
01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

12 REFERENCES

A. Background on Message Passing for Bayesian Inference
In this section, we provide a formal description of message-passing algorithms for Bayesian inference.
Then, in Appendix B, we give full details of the particular message-passing algorithm we use in this
work.

Given a factorisation of the joint probability model 𝑔(𝒇) = 𝑔(𝑓1, . . . , 𝑓𝑛) of the form

𝑔(𝒇) ∝
𝑛∏
𝑖=1

𝜙𝑖 (𝑓𝑖)
𝑛∏
𝑗=1

𝜙𝑖 𝑗 (𝑓𝑖 , 𝑓 𝑗), (A.1)

for nodewise and pairwise factors 𝜙𝑖 and 𝜙𝑖, 𝑗 , this induces a sparse graphical structure on the variables
{ 𝑓𝑖}𝑛𝑖=1, where two nodes 𝑓𝑖 and 𝑓 𝑗 are connected if and only if the pairwise factor 𝜙𝑖, 𝑗 is non-constant.
We can further augment this graph by including the non-constant factors {𝜙𝑖}𝑖∈𝑉 and {𝜙𝑖 𝑗 } (𝑖, 𝑗) ∈𝐸 as
additional nodes, and joining the pairs of nodes (𝜙𝑖 , 𝑓𝑖), (𝜙𝑖 𝑗 , 𝑓𝑖), and (𝜙𝑖 𝑗 , 𝑓 𝑗) by edges. This aug-
mented structure is referred to as the factor graph representation of the probabilistic model (2), which
is a bipartite graph with one side of nodes being the set of variables 𝑓𝑖 and the other side being the set
of factors 𝜙𝑖 , 𝜙𝑖 𝑗 .

A.1. Loopy Belief Propagation
Given a factor graph representation of the model, one can approximate the marginal probabilities
{𝑔(𝑓𝑖)}𝑛𝑖=1 efficiently by a message-passing algorithm, referred to as loopy belief propagation. This
begins by defining a set of so-called messages 𝑚𝑡

𝑓𝑖→𝜙𝛼
(𝑓𝑖), 𝑚𝑡

𝜙𝛼→ 𝑓𝑖
(𝑓𝑖) between each of the vari-

able and factor nodes. The messages are initialised to 𝑚0
𝑓𝑖→𝜙𝛼

(𝑓𝑖) = 𝑚0
𝜙𝛼→ 𝑓𝑖

(𝑓𝑖) = 1 and updated by
iterating the following steps:

𝑚𝑡+1
𝑓𝑖→𝜙𝛼

(𝑓𝑖) = 𝜙𝑖 (𝑓𝑖)
∏
𝜙𝛽∼ 𝑓𝑖
𝜙𝛽≠𝜙𝛼

𝑚𝑡
𝜙𝛽→ 𝑓𝑖

(𝑓𝑖), 𝑖 = 1, . . . , 𝑛, (A.2)

𝑚𝑡+1
𝜙𝛼→ 𝑓𝑖

(𝑓𝑖) =
∫
R
𝜙𝑖 𝑗 (𝑓𝑖 , 𝑓 𝑗)𝑚𝑡

𝑓 𝑗→𝜙𝛼
(𝑓 𝑗) d 𝑓 𝑗 , 𝑖 = 1, . . . , 𝑛. (A.3)

The updates (A.2)–(A.3) can be done either in parallel, serially, or following more specific scheduling
rules (Elidan et al. 2006; Gonzalez et al. 2009; Van der Merwe et al. 2019) – generally, there are no
restrictions on the order in which we pass the messages between nodes. Upon convergence, say at
iteration 𝑡 = 𝑇 , we can then estimate the marginal distribution at each variable 𝑔(𝑓𝑖), by taking

𝑔(𝑓𝑖) ≈
1
𝑍

∏
𝜙𝛼∼ 𝑓𝑖

𝑚𝑇
𝜙𝛼→ 𝑓𝑖

(𝑓𝑖), where 𝑍 =
∏
𝜙𝛼∼ 𝑓𝑖

∫
R
𝑚𝑇

𝜙𝛼→ 𝑓𝑖
(𝑓𝑖)d 𝑓𝑖 , (A.4)

for 𝑖 = 1, . . . , 𝑛. It is well-known that, when the graph is tree-structured, convergence is guaranteed
and the message-passing algorithm yields the exact marginals. However, if the graph contains loops,
then convergence is not guaranteed and moreover the obtained marginals may not be exact. Various
techniques have been proposed to improve this. In particular, one can make fractional updates to the
messages (Wiegerinck and Heskes 2002), which we express in the form

𝑚 𝑓𝑖→𝜙𝛼
(𝑓𝑖)

1
𝑐 = 𝜙𝑖 (𝑥𝑖)

∏
𝜙𝛽∼ 𝑓𝑖
𝜙𝛽≠𝜙𝛼

𝑚𝜙𝛽→ 𝑓𝑖 (𝑓𝑖)𝑚𝜙𝛼→ 𝑓𝑖 (𝑓𝑖)1−
1
𝑐 , (A.5)

𝑚𝜙𝛼→ 𝑓𝑖 (𝑓𝑖)
1
𝑐 =

∫
R
𝜙𝑖 𝑗 (𝑓𝑖 , 𝑓 𝑗)

1
𝑐𝑚 𝑓 𝑗→𝜙𝛼

(𝑓 𝑗)
1
𝑐 d 𝑓 𝑗 , (A.6)

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

REFERENCES 13

for constants 𝑐𝛼 ∈ N. In this work, we use an extension of this by Ruozzi and Tatikonda (2013),
where 𝑐𝛼 is also allowed to take any real values, including negative ones. A benefit of this re-weighting
scheme is that one can guarantee convergence even in the loopy setting by taking 𝑐𝛼 large enough,
or by setting them to be negative (Ruozzi and Tatikonda 2013). While the message updates in the re-
weighted scheme are modified according to (A.5)–(A.6), the marginal computation is still performed
in the same way as standard message passing (A.4).

