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S. Supplementary materials

S.1. Practical salinity (% vs. absolute salinity (�

TEOS-10 recommends storing values of practical salinity (% in databases in order to maintain continuity
with older records and also because (% is practically a measured quantity [5]. In contrast, absolute
salinity (� is a calculated variable defined as "the mass fraction of dissolved non-H2O material in
a seawater sample at its temperature and pressure," and is recommended for use in publications [3].
For this study, we ultimately chose to work with (% because the two studies to which we make direct
comparisons, T08 and L22, used (% . Specifically, when we define the ranges of (% to filter to before
running the clustering algorithm, we were able to directly take the values of (% from T08 and L22
without having to first convert to (�.

To investigate the difference between using (% vs. (� on our results, we recreated Figure 2, but
replacing (% with (� on all the axes, as shown in Figure S.1. We still filtered the ITP2 data to be in the
practical salinity range (% 34.05–34.75 g/kg to make sure we used the same data points. However, then
we plotted those data points in ⇥0–(� space in panel (c) to run the clustering algorithm using the same
<?CB = 170. This resulted in 38 clusters (as opposed to 36) with a DBCV score of 0.2177 (as opposed
to 0.3034). In panel (d), the values of '! displayed made minor changes of (from left to right): +0.39,
-0.04, -0.03, -0.03, -0.01, +0.14, and +0.07.

We also reproduced Figure 5(a,b) in Figure S.2 using the clustering shown in Figure S.1. The two
outliers in �'(� in Figure S.2(a) do not correspond to outliers in Figure 5(a) because these have very
high �'(� , over 20, which skews the mean as used when calculating the z-score. The dark green star
and the red triangle in Figure S.2(a) correspond to the two outliers in Figure 5(a) where they are marked
by an orange 4-pointed star and a green "⇥". These pairs of points have very similar values of �'(� and
�'(% , respectively.

In Figure S.2(b), we see that there are two outliers in '! circled, both of which correspond to outliers
found when using (% . The purple star in Figure S.2(b) corresponds to the orange left half circle in
Figure 5(b), while the dark green "Y" in Figure S.2(b) corresponds to the teal "⇥" in Figure 5(b). A
notable difference is that the purple star outlier in Figure 5(b) (which spans (% = 34.233–34.261 in
Figure 2(c) encompassing what should be two distinct clusters) is no longer present in Figure S.2(b).
Comparing Figures 2(c) and S.1(c), we see that it is now replaced by two clusters, the dark green left
half circle and the red right half circle, neither of which are outliers in '! .
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Figure S.1. Results from the clustering algorithm with <?CB = 170 and ✓ = 100 dbar run on 53042

data points in the (% range 34.05–34.75 g/kg from all up-going ITP2 profiles. This is the same as Figure

2, but the clustering algorithm was run on absolute salinity (� instead of practical salinity (% . (a) The

data in ⇥–(� space with dashed lines of constant potential density anomaly (kg m
�3

) referenced to

the surface. (b) Profiles 183, 185, and 187 from ITP2 in a limited pressure range to show detail. Each

profile is offset in (� for clarity. (c) The spatial arrangement used as input for the algorithm where the

gray points are noise and each color-marker combination indicates a cluster. The same color-marker

combinations are used in each panel and the markers in panels (c) and (d) are at the cluster average for

each axis. (d) A subset of the data in U⇥–V(� space with the linear regression line and inverse slope

('!) noted for each individual cluster and with dashed lines of slope U⇥/V(� = 1.

We also see that the 2nd-degree polynomial fit in Figure S.2(b) is similar to that in Figure 5(b). We
conclude that the difference between using (� vs. (% does not significantly affect our results.

S.2. Varying the value of ✓

We define the local anomaly of a temperature profile ⇥0 as the original profile minus a version of that
profile smoothed with a moving average. Subtracting a smoothed profile from the original profile in this
way gives temperature differences that are centered around zero and leads to more continuous clusters
(compare Figures 2(a) and 2(c)), allowing HDBSCAN to group these points more accurately.

When calculating⇥0 with Equation 3.1, we use a moving average with window size ✓, so the resulting
profile has dead regions ✓/2 in size with no data at the top and bottom. Therefore, ✓ cannot be larger
than twice the distance available in the profile, either above or below the pressure range to be analyzed,
whichever is smaller. As ✓ increases, the moving average profile gets flatter, meaning ⇥0 becomes closer
to the original profile, just shifted in temperature space. Choosing a very small ✓ will give a moving
average temperature profile that will closely match the original temperature profile, meaning that the ⇥0
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Figure S.2. The value of each cluster’s normalized inter-cluster range for salinity �'(� in (a) and the

lateral density ratio '! in (b) as a function of the cluster’s average pressure for ITP2. This is the same as

Figure 5(a,b), but the clustering algorithm was run on absolute salinity (� instead of practical salinity

(% . The colors and markers are the same as the clustering shown in Figure S.1. Markers circled in red

indicate outliers with a z-score greater than 2.

profile will be very close to zero. This eliminates any effect temperature might have on the clustering
results.

