω(G,θ) (i.e., lower mortality at lower values of G and higher mortality at higher values of G; note that the718

grass cover implicitly captures the probability or rate of fire in the model). Further, forest trees essentially719

are an invasive type, competitively excluding all the other functional types; we denote their birth rate by α .720

The system can be represented by 2k+2 equations, for instance if the trait being varied was θ :721

dG
dt

= µS−νT −φ(G)F +βGT −αGF (14)

dSi

dt
= βGTi −ω(G;θi)Si −µSi −αSiF (15)

dTi

dt
= ω(G;θi)Si − vTi −αTiF (16)

dF
dt

= [α(1−F)−φ(G)]F (17)

where S and T are equal to ∑
k
i=1 Si and ∑

k
i=1 Ti respectively, ω(G;θ) is defined as before and φ(G;θ) is722

defined as:723



φ(G) = φ0 +
φ1 −φ0

1+ e(−G+0.5)/s
(18)

where unlike in the case of ω , φ1 > φ0724

This system shows rich behavior in terms of bifurcation with respect to multiple parameters (Supplementary725

figure S11). What is most apparent is that although the grassland-savanna dynamics remain similar, the726

existence of the woodland state (consisting of savanna saplings and trees) is confined only to parameter727

ranges with extremely low values of α . For most parameter sets, the low grass cover branch of the bistable728

region represents invasion by forest trees. Although the original model shows other kinds of behaviors as729

well such as a coexistence state of all four types which undergoes a Hopf bifurcation with respect to α to730

become a stable limit cycle, these are for very small parameter ranges very different from that used in our731

study and therefore we do not consider these.732



3 SUPPLEMENTARY FIGURES733

Supplementary Figure S1. For an initial trait distribution following a unimodal beta distribution, we
again observe that trait variations alter the properties of bistable regions and regime shifts in a
woodland-savanna model. Top row (A1,B1,C1) represents the steady-state grass cover, while the bottom
row (A2,B2,C2) represents the steady-state tree cover. Methods and results are same as those of Figure 2
in main text.



Supplementary Figure S2. For an initial trait distribution following a bimodal beta distribution, we
again observe that trait variations alter the properties of bistable regions and regime shifts in a
woodland-savanna model. Top row (A1,B1,C1) represents the steady-state grass cover, while the bottom
row (A2,B2,C2) represents the steady-state tree cover. Methods and results are same as those of Figure 2in
main text



Supplementary Figure S3. Increasing the number of trait types (k) has different effects on the
properties of bistable regions and regime shifts for variation in different traits in a woodland-savanna
model. We vary the number of trait types (k): 1000 (black circles), 100 (blue triangles) and 10 (pink plus
symbol), for each case of variation in a trait while keeping the trait range 0 to 1 (high trait variation), with
equally spaced discrete values. As the number of trait types increase, we observe that: (i) the width of
bistable region reduces for all cases of trait variations, (ii) the grassland state exists for a smaller range of
sapling birth rate (β ) for all three cases (iii) the quantum of shift decreases with variation in µ and θ , but
increases with variation in ν , (iv) the nature of transitions varies between trait variations. With increasing
k, variation in µ and θ result in gradual transition from a woodland to a savanna and then to a grassland
state, while variation in ν results in an abrupt transition from a woodland to a grassland state, instead of
woodland to savanna state. All parameters except the trait range are the same as for Figure 2.

Supplementary Figure S4. Sensitivity of steady-state distribution of trait values to a range of initial
conditions, for β=0.45 which corresponds to the monostable woodland regime. Tree population at the start
of the simulation (at t=0, gray bars) consists of 10 θ types present in equal proportion. Bars with the same
color correspond to a specific case of initial grass cover, G0. Steady-state grass cover (G∗) is shown with
solid black line. Each bar corresponds to the proportion cover of the tree with the specific value of θ at the
steady state. We show how the uniform initial trait distribution evolves for different initial values of grass
cover (G0), while assuming Initial tree and sapling cover are both equal to (1−G0)/2. For variation in
sapling resistance to fire (θ ), we find that: (i) tree types with θ less than a threshold value get eliminated
from the population, (ii) mean value of the trait at steady state increases with G0, such that the steady-state
population consists of more fire-tolerant individuals.