Next, we discuss the details on how to compute the messages (A.2)–(A.3) and (A.5)–(A.6) more
concretely in the special but important case of joint Gaussian probability models.

A.2. Gaussian Setting
For Gaussian probability models, which we assume to have zero mean for the time being, we can write
down the joint probability explicitly as

𝑝(𝒇) ∝ exp
(
−1

2
𝒇⊤𝑷 𝒇

)
= exp ©­«−

∑︁
𝑖∈𝑉

1
2
[𝑷]𝑖𝑖 𝑓 2

𝑖 −
∑︁
(𝑖, 𝑗) ∈𝐸

[𝑷]𝑖 𝑗 𝑓𝑖 𝑓 𝑗
ª®¬ , (A.7)

for some precision matrix 𝑷 and (𝑉, 𝐸) is the graph induced by the sparsity pattern of 𝑷, described
earlier. This naturally gives us factors of the form

𝜙𝑖 (𝑓𝑖) := exp
(
−1

2
[𝑷]𝑖𝑖 𝑓 2

𝑖

)
, and 𝜙𝑖 𝑗 (𝑓𝑖 , 𝑓 𝑗) := exp

(
−[𝑷]𝑖 𝑗 𝑓𝑖 𝑓 𝑗

)
, (A.8)

which we notice are also Gaussian up to a normalisation constant. Since the factors are all propor-
tional to Gaussian densities, and the family of Gaussians are closed under products and integrals, the
messages and states computed by (A.2)–(A.4) are also expected to be Gaussians. For simplicity, let us
parameterise the variable-to-factor messages (A.2) as

𝑚 𝑓𝑖→𝜙𝑖 𝑗
(𝑓𝑖) = exp

(
−1

2
𝛼𝑖 𝑗 𝑓

2
𝑖 − 𝛽𝑖 𝑗 𝑓𝑖

)
, (A.9)

and the factor-to-variable messages (A.3) as

𝑚𝜙𝑖 𝑗→ 𝑓𝑖 (𝑓𝑖) = exp
(
−1

2
𝑎𝑖 𝑗 𝑓

2
𝑖 − 𝑏𝑖 𝑗 𝑓𝑖

)
. (A.10)

We then compute the update rules for the two types of messages as follows.

Variable-to-factor message. From (A.2), we get

𝑚 𝑓𝑖→𝜙𝑖 𝑗
(𝑓𝑖) = 𝜙𝑖 (𝑓𝑖)

∏
𝑘∼𝑖
𝑘≠ 𝑗

𝑚𝜙𝑖𝑘→ 𝑓𝑖 (𝑓𝑖) ∝ exp
©­­­«−

1
2

(
𝑃𝑖𝑖 +

∑︁
𝑘∼𝑖
𝑘≠ 𝑗

𝑎𝑖𝑘

)
𝑓 2
𝑖 −

∑︁
𝑘∼𝑖
𝑘≠ 𝑗

𝑏𝑖𝑘 𝑓𝑖

ª®®®¬ , (A.11)

giving us the following updates on the parameters 𝛼𝑖 𝑗 and 𝛽𝑖 𝑗

𝛼𝑖 𝑗 ← 𝑃𝑖𝑖 +
∑︁
𝑘∼𝑖
𝑘≠ 𝑗

𝑎𝑖𝑘 , 𝛽𝑖 𝑗 ←
∑︁
𝑘∼𝑖
𝑘≠ 𝑗

𝑏𝑖𝑘 . (A.12)

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

14 REFERENCES

Factor-to-variable message. Now using (A.3), we have

𝑚𝜙𝑖 𝑗→ 𝑓𝑖 (𝑓𝑖) =
∫

𝜙𝑖 𝑗 (𝑓𝑖 , 𝑓 𝑗)𝜇 𝑓 𝑗→𝜙𝑖 𝑗
(𝑓 𝑗)d 𝑓 𝑗 (A.13)

∝
∫

exp

(
− 1

2
𝛼𝑖 𝑗 𝑓

2
𝑗 − 𝛽𝑖 𝑗 𝑓 𝑗 − 𝑃𝑖 𝑗 𝑓𝑖 𝑓 𝑗

)
d 𝑓 𝑗 (A.14)

∝
∫

exp

(
− 1

2
𝛼𝑖 𝑗

(
𝑓 𝑗 −

𝛽𝑖 𝑗

𝛼𝑖 𝑗

)2
− 𝑃𝑖 𝑗 𝑓𝑖 𝑓 𝑗

)
d 𝑓 𝑗 (A.15)

=

∫
exp

(
− 1

2
𝛼𝑖 𝑗

(
𝑓 𝑗 −

𝛽𝑖 𝑗

𝛼𝑖 𝑗

)2
− 𝑃𝑖 𝑗 𝑓𝑖

(
𝑓 𝑗 −

𝛽𝑖 𝑗

𝛼𝑖 𝑗

)
−
𝛽𝑖 𝑗𝑃𝑖 𝑗

𝛼𝑖 𝑗
𝑓𝑖

)
d 𝑓 𝑗 (A.16)