In Figure S.3, we show 4 pairs of profiles, restricted to the 200-400 dbar pressure range to show
detail. All profiles are number 185 from ITP2, the example profile featured in Figure 2(b). Each panel
shows both the original profile and the moving average profile with the values of ✓: 10, 50, 100, and
150 dbar. The original and moving average profiles are slightly offset for clarity. When ✓ = 10 dbar, the
moving average profile still clearly contains some of the larger stair steps. When ✓ = 150 dbar, almost
all of the features in the original profile are gone.

We noted a feature in 2(c) where the cluster average ⇥0 increases starting at (% ⇡ 34.63 g/kg until
it jumps sharply to negative ⇥0 values around (% ⇡ 34.67 g/kg, then increases again until (% ⇡ 34.72
g/kg. This zig-zag pattern is due to the choice of ✓ and the presence of the AW subsurface temperature
maximum in ⇥ profiles. In Figure S.4, we show the ITP2 data used in the study in ⇥0–(% space for the
same 4 values of ✓ as in Figure S.3. This clearly illustrates that the zig-zag pattern is not present for low
✓ and becomes more pronounced as ✓ increases.

For each panel in Figure S.4, we ran a parameter sweep across <?CB similar to that shown in Figure
3(b), selecting the value of <?CB which gave the highest DBCV, as shown in the legends. If we always
choose ✓ to be approximately twenty times the typical layer thickness, then the panels in Figure S.4
represent clusterings for thickness estimates of 0.5 dbar, 2.5 dbar, 5 dbar, and 7.5 dbar. We conclude that
the results are not significantly sensitive to this typical layer thickness estimate as the number of clusters
and their positions along the (% axis are generally consistent across the four values of ✓, especially
between (% ⇡ 34.18 g/kg and (% ⇡ 34.62 g/kg. We find the most reasonable clusterings occur when ✓
is chosen to be small enough that the features outside the pressure range we analyze do not significantly
affect the moving average, yet large enough that the stair steps are completely smoothed out.
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Figure S.3. The original profile 185 from ITP2 and the smoothed version of that profile for 4 different

values of ✓: (a) 10 dbar, (b) 50 dbar, (c) 100 dbar, and (d) 150 dbar. The ⇥ axes on each panel are offset

slightly to show both lines.

S.3. Optional parameters for HDBSCAN

While <?CB has the most significant effect on the clustering results, there are several other parameters
which could be adjusted when using the “hdbscan” Python package. In each case, we chose to follow
the recommendation of the authors of the algorithm [2, 7]. The default distance metric is Euclidean and,
as we cluster in a two dimensional space of continuous numerical variables, we maintain this selection.
For the cluster selection method, we chose Leaf over Excess of Mass to avoid the results collapsing
into fewer, larger clusters. HDBSCAN can be combined with DBSCAN by setting a threshold of cluster
selection Y2;(4;42C to explicitly group clusters a certain distance apart. However, we chose the default
behavior of HDBSCAN which automatically identifies the values of Y which give the most stable clusters.
HDBSCAN considers a neighborhood to be dense when <?CB points are within a certain distance Y.
While <?CB , known as the minimum samples, can be independently set higher to more liberally include
fringe points in clusters or lower to more conservatively classify them as noise, we follow the default
recommendation to set this equal to the minimum points per cluster <2;(8I4.
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Figure S.4. Clustered data from ITP2 in the salinity range 34.05—34.75 g/kg plotted in ⇥0
–(% space

for 4 different values of ✓: (a) 10 dbar, (b) 50 dbar, (c) 100 dbar (the same as in Figure 2(c)), and (d)

150 dbar, where the gray points are noise and each color-marker combination indicates a cluster.

S.4. Clusters from ITP3

In Figure S.5, we create a figure similar to that of Figure 2, but for ITP3. In Figure S.6, we create a
figure similar to that of Figure 3(a), but for ITP3. Note that the run with <?CB = 710 had a DBCV score
of 0.3885, which is slightly higher than the run at <?CB = 580 with a DBCV score of 0.3862. However,
because the differences in DBCV were not great, we decided to use <?CB = 580 to reduce computation
time as the clustering algorithm takes longer to run with higher values of <?CB.

S.5. Clusters across time for ITP2

In Figure S.7, we create a figure similar to that of Figure 4, but for ITP2.