Supplementary Figure S5. Population-level dynamics for a system with trait values taken from a
unimodal beta distribution also show sensitivity to initial conditions, for β = 0.45 which corresponds to
monostable woodland regime. Methods and results are same as those of Figure 3 in main text



Supplementary Figure S6. Population-level dynamics for a system with trait values taken from a
bimodal beta distribution also show sensitivity to initial conditions, for β = 0.45 which corresponds to
monostable woodland regime. Methods and results are same as those of Figure 3 in main text



Supplementary Figure S7. Population-level dynamics in the Bistable regime for a system with trait
values taken from a uniform distribution (Refer to Figure 3 for results from the Woodland regime) . We
show how the initial trait distribution (shown with yellow bars) evolves for different initial values of grass
cover (G). (A) For β = 0.17 which corresponds to the bistable regime when sapling resistance to fire θ is
varied, we find grassland state with Initial G = 0.9 and therefore there is no tree cover present, while for
other values of initial G, the steady-state distribution changes. (B) For β = 0.3 which corresponds to the
bistable regime when sapling death rate µ is varied, we find the system in a savanna state for initial
G ≥ 0.5 and in each case only the sapling and trees with the least death rate survive.
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Supplementary Figure S8. Ecosystem properties follow similar trends in a stochastic model with
continuous trait variations. With increasing trait variation, extent of grassland reduces, while that of
woodland increases. The extent of the bistable region naturally shrinks due to stochasticity, and we cannot
comment on that aspect. However, the quantum of jump in the abrupt shift decreases as trait variation is
increased to a high value. Only one trait has variations at any instance. Parameters: The trait of interest is
0.5 for no variation, varies between 0.4–0.7 for low variation and between 0–1 for high variation. (A)
sapling resistance to fire θ = 0.5 and tree death rate ν = 0.1. (B) θ = 0.5 and sapling death rate µ = 0.05
(C) ν = 0.1 and µ = 0.2.



Supplementary Figure S9. Population dynamics shows similar trends in a stochastic model and
depends on population size. We show how the trait distribution changes over the course of the simulation
when started from a uniform distribution with a high variation (Row 0, A0-C0). The results are
qualitatively similar to that of the deterministic model with discrete traits. (Row 1) At the steady state of
each simulation, there is usually only one trait value left in the population. That is, the population becomes
monomorphic. To understand what the possible values for this steady state trait, we to perform an
ensemble of simulations and plot their distribution (Rows 2-3). (A1-A3) The sapling death rate µ shifts
towards to left ie. to lower values during the simulation. The final distribution of traits is highly
concentrated close to the minimum value in the initial distribution. (B1-B3) The distribution of the tree
death rate ν also shows a very similar behaviour as that of µ . (C1-C3) For the variation in sapling
resistance to fire θ , the grass cover G was set to 0.6. The simulations in Row 2 were done for a population
size of N = 1000, while in Row 3, the population size was N = 400. As the population size is decreased,
the final trait distribution is more spread out in the case of µ (A3) and ν (B3).



Supplementary Figure S10. Population-level dynamics of the trait distributions of the sapling
resistance to fire θ for different initial values for the grass cover G. The initial distribution of traits is a
uniform distribution with high trait variation as shown in Row 1. This effect of initial conditions is similar
to that of the deterministic model with discrete traits as shown in Fig. 3 C1-C3.



Supplementary Figure S11. Bifurcation diagrams (Grass cover vs Sapling birth rate) for a model
including forest trees based on (Staver and Levin, 2012) while incorporating trait variations. The forest
trees essentially function as an invasive organism which competitively exclude all the other kinds of
vegetation. The bifurcation diagram with respect to beta follows different regimes as per the value of the
competitive exclusion parameter α .0 For most of the range of α (shown here are bifurcation diagrams for
α = 0.5, there exists no woodland state, there is a grassland state which undergoes a pitchfork bifurcation
at a certain critical value of β to become a savanna while at a lower value of β , the invasion by forest trees
becomes stable. the bistable regime consists of the ’high grass cover’ (grassland/savanna) and the ’low
grass cover’ (forest) state. It is to be noted that the value of forest cover is not a constant but a function of
α and φ . At very low values of α (shown here are bifurcation diagrams for α = 0.03, the invasion by
forest trees is never stable and the bistability is between a grassland which transitions into a savanna as
before and a woodland state with coexistence of grass, savanna saplings and savanna trees. The limiting
case α ≈ 0 corresponds to the model described in the main text. The results for the extent of bistable
regime and jump are in good agreement with those in the main text for all the cases of α , with an increase
in trait variation corresponding to a lower extent of bistability.

Supplementary Figure S12. Individual proportions of tree types for the model incorporating forest
trees while incorporating trait variations. This agrees with the main model where in case of varying µ and
ν results, with only the fittest type surviving for both high and low variation cases in both savanna and
grassland states, while for varying θ we see survival of all types above a certain threshold.