∝ 𝑒−
𝛽𝑖 𝑗 𝑃𝑖 𝑗

𝛼𝑖 𝑗
𝑓𝑖

∫
exp

(
− 1

2

(
𝑓𝑖

𝑓 𝑗 −
𝛽𝑖 𝑗

𝛼𝑖 𝑗

)⊤ (
0 𝑃𝑖 𝑗
𝑃𝑖 𝑗 𝛼𝑖 𝑗

) (
𝑓𝑖

𝑓 𝑗 −
𝛽𝑖 𝑗

𝛼𝑖 𝑗

))
d 𝑓 𝑗 (A.17)

= 𝑒
−

𝛽𝑖 𝑗 𝑃𝑖 𝑗

𝛼𝑖 𝑗
𝑓𝑖

∫
exp

(
− 1

2

(
𝑓𝑖

𝑓 𝑗 −
𝛽𝑖 𝑗

𝛼𝑖 𝑗

)⊤ (−𝛼𝑖 𝑗𝑃−2
𝑖 𝑗

𝑃−1
𝑖 𝑗

𝑃−1
𝑖 𝑗

0

)−1 (
𝑓𝑖

𝑓 𝑗 −
𝛽𝑖 𝑗

𝛼𝑖 𝑗

))
d 𝑓 𝑗 (A.18)

∝ exp

(
−
𝛽𝑖 𝑗𝑃𝑖 𝑗

𝛼𝑖 𝑗
𝑓𝑖 +

1
2
𝑃2
𝑖 𝑗

𝛼𝑖 𝑗
𝑓 2
𝑖

)
. (A.19)

where we used the Gaussian marginalisation rule to yield the last line. Thus, we have the following
update rule on the parameters 𝑎𝑖 𝑗 and 𝑏𝑖 𝑗 determining the factor-to-variable messages

𝑎𝑖 𝑗 ← −
𝑃2
𝑖 𝑗

𝛼𝑖 𝑗
, 𝑏𝑖 𝑗 ←

𝛽𝑖 𝑗𝑃𝑖 𝑗

𝛼𝑖 𝑗
. (A.20)

In the case of Gaussian models with non-zero means, we have the following slight modification of
the model

𝑝(𝒇) ∝ exp ©­«−
∑︁
𝑖∈𝑉

(
1
2
𝑃𝑖𝑖 𝑓

2
𝑖 − ℎ𝑖 𝑓𝑖

)
−

∑︁
(𝑖, 𝑗) ∈𝐸

𝑃𝑖 𝑗 𝑓𝑖 𝑓 𝑗
ª®¬ , (A.21)

for some vector 𝒉 ∈ R𝑁 , giving us factors of the form

𝜙𝑖 (𝑓𝑖) := exp
(
−1

2
𝑃𝑖𝑖 𝑓

2
𝑖 + ℎ𝑖 𝑓𝑖

)
, and 𝜙𝑖 𝑗 (𝑓𝑖 , 𝑓 𝑗) := exp

(
−𝑃𝑖 𝑗 𝑓𝑖 𝑓 𝑗

)
. (A.22)

This only changes the variable-to-factor message update rule (A.12) to

𝛼𝑖 𝑗 ← 𝑃𝑖𝑖 +
∑︁
𝑘∼𝑖
𝑘≠ 𝑗

𝑎𝑖𝑘 , 𝛽𝑖 𝑗 ← −ℎ𝑖 +
∑︁
𝑘∼𝑖
𝑘≠ 𝑗

𝑏𝑖𝑘 . (A.23)

The factor-to-variable message update rules (A.20) remain unchanged.

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

REFERENCES 15

A.3. Re-weighted message updates
Using the re-weighted scheme (A.5)–(A.6) of Wiegerinck and Heskes 2002, if we now parameterise
the fractional messages by

𝑚 𝑓𝑖→𝜙𝑖 𝑗
(𝑓𝑖)

1
𝑐 = exp

(
−1

2
𝛼𝑖 𝑗 𝑓

2
𝑖 − 𝛽𝑖 𝑗 𝑓𝑖

)
, 𝑚𝜙𝑖 𝑗→ 𝑓𝑖 (𝑓𝑖)

1
𝑐 = exp

(
−1

2
𝑎𝑖 𝑗 𝑓

2
𝑖 − 𝑏𝑖 𝑗 𝑓𝑖

)
, (A.24)

then the update rules on its coefficients change as

𝛼𝑖 𝑗 ← 𝑃𝑖𝑖 + 𝑐
∑︁
𝑘∼𝑖
𝑘≠ 𝑗

𝑎𝑖𝑘 + (𝑐 − 1)𝑎𝑖 𝑗 , (A.25)

𝛽𝑖 𝑗 ← −ℎ𝑖 + 𝑐
∑︁
𝑘∼𝑖
𝑘≠ 𝑗

𝑏𝑖𝑘 + (𝑐 − 1)𝑏𝑖 𝑗 , (A.26)

𝑎𝑖 𝑗 ← −
(𝑃𝑖 𝑗/𝑐)2

𝛼𝑖 𝑗
, (A.27)

𝑏𝑖 𝑗 ←
𝛽𝑖 𝑗 (𝑃𝑖 𝑗/𝑐)

𝛼𝑖 𝑗
. (A.28)

This can be checked by direct computation. Intuitively, for 𝑐 ∈ N, the update rule (A.5)–(A.6) can
be understood as updating a fraction of the message each time, where each update is allowed to use
information from the remaining fraction of its own message. From a variational inference perspective,
this can also be understood in terms of minimising the 𝛼-divergence between the variational and true
distributions with 𝛼 = 2/𝑐 − 1 (Wiegerinck and Heskes 2002; Minka 2004).