S.6. Differences from T08

Figure 6 from Timmermans et al. [8] shows clusters in U⇥ � V(% space with panel (a) showing five
values of '! for ITP2, which range from -3.5 to -3.0, and panel (b) showing 12 values of '! for ITP5,
which range from -3.9 to -2.4. It is unclear whether their reported '! = �3.7± 0.9 applies to data from
ITP2, ITP5, both, or all six ITPs they included in their study. It is not explicitly stated whether that
value applies to just the clusters shown in that figure or it includes the dozens of clusters they identified
earlier in their study. T08 never explicitly state that they did not find a trend in '! with respect to depth.
However, given that T08 reported one overall value of '! and that Bebieva and Timmermans [1] (which
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Figure S.5. Results from the clustering algorithm with <?CB = 580 and ✓ = 100 dbar run on 678575

data points in the (% range 34.21–34.82 g/kg from all up-going ITP3 profiles. (a) The data in ⇥–(%
space with dashed lines of constant potential density anomaly (kg m

�3
) referenced to the surface. (b)

Profiles 313, 315, and 317 from ITP3 in a limited pressure range to show detail. Each profile is offset

in (% for clarity. (c) The spatial arrangement used as input for the algorithm where the gray points are

noise and each color-marker combination indicates a cluster. The same color-marker combinations are

used in each panel and the markers in panels (c) and (d) are at the cluster average for each axis. (d)

A subset of the data in U⇥–V(% space with the linear regression line and inverse slope ('!) noted for

each individual cluster and with dashed lines of slope U⇥/V(� = 1.

extended the work of T08) show a constant value of '! in the depth range we consider, we assume T08
also found a constant value of '! .

There are several factors that could explain why our results for '! differ from those of T08. The
fact that they used potential temperature \ while we worked with conservative temperature ⇥ is not
relevant, since when we repeat our calculations using \ instead of ⇥, the values of '! we find are
negligibly different. It is unclear whether T08 calculated the values of U and V for each point or for each
layer. We calculated U and V for each point in each profile individually using functions from the Gibbs
Seawater (GSW) Oceanographic Toolbox, the Python implementation of TEOS-10 [5], while T08 used
the McDougall [4] algorithm coded by Morgan [6] as GSW was not yet released. This difference in
the calculation of U and V may conceivably explain why the clusters we show in Figure 2(d) are tilted
several degrees compared to those shown in Figure 6(a) from T08, and why the values of '! found here
are all less negative than corresponding values in Figure 6(a) of T08. The difference in calculating U
and V may also account for the shift in the ranges of V(% between the two figures. Both plots show a
span in V(% of 4.0⇥ 10�5, but our plot ranges from 2.6838⇥ 10�2 to 2.6878⇥ 10�2, while theirs ranges
from 2.7002 ⇥ 10�2 to 2.7042 ⇥ 10�2. Because the clustering algorithm only considers ⇥0 and (% , any
difference in calculating U and V would not affect the clusters we found, only the values of '! .
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Figure S.6. A parameter sweep showing the number of clusters found (solid lines) and DBCV (dashed

lines) in ITP3 as a function of 72 different values of <?CB with ✓ = 100 dbar.

S.7. Differences from L22

L22 used 758 profiles from ITP3 while we used all 766 available up-going profiles. The reasons 8
profiles were not used was not stated, nor could we determine exactly which profiles they are. Based on
the gaps in Figure 3 of L22, we believe that the 8 missing up-going profiles are from July 2006. We do
not, however, believe that this difference of 8 profiles accounts in any significant way for the differences
between our results and those of L22.

Instead, we believe the reason our results differ from those of L22 has to do with the difference in
the methods used to identify layers. Because the method used by L22 to delineate different layers only
considered salinity, they would not separate layers with temperature inversions. Remnant intrusions are
homogeneous in salinity but, compared to stair steps, are inverted in temperature and have different
patterns of heat and salt flux. They tend to be present near the bottom of the staircase, which is indeed
where we find the largest differences between our results and those of L22. A remnant intrusion’s
pattern of a section of warmer water above a section of colder water is distinct enough for the clustering
algorithm to find two clusters. However, if only salinity is considered, as L22 did, it would appear to be
one regular staircase layer. Whether a remnant intrusion represents one or multiple layers is subjective,
and we do not claim that one method is superior to the other. Here, in fact, it is the disagreement between
these two methods is arguably the most interesting point, because it indicates that a specific physical
process is operating.

While we agree with L22 that salinity is the best measured quantity by which to identify the layers of
a staircase, it is still important to consider temperature. Another topic of future study would be to adapt
this method to automatically distinguish between well-mixed layers and intrusions.
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Figure S.7. The average (a) pressure, (b) ⇥, and (c) (% for the points within each cluster for each

profile (profile cluster average, PCA) across time. The clustering algorithm was run with <?CB = 170
and ✓ = 100 dbar on 53042 data points in the salinity range 34.05–34.75 g/kg from all up-going ITP2

profiles.


	Supplementary materials
	Practical salinity SP vs. absolute salinity SA
	Varying the value of 
	Optional parameters for HDBSCAN
	Clusters from ITP3
	Clusters across time for ITP2
	Differences from T08
	Differences from L22