The marginal distribution at 𝑓𝑖 is then 𝑝(𝑓𝑖) = N(𝑓𝑖 |𝜇𝑖 , 𝜎2
𝑖
), where

𝜇𝑖 = 𝑠𝑖/𝜎−2
𝑖 , (A.29)

𝑠𝑖 = ℎ𝑖 + 𝑐
∑︁
𝑘∼𝑖

𝑏𝑘𝑖 , and (A.30)

𝜎−2
𝑖 = 𝑃𝑖𝑖 + 𝑐

∑︁
𝑘∼𝑖

𝑎𝑘𝑖 . (A.31)

B. Complete Description of Our Message-Passing Algorithm
Algorithm 2 gives full details of the message-passing algorithm we use in this work. This is an extension
of the algorithm introduced by Ruozzi and Tatikonda (2013) (in turn a generalisation of Wiegerinck and
Heskes (2002)), with the addition of multigrid, damping, and early stopping

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

16 REFERENCES

Algorithm 2 Re-weighted message passing with multigrid, damping, and early stopping

procedure MULTIGRID MP(levels)
for level in levels do

if first level then
𝑚𝑖 𝑗 = (0, 10−8) for 𝑖, 𝑗 ∈ level

else
𝑚𝑖 𝑗 = UPSCALE MESSAGES(𝑚𝑖 𝑗 , previous level, level)

end if
𝑚𝑖 𝑗 = ITERATE MP UNTIL CONVERGENCE(level, 𝑚𝑖 𝑗)

end for
return 𝑝(𝑓𝑖) = COMPUTE MARGINAL(𝑐, {𝑚𝑘𝑖 : 𝑓𝑘 ∼ 𝑓𝑖}) for all 𝑖 ∈ last level

end procedure

procedure ITERATE MP UNTIL CONVERGENCE(level, 𝑚𝑡=0
𝑖 𝑗

)
{ 𝑓𝑖}𝑝𝑖=1, {𝜙𝑖}𝑝𝑖=1, {𝜙𝑖 𝑗 }𝑝𝑖, 𝑗=1 = create factor graph at level ⊲ 𝑝 = number of grid points at level
for 𝑡 ∈ {1, . . . 𝑇} do

for 𝑓𝑖 in the graph do
for 𝑓 𝑗 ∈ { 𝑓 𝑗 ∼ 𝑓𝑖} do

𝑚′ = COMPUTE OUTGOING MESSAGE(𝑐, 𝜙𝑖 , {(𝜙𝑘𝑖 , 𝑚𝑡−1
𝑘𝑖
) : { 𝑓𝑘 ∼ 𝑓𝑖}\ 𝑓 𝑗 })

𝑚𝑡+1
𝑖 𝑗

= (1 − 𝜂)𝑚𝑡
𝑖 𝑗
+ 𝜂𝑚′

end for
end for
if EARLY STOP({𝑚1

𝑖 𝑗
, 𝑚2

𝑖 𝑗
, 𝑚𝑡−1

𝑖 𝑗
, 𝑚𝑡

𝑖 𝑗
}all 𝑖, 𝑗) then break

end for
return {𝑚𝑇

𝑖 𝑗
}all 𝑖, 𝑗

end procedure

The functions that the algorithm depends on are defined as follows:

• COMPUTE OUTGOING MESSAGE(𝑐, 𝜙𝑖 , {(𝜙𝑘𝑖 , 𝑚𝑡−1
𝑘𝑖
) : { 𝑓𝑘 ∼ 𝑓𝑖}\ 𝑓 𝑗 }) = (𝑎′𝑖 𝑗 , 𝑏′𝑖 𝑗) where 𝑎′

𝑖 𝑗

and 𝑏′
𝑖 𝑗

are defined by Equations (A.27) and (A.28) respectively in Appendix A.
• COMPUTE MARGINAL(𝑐, {𝑚𝑘𝑖 : 𝑓𝑘 ∼ 𝑓𝑖}) is given by Equation (A.29) – (A.31).
• We stop iterating if the following inequality holds:

EARLY STOP({𝑚1
𝑖 𝑗 , 𝑚

2
𝑖 𝑗 , 𝑚

𝑡−1
𝑖 𝑗 , 𝑚

𝑡
𝑖 𝑗 }all 𝑖, 𝑗) = mean(abs(𝑚𝑡

𝑖 𝑗 − 𝑚𝑡−1
𝑖 𝑗)) < 𝜏mean(abs(𝑚1

𝑖 𝑗 − 𝑚2
𝑖 𝑗)),

where the mean is taken over all 𝑖, 𝑗 , and 𝜏 = 0.001 based on Figure 6.
• UPSCALE MESSAGES: The edge values on the finer grid are initialised to the edge values of the

preceding coarser grid. This is equivalent to initialising the marginals of the finer grid to those of
the coarser grid, but avoids explicitly calculating the marginals.

C. Details on the Finite Difference Discretisation
In this section, we provide details on the discretisation of the SPDE (3), from which we derive
our graphical model to which message passing is then applied. We only consider finite difference
discretisation. However, it would also be possible to use finite elements.

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

REFERENCES 17

C.1. Discretisation of the Differential Operator
First, consider the operator L := (𝜅2 − Δ)𝛼/2 defining the LHS of (3). This is a differential operator
provided 𝛼/2 ∈ N. For simplicity, consider the system in one spatial dimension and 𝛼/2 = 1. Taking a
1D grid with equal spacing Δ𝑥 = ℎ, a finite difference discretisation of the LHS of (3) reads

(𝜅2 − Δ) 𝑓 (𝑥𝑖) ≈ 𝜅2 𝑓𝑖 −
𝑓𝑖+1 + 𝑓𝑖−1 − 2 𝑓𝑖

ℎ2 , (A.32)

where {𝑥𝑖}𝑁𝑖=0 are the grid points and we used the shorthand notation 𝑓𝑖 := 𝑓 (𝑥𝑖). This gives us a finite
dimensional approximation (𝜅2 − Δ) 𝑓 ≈ 𝑳 𝒇 , where 𝒇 = (𝑓0, . . . , 𝑓𝑁)⊤ and the matrix 𝑳 has entries

[𝑳]𝑖 𝑗 =


𝜅2 + 2/ℎ2, if 𝑖 = 𝑗 ,

−1/ℎ2, if |𝑖 − 𝑗 | = 1,
0, otherwise

(A.33)

for 𝑖, 𝑗 = 1, . . . , 𝑁 − 1, which is sparse and banded, with bandwidth equal to one. On the boundaries
of the domain, 𝑖, 𝑗 ∈ {0, 𝑁}, we impose the Dirichlet condition, which sets 𝑓0 = 𝑓𝑁 = 0, and therefore
we can exclude them from the vector 𝒇 , resulting in a (𝑁 − 2)-dimensional linear system. We may also
consider the periodic boundary condition, which sets 𝑓−1 = 𝑓𝑁 and 𝑓𝑁+1 = 𝑓0, when such terms (called
ghost points) appear in equation (A.32).

On a 2D 𝑁𝑥 × 𝑁𝑦 grid, one can apply a similar discretisation to get the approximation L 𝑓 :=
(𝜅2 −Δ) 𝑓 ≈ 𝑳 𝒇 , where now, 𝒇 is a vector in R𝑁𝑥𝑁𝑦 and 𝑳 ∈ R𝑁𝑥𝑁𝑦×𝑁𝑥𝑁𝑦 . We can also obtain higher-
order powers of the operator L by taking L𝑛 𝑓 ≈ 𝑳𝑛 𝒇 . In our experiments, we use the findiff
package (Baer 2018) to perform the discretisation of the operator L.

C.2. White Noise Discretisation
For the Gaussian white-noise termW in (3) (assuming that we are in a compact domain 𝐶 ⊂ R2), we
claim that this can be approximated by a stochastic processW𝑁 : 𝐶 → R of the form

W𝑁 (𝑥) =
𝑁∑︁
𝑖=1

𝑧𝑖√︁
Δ𝑥Δ𝑦

1𝐶𝑖
(𝑥), (A.34)

where

𝒛𝑁 = (𝑧1, . . . , 𝑧𝑁) ∼ N (0, 𝐼𝑁) (A.35)

and {𝐶𝑖}𝑁𝑖=1 denotes a finite-difference discretised rectangular cell in 𝐶 whose volume Δ𝑥Δ𝑦 vanishes
as 𝑁 →∞. First, we formally define the spatial white-noise process as follows.
Definition C.1 (Lototsky and Rozovsky 2017). Given a probability triple (Ω, F , P), a random ele-
mentW : Ω → 𝐿2 (𝐶,R)∗ (the space of continuous functionals on 𝐿2 (𝐶,R)) is called a (zero-mean)
Gaussian white-noise process in 𝐿2 (𝐶,R) if it satisfies the following properties:

1. For every 𝑓 ∈ 𝐿2 (𝐶,R), we haveW 𝑓 = 0.
2. For every 𝑓 , 𝑔 ∈ 𝐿2 (𝐶,R), we have E[W 𝑓 ,W𝑔] = ⟨ 𝑓 , 𝑔⟩𝐿2 .

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

18 REFERENCES

To justify that the processW𝑁 approximatesW, for every 𝑓 ∈ 𝐿2 (𝐶,R), we have

〈
W𝑁 , 𝑓

〉
𝐿2 =

𝑁∑︁
𝑖=1

𝑧𝑖√︁
Δ𝑥Δ𝑦

∫ ∫
𝐶𝑖

𝑓 (𝑥)d𝑥d𝑦. (A.36)

Now for small |𝐶𝑖 | = Δ𝑥Δ𝑦, we have the approximation∫ ∫
𝐶𝑖

𝑓 (𝑥)d𝑥d𝑦 ≈ 𝑓 (𝑥𝑖)Δ𝑥Δ𝑦, (A.37)

for some arbitrary 𝑥𝑖 ∈ 𝐶𝑖 (e.g. the central point of 𝐶𝑖). Thus, we have the approximation

〈
W𝑁 , 𝑓

〉
𝐿2 ≈

𝑁∑︁
𝑖=1

𝑧𝑖 𝑓 (𝑥𝑖)√︁
Δ𝑥Δ𝑦

Δ𝑥Δ𝑦 =

𝑁∑︁
𝑖=1

𝑧𝑖 𝑓 (𝑥𝑖)
√︁
Δ𝑥Δ𝑦 (A.38)

and we see that the random variable
〈
W𝑁 , ℎ

〉
𝐿2 is Gaussian with moments

E
[〈
W𝑁 , 𝑓

〉
𝐿2

]
=

𝑁∑︁
𝑖=1
E[𝑧𝑖]︸︷︷︸
=0

𝑓 (𝑥𝑖)
√︁
Δ𝑥Δ𝑦 = 0 (A.39)

E
[〈
W𝑁 , 𝑓

〉
𝐿2

〈
W𝑁 , 𝑔

〉
𝐿2

]
=

𝑁∑︁
𝑖=1

𝑁∑︁
𝑗=1
E[𝑧𝑖𝑧 𝑗]︸ ︷︷ ︸

=𝛿𝑖 𝑗

𝑓 (𝑥𝑖)𝑔(𝑥 𝑗)Δ𝑥Δ𝑦 =
𝑁∑︁
𝑖=1

𝑓 (𝑥𝑖)𝑔(𝑥𝑖)Δ𝑥Δ𝑦. (A.40)

Taking 𝑁 →∞, these converge as

E
[〈
W𝑁 , 𝑓

〉
𝐿2

]
→ 0 (A.41)

E
[〈
W𝑁 , 𝑓

〉
𝐿2

〈
W𝑁 , 𝑔

〉
𝐿2

]
=

𝑁∑︁
𝑖=1

𝑓 (𝑥𝑖)𝑔(𝑥𝑖)Δ𝑥Δ𝑦 →
∫
𝐶

𝑓 (𝑥)𝑔(𝑥)d𝑥d𝑦 = ⟨ 𝑓 , 𝑔⟩𝐿2 . (A.42)

Note that the latter convergence follows from the definition of Riemann integration. Thus, the moments
of

〈
W𝑁 , 𝑓

〉
𝐿2 converge to the moments ofW 𝑓 as 𝑁 → ∞ and since 𝑓 , 𝑔 ∈ 𝐿2 (𝐶,R) were chosen

arbitrarily, we have the convergence in law

W𝑁 →W. (A.43)

Putting this together, we find a discretised representation of (3) in the form

𝑳 𝒇 =
1√︁

Δ𝑥Δ𝑦
𝒛, 𝒛 ∼ N(0, 𝐼). (A.44)

In practice, we wish to have control over the marginal variances of the process 𝒇 that can be tuned on
the data. To achieve this, we modify the expression slightly as

𝑳 𝒇 =

√︄
𝜎2𝑞

Δ𝑥Δ𝑦
𝒛, 𝒛 ∼ N(0, 𝐼). (A.45)

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

REFERENCES 19

where 𝑞 is a constant that takes the form

𝑞 :=
(4𝜋)𝑑/2𝜅2𝜈Γ(𝜈 + 𝑑/2)

Γ(𝜈) , (A.46)

This allows E[𝑓 2
𝑖
] = 𝜎2 for all 𝑖 = 1, . . . , 𝑁 and we can subsequently treat 𝜎 as a tunable parameter. We

note that expression (A.46) can be obtained from the limit 𝑞−1 = lim𝒙′→𝒙 𝑘 (𝒙, 𝒙′)/𝜎2, where 𝑘 (𝒙, 𝒙′)
is the Matérn kernel

𝑘 (𝒙, 𝒙′) = 𝜎2 21−𝜈

Γ(𝜈)

(√
2𝜈
∥𝒙 − 𝒙′∥

ℓ

)𝜈
𝐾𝜈

(√
2𝜈
∥𝒙 − 𝒙′∥

ℓ

)
. (A.47)

Here, 𝐾𝜈 is the modified Bessel function of the second kind, Γ is the Gamma function, and the hyper-
parameters 𝜈, 𝜎2 and ℓ govern the smoothness, variance and lengthscale of the corresponding process
respectively.

C.3. Extension to Spatiotemporal Systems
Beyond the spatial setting considered here, we can also construct GMRF representations of linear
spatiotemporal SPDEs, such as the 1D stochastic heat equation

𝜕𝑢

𝜕𝑡
= 𝜈Δ𝑢 + 𝜎W, (A.48)

for some coefficients 𝜈, 𝜎 > 0. In general, we can describe a first-order-in-time discretisation of a
temporally evolving system in the form

A𝒖𝑛+1 = 𝑩𝒖𝑛 + 𝜎
√
Δ𝑡Δ𝑥

𝒛𝑛+1, 𝒛𝑛+1 ∼ N(0, 𝐼), 𝑛 = 0, . . . , 𝑁 − 1, (A.49)

for some time step 𝑛, where 𝑨 and 𝑩 are some matrices determined by the numerical method used for
time-discretisation, such as the Crank-Nicolson scheme. Let us also assume a random initial condition
distributed according to a Gaussian

𝒖0 ∼ N(𝒎, 𝑷−1), (A.50)

for some mean 𝒎 and precision 𝑷. Assuming that we can write 𝑷 = (Δ𝑡Δ𝑥/𝜎2) 𝑳⊤𝑳 for some
invertible matrix 𝑳, the initial condition can be re-expressed as

𝑳𝒖0 = 𝑳𝒎 + 𝜎
√
Δ𝑡Δ𝑥

𝒛0, 𝒛0 ∼ N(0, 𝑰). (A.51)

Then, combining equations (A.49) and (A.51), we get a large matrix-vector system of the form

©­­­­­­«

𝑳 0 0 · · · 0 0
−𝑩 𝑨 0 · · · 0 0
0 −𝑩 𝑨 · · · 0 0

...
. . .

...
...

0 0 0 · · · −𝑩 𝑨

ª®®®®®®¬



𝒖0

𝒖1

𝒖2

...

𝒖𝑁


=



𝑳𝒎
0
0
...

0


+ 𝜎
√
Δ𝑡Δ𝑥



𝒛0

𝒛1

𝒛2

...

𝒛𝑁


. (A.52)

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

20 REFERENCES

Now, denoting the matrix on the LHS by 𝑴, we have the solution

𝒖0

𝒖1

𝒖2

...

𝒖𝑁


∼ N

©­­­­­­«
𝑴−1



𝑳𝒎
0
0
...

0


,
𝜎2

Δ𝑡Δ𝑥
(𝑴⊤𝑴)−1

ª®®®®®®¬
, (A.53)

which is a GMRF if the precision 𝑴⊤𝑴 is sparse. In natural parameterisation, this has a neater
expression, with precision matrix

𝑸 =
Δ𝑡Δ𝑥

𝜎2 𝑴⊤𝑴 (A.54)

and shift vector

𝒃 := 𝑷𝑴−1



𝑳𝒎
0
0
...

0


=
Δ𝑡Δ𝑥

𝜎2 𝑴⊤



𝑳𝒎
0
0
...

0


=
Δ𝑡Δ𝑥

𝜎2



𝑳⊤𝑳𝒎
0
0
...

0


=



𝑷𝒎
0
0
...

0


. (A.55)

Example C.2. Using the Crank-Nicolson scheme, one can discretise the system (A.48) as

𝒖𝑛+1 = 𝒖𝑛 + Δ𝑡

2

(
𝑳𝒖𝑛+1 + 𝑳𝒖𝑛

)
+

√︂
𝜎2Δ𝑡

Δ𝑥
𝒛𝑛+1 (A.56)

⇒ A𝒖𝑛+1 = 𝑩𝒖𝑛 + 𝜎
√
Δ𝑡Δ𝑥

𝒛𝑛+1, (A.57)

where 𝑳 is the discretised Laplacian operator and

𝑨 :=
1
Δ𝑡

𝑰 − 1
2
𝑳, 𝑩 :=

1
Δ𝑡

𝑰 + 1
2
𝑳. (A.58)

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

REFERENCES 21

D. Additional Results
D.1. Choice of Hyperparameters
We perform a grid search to set the 𝑐 and learning rate hyperparameters, which are crucial to the
convergence of the algorithm. If 𝑐 has too small a magnitude, or if the learning rate is too high, the
algorithm will diverge. We perform the grid search on simulated data of various grid sizes. Figure 4
highlights the speed of convergence of several values of 𝑐, and Table 2 gives the full results. Based on
these results we choose 𝑐 = 10 and 𝜂 = 0.6 for the rest of our experiments.

0 1000 2000 3000 4000
iterations

0.2

0.4

R
M

S
E

c = −10
c = −1
c = 1

c = 5
c = 10
c = 20

Figure 4. Convergence of message passing for different values of 𝑐 for a grid size of 256 × 256. For
each 𝑐 we plot the result for the best 𝜂. × indicates that the algorithm diverged. The black horizontal
line shows INLA.

Table 2. Grid search over 𝑐 and 𝜂 for various grid sizes and an observation density of 5%. We report
the ratio RMSE of message passing

RMSE of INLA after 4000 iterations, with lower values being better. “-” indicates that the
method diverged for that combination of hyperparameters.

𝒄

grid size 𝜼 -10 -2 -1 1 5 10 20

128 × 128 0.6 3.83 3.88 3.99 - - 3.82 3.82
0.7 - 3.85 3.92 - - - -
0.8 - - - - - - -

256 × 256 0.6 2.04 2.19 2.40 - - 1.98 2.00
0.7 - 2.11 2.28 - - - -
0.8 - - - - - - -

512 × 512 0.6 1.30 1.68 2.18 - - 1.13 1.17
0.7 - 1.49 1.90 - - - -
0.8 - - - - - - -

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

22 REFERENCES

0 5 10
runtime (s)

0.2

0.4

R
M

S
E

256× 256

1% observed
5% observed
10% observed

τ = 1e-02
τ = 5e-03
τ = 1e-03

τ = 5e-04
τ = 1e-04
τ = 1e-05

0 10 20 30
runtime (s)

0.2

0.4

512× 512

Figure 5. Effect of the early stopping hyperparameter, 𝜏, on the error and runtime of multigrid message
passing. We consider two grid sizes, 256 × 256 and 512 × 512, and 1%, 5%, and 10% of the grid being
observed. Based on these results we select 𝜏 = 1 × 10−3.

2.0 2.5 3.0
runtime (s)

0.10

0.15

0.20

R
M

S
E

256× 256

1% observed
5% observed
10% observed

tolerance = 1e-02
tolerance = 5e-03
tolerance = 1e-03

tolerance = 5e-04
tolerance = 1e-04
tolerance = 1e-05

3 4 5
runtime (s)

0.05

0.10

512× 512

Figure 6. Effect of the early stopping hyperparameter on the error and runtime of 3D-Var. In particular,
we search over the tol hyperparameter of the JAXopt L-BFGS optimiser. We consider two grid sizes,
256 × 256 and 512 × 512, and 1%, 5%, and 10% of the grid being observed. Based on these results we
select tol = 1 × 10−3.

D.2. Temperature Data
Figure 7 showcases the 𝐿1 error for our message passing approach, our 3D-Var implementation and
for the prior mean field. The mean of ERA5 surface temperature from 06:00UTC 1𝑠𝑡 January for the
years 2000 to 2019 forms the prior mean field. This prior mean field is mapped to the high-resolution
grid and the high-resolution data is valid for 06:00 UTC 1𝑠𝑡 January 2020. For the DA approaches we
see an improvement when compared to the error of the prior mean, with the message-passing approach
performing better. The message passing implementation benefits from the multigrid approach with
observations from the satellite tracks being propagated away from the locations. It should be noted that

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

REFERENCES 23

a hyperparameter tuning of the 3D-Var implementation, which is not carried out here, could improve
its performance.

Figure 7. 𝐿1 errors for the message passing, 3D-Var and the prior (ERA5) against the high resolution
Met Office Unified Model temperature data.

E. Experiment Details
All experiments are performed on a 24-core AMD Threadripper 3960X CPU and an Nvidia RTX 3090
GPU. We use JAX version 0.4.23, jaxlib 0.4.23+cuda12.cudnn89.

Message passing hyperparameters. Unless otherwise mentioned we use 𝑐 = 10 and 𝜎 = 0.6, as selected
in the grid search in Appendix D.1. We set 𝑇 = 10, 000, though this many iterations is rarely used
because of the early stopping.

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

24 REFERENCES

3D-Var hyperparameters. We use the default hyperparameters of L-BFGS as implemented in JAXopt
version 0.8.3. In particular max iterations = 500, stopping tolerance = 10−3, and zoom line search.

R-INLA. We use version 23.9.9.

Synthetic data. We generate the data by simulating the SPDE given in Equation (3), using a finite
difference solver. We set 𝛼 = 2, 𝜅 =

√
2𝜈/𝑙, with 𝜈 = 1, 𝑙 = 0.15, and 𝜎 = 1.1. We then use this SPDE

as the prior for inference.

Global temperature data. Message passing uses three multigrid levels of grid sizes 625×375, 1250×750
and 2500 × 1500. Table 3 lists the satellites used to generate the observation locations. To specify the
prior we set 𝛼 = 2, 𝜅 =

√
2𝜈/𝑙, with 𝜈 = 1, 𝑙 = 0.2, and 𝜎 = 1.9.

Table 3. List of satellites used to generate the observation locations in the global temperature data
example.

NOAA 15 DMSP 5D-3 F16 (USA 172) NOAA 18 METEOSAT-9 (MSG-2)
EWS-G1 (GOES 13) DMSP 5D-3 F17 (USA 191) FENGYUN 3A FENGYUN 2E

NOAA 19 GOES 14 DMSP 5D-3 F18 (USA 210) EWS-G2 (GOES 15)
COMS 1 FENGYUN 3B SUOMI NPP FENGYUN 2F

METEOSAT-10 (MSG-3) METOP-B FENGYUN 3C METEOR-M 2
HIMAWARI-8 FENGYUN 2G METEOSAT-11 (MSG-4) ELEKTRO-L 2
HIMAWARI-9 GOES 16 FENGYUN 4A CYGFM05

CYGFM04 CYGFM02 CYGFM01 CYGFM08
CYGFM07 CYGFM03 FENGYUN 3D NOAA 20
GOES 17 FENGYUN 2H METOP-C GEO-KOMPSAT-2A

METEOR-M2 2 ARKTIKA-M 1 FENGYUN 3E GOES 18
NOAA 21 (JPSS-2) METEOSAT-12 (MTG-I1) TIANMU-1 03 TIANMU-1 04

TIANMU-1 05 TIANMU-1 06 METEOR-M2 3 TIANMU-1 07
TIANMU-1 08 TIANMU-1 09 TIANMU-1 10 FENGYUN 3F
TIANMU-1 11 TIANMU-1 20 TIANMU-1 21 TIANMU-1 22
TIANMU-1 15 TIANMU-1 16 TIANMU-1 17 TIANMU-1 18

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

REFERENCES 25

REFERENCES
Elidan, G., McGraw, I., and Koller, D. (2006). “Residual Belief Propagation: Informed Scheduling for
Asynchronous Message Passing". In: Conference on Uncertainty in Artificial Intelligence, pp. 165–173.

Baer, M. (2018). findiff Software Package. URL: https://github.com/maroba/findiff.

Gonzalez, J., Low, Y., and Guestrin, C. (2009). “Residual Splash for Optimally Parallelizing Belief
Propagation". In: Artificial Intelligence and Statistics, pp. 177–184.

Lototsky, S. V. and Rozovsky, B. L. (2017). Stochastic Partial Differential Equations.

Minka, T. (2004). Power EP. Tech. rep. Microsoft Research, Cambridge.

Van der Merwe, M., Joseph, V., and Gopalakrishnan, G. (2019). “Message Scheduling for Performant,
Many-core Belief Propagation". In: 2019 IEEE High Performance Extreme Computing Conference
(HPEC), pp. 1-–7.

https://github.com/maroba/findiff

